Added support for i.MX35 NAND Flash Controller (v2)

Change-Id: I7237ec29792b6a7ee690751fa7e6cba0846d5aa8
Signed-off-by: Erik Ahlén <erik.ahlen@avalonenterprise.com>
Reviewed-on: http://openocd.zylin.com/271
Tested-by: jenkins
Reviewed-by: Mathias Küster <kesmtp@freenet.de>
Reviewed-by: Spencer Oliver <spen@spen-soft.co.uk>
This commit is contained in:
Erik Ahlén 2011-12-14 10:10:29 +01:00 committed by Spencer Oliver
parent a57d547dd7
commit 8901fca027
2 changed files with 285 additions and 136 deletions

View File

@ -45,6 +45,10 @@
#include "mx2.h" #include "mx2.h"
#include <target/target.h> #include <target/target.h>
#define nfc_is_v1() (mxc_nf_info->mxc_version == MXC_VERSION_MX27 || \
mxc_nf_info->mxc_version == MXC_VERSION_MX31)
#define nfc_is_v2() (mxc_nf_info->mxc_version == MXC_VERSION_MX35)
/* This permits to print (in LOG_INFO) how much bytes /* This permits to print (in LOG_INFO) how much bytes
* has been written after a page read or write. * has been written after a page read or write.
* This is useful when OpenOCD is used with a graphical * This is useful when OpenOCD is used with a graphical
@ -63,6 +67,7 @@ static const char get_status_register_err_msg[] = "can't get NAND status";
static uint32_t in_sram_address; static uint32_t in_sram_address;
static unsigned char sign_of_sequental_byte_read; static unsigned char sign_of_sequental_byte_read;
static uint32_t align_address_v2(struct nand_device *nand, uint32_t addr);
static int initialize_nf_controller(struct nand_device *nand); static int initialize_nf_controller(struct nand_device *nand);
static int get_next_byte_from_sram_buffer(struct nand_device *nand, uint8_t *value); static int get_next_byte_from_sram_buffer(struct nand_device *nand, uint8_t *value);
static int get_next_halfword_from_sram_buffer(struct nand_device *nand, uint16_t *value); static int get_next_halfword_from_sram_buffer(struct nand_device *nand, uint16_t *value);
@ -94,12 +99,19 @@ NAND_DEVICE_COMMAND_HANDLER(mxc_nand_device_command)
/* /*
* check board type * check board type
*/ */
if (strcmp(CMD_ARGV[2], "mx27") == 0) if (strcmp(CMD_ARGV[2], "mx27") == 0) {
mxc_nf_info->mxc_version = MXC_VERSION_MX27;
mxc_nf_info->mxc_base_addr = 0xD8000000; mxc_nf_info->mxc_base_addr = 0xD8000000;
else if (strcmp(CMD_ARGV[2], "mx31") == 0) mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x0E00;
} else if (strcmp(CMD_ARGV[2], "mx31") == 0) {
mxc_nf_info->mxc_version = MXC_VERSION_MX31;
mxc_nf_info->mxc_base_addr = 0xB8000000; mxc_nf_info->mxc_base_addr = 0xB8000000;
else if (strcmp(CMD_ARGV[2], "mx35") == 0) mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x0E00;
} else if (strcmp(CMD_ARGV[2], "mx35") == 0) {
mxc_nf_info->mxc_version = MXC_VERSION_MX35;
mxc_nf_info->mxc_base_addr = 0xBB000000; mxc_nf_info->mxc_base_addr = 0xBB000000;
mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x1E00;
}
/* /*
* check hwecc requirements * check hwecc requirements
@ -192,7 +204,10 @@ static int mxc_init(struct nand_device *nand)
int validate_target_result; int validate_target_result;
uint16_t buffsize_register_content; uint16_t buffsize_register_content;
uint32_t pcsr_register_content; uint32_t sreg_content;
uint32_t SREG = MX2_FMCR;
uint32_t SEL_16BIT = MX2_FMCR_NF_16BIT_SEL;
uint32_t SEL_FMS = MX2_FMCR_NF_FMS;
int retval; int retval;
uint16_t nand_status_content; uint16_t nand_status_content;
/* /*
@ -202,19 +217,30 @@ static int mxc_init(struct nand_device *nand)
if (validate_target_result != ERROR_OK) if (validate_target_result != ERROR_OK)
return validate_target_result; return validate_target_result;
if (nfc_is_v1()) {
target_read_u16(target, MXC_NF_BUFSIZ, &buffsize_register_content); target_read_u16(target, MXC_NF_BUFSIZ, &buffsize_register_content);
mxc_nf_info->flags.one_kb_sram = !(buffsize_register_content & 0x000f); mxc_nf_info->flags.one_kb_sram = !(buffsize_register_content & 0x000f);
} else
mxc_nf_info->flags.one_kb_sram = 0;
target_read_u32(target, MXC_FMCR, &pcsr_register_content); if (mxc_nf_info->mxc_version == MXC_VERSION_MX31) {
SREG = MX3_PCSR;
SEL_16BIT = MX3_PCSR_NF_16BIT_SEL;
SEL_FMS = MX3_PCSR_NF_FMS;
} else if (mxc_nf_info->mxc_version == MXC_VERSION_MX35) {
SREG = MX35_RCSR;
SEL_16BIT = MX35_RCSR_NF_16BIT_SEL;
SEL_FMS = MX35_RCSR_NF_FMS;
}
target_read_u32(target, SREG, &sreg_content);
if (!nand->bus_width) { if (!nand->bus_width) {
/* bus_width not yet defined. Read it from MXC_FMCR */ /* bus_width not yet defined. Read it from MXC_FMCR */
nand->bus_width = nand->bus_width = (sreg_content & SEL_16BIT) ? 16 : 8;
(pcsr_register_content & MXC_FMCR_NF_16BIT_SEL) ? 16 : 8;
} else { } else {
/* bus_width forced in soft. Sync it to MXC_FMCR */ /* bus_width forced in soft. Sync it to MXC_FMCR */
pcsr_register_content |= sreg_content |= ((nand->bus_width == 16) ? SEL_16BIT : 0x00000000);
((nand->bus_width == 16) ? MXC_FMCR_NF_16BIT_SEL : 0x00000000); target_write_u32(target, SREG, sreg_content);
target_write_u32(target, MXC_FMCR, pcsr_register_content);
} }
if (nand->bus_width == 16) if (nand->bus_width == 16)
LOG_DEBUG("MXC_NF : bus is 16-bit width"); LOG_DEBUG("MXC_NF : bus is 16-bit width");
@ -222,11 +248,10 @@ static int mxc_init(struct nand_device *nand)
LOG_DEBUG("MXC_NF : bus is 8-bit width"); LOG_DEBUG("MXC_NF : bus is 8-bit width");
if (!nand->page_size) { if (!nand->page_size) {
nand->page_size = (pcsr_register_content & MXC_FMCR_NF_FMS) ? 2048 : 512; nand->page_size = (sreg_content & SEL_FMS) ? 2048 : 512;
} else { } else {
pcsr_register_content |= sreg_content |= ((nand->page_size == 2048) ? SEL_FMS : 0x00000000);
((nand->page_size == 2048) ? MXC_FMCR_NF_FMS : 0x00000000); target_write_u32(target, SREG, sreg_content);
target_write_u32(target, MXC_FMCR, pcsr_register_content);
} }
if (mxc_nf_info->flags.one_kb_sram && (nand->page_size == 2048)) { if (mxc_nf_info->flags.one_kb_sram && (nand->page_size == 2048)) {
LOG_ERROR("NAND controller have only 1 kb SRAM, so " LOG_ERROR("NAND controller have only 1 kb SRAM, so "
@ -235,6 +260,9 @@ static int mxc_init(struct nand_device *nand)
LOG_DEBUG("MXC_NF : NAND controller can handle pagesize of 2048"); LOG_DEBUG("MXC_NF : NAND controller can handle pagesize of 2048");
} }
if (nfc_is_v2() && sreg_content & MX35_RCSR_NF_4K)
LOG_ERROR("MXC driver does not have support for 4k pagesize.");
initialize_nf_controller(nand); initialize_nf_controller(nand);
retval = ERROR_OK; retval = ERROR_OK;
@ -322,7 +350,10 @@ static int mxc_command(struct nand_device *nand, uint8_t command)
/* set read point for data_read() and read_block_data() to /* set read point for data_read() and read_block_data() to
* spare area in SRAM buffer * spare area in SRAM buffer
*/ */
in_sram_address = MXC_NF_SPARE_BUFFER0; if (nfc_is_v1())
in_sram_address = MXC_NF_V1_SPARE_BUFFER0;
else
in_sram_address = MXC_NF_V2_SPARE_BUFFER0;
break; break;
case NAND_CMD_READ1: case NAND_CMD_READ1:
command = NAND_CMD_READ0; command = NAND_CMD_READ0;
@ -431,7 +462,9 @@ static int mxc_write_page(struct nand_device *nand, uint32_t page,
int retval; int retval;
uint16_t nand_status_content; uint16_t nand_status_content;
uint16_t swap1, swap2, new_swap1; uint16_t swap1, swap2, new_swap1;
uint8_t bufs;
int poll_result; int poll_result;
if (data_size % 2) { if (data_size % 2) {
LOG_ERROR(data_block_size_err_msg, data_size); LOG_ERROR(data_block_size_err_msg, data_size);
return ERROR_NAND_OPERATION_FAILED; return ERROR_NAND_OPERATION_FAILED;
@ -444,6 +477,7 @@ static int mxc_write_page(struct nand_device *nand, uint32_t page,
LOG_ERROR("nothing to program"); LOG_ERROR("nothing to program");
return ERROR_NAND_OPERATION_FAILED; return ERROR_NAND_OPERATION_FAILED;
} }
/* /*
* validate target state * validate target state
*/ */
@ -471,7 +505,18 @@ static int mxc_write_page(struct nand_device *nand, uint32_t page,
LOG_DEBUG("part of spare block will be overrided " LOG_DEBUG("part of spare block will be overrided "
"by hardware ECC generator"); "by hardware ECC generator");
} }
target_write_buffer(target, MXC_NF_SPARE_BUFFER0, oob_size, oob); if (nfc_is_v1())
target_write_buffer(target, MXC_NF_V1_SPARE_BUFFER0, oob_size, oob);
else {
uint32_t addr = MXC_NF_V2_SPARE_BUFFER0;
while (oob_size > 0) {
uint8_t len = MIN(oob_size, MXC_NF_SPARE_BUFFER_LEN);
target_write_buffer(target, addr, len, oob);
addr = align_address_v2(nand, addr + len);
oob += len;
oob_size -= len;
}
}
} }
if (nand->page_size > 512 && mxc_nf_info->flags.biswap_enabled) { if (nand->page_size > 512 && mxc_nf_info->flags.biswap_enabled) {
@ -485,35 +530,27 @@ static int mxc_write_page(struct nand_device *nand, uint32_t page,
new_swap1 = (swap1 & 0xFF00) | (swap2 >> 8); new_swap1 = (swap1 & 0xFF00) | (swap2 >> 8);
swap2 = (swap1 << 8) | (swap2 & 0xFF); swap2 = (swap1 << 8) | (swap2 & 0xFF);
target_write_u16(target, MXC_NF_MAIN_BUFFER3 + 464, new_swap1); target_write_u16(target, MXC_NF_MAIN_BUFFER3 + 464, new_swap1);
target_write_u16(target, MXC_NF_SPARE_BUFFER3 + 4, swap2); if (nfc_is_v1())
target_write_u16(target, MXC_NF_V1_SPARE_BUFFER3, swap2);
else
target_write_u16(target, MXC_NF_V2_SPARE_BUFFER3, swap2);
} }
/* /*
* start data input operation (set MXC_NF_BIT_OP_DONE==0) * start data input operation (set MXC_NF_BIT_OP_DONE==0)
*/ */
target_write_u16(target, MXC_NF_BUFADDR, 0); if (nfc_is_v1() && nand->page_size > 512)
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FDI); bufs = 4;
poll_result = poll_for_complete_op(nand, "data input"); else
if (poll_result != ERROR_OK) bufs = 1;
return poll_result;
target_write_u16(target, MXC_NF_BUFADDR, 1); for (uint8_t i = 0 ; i < bufs ; ++i) {
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FDI); target_write_u16(target, MXC_NF_BUFADDR, i);
poll_result = poll_for_complete_op(nand, "data input");
if (poll_result != ERROR_OK)
return poll_result;
target_write_u16(target, MXC_NF_BUFADDR, 2);
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FDI);
poll_result = poll_for_complete_op(nand, "data input");
if (poll_result != ERROR_OK)
return poll_result;
target_write_u16(target, MXC_NF_BUFADDR, 3);
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FDI); target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FDI);
poll_result = poll_for_complete_op(nand, "data input"); poll_result = poll_for_complete_op(nand, "data input");
if (poll_result != ERROR_OK) if (poll_result != ERROR_OK)
return poll_result; return poll_result;
}
retval |= mxc_command(nand, NAND_CMD_PAGEPROG); retval |= mxc_command(nand, NAND_CMD_PAGEPROG);
if (retval != ERROR_OK) if (retval != ERROR_OK)
@ -552,6 +589,7 @@ static int mxc_read_page(struct nand_device *nand, uint32_t page,
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv; struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target; struct target *target = nand->target;
int retval; int retval;
uint8_t bufs;
uint16_t swap1, swap2, new_swap1; uint16_t swap1, swap2, new_swap1;
if (data_size % 2) { if (data_size % 2) {
@ -586,50 +624,52 @@ static int mxc_read_page(struct nand_device *nand, uint32_t page,
retval = mxc_command(nand, NAND_CMD_READSTART); retval = mxc_command(nand, NAND_CMD_READSTART);
if (retval != ERROR_OK) return retval; if (retval != ERROR_OK) return retval;
target_write_u16(target, MXC_NF_BUFADDR, 0); if (nfc_is_v1() && nand->page_size > 512)
bufs = 4;
else
bufs = 1;
for (uint8_t i = 0 ; i < bufs ; ++i) {
target_write_u16(target, MXC_NF_BUFADDR, i);
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT; mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
retval = do_data_output(nand); retval = do_data_output(nand);
if (retval != ERROR_OK) { if (retval != ERROR_OK) {
LOG_ERROR("MXC_NF : Error reading page 0"); LOG_ERROR("MXC_NF : Error reading page %d", i);
return retval; return retval;
} }
/* Test nand page size to know how much MAIN_BUFFER must be written */
target_write_u16(target, MXC_NF_BUFADDR, 1);
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
retval = do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR("MXC_NF : Error reading page 1");
return retval;
}
target_write_u16(target, MXC_NF_BUFADDR, 2);
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
retval = do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR("MXC_NF : Error reading page 2");
return retval;
}
target_write_u16(target, MXC_NF_BUFADDR, 3);
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
retval = do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR("MXC_NF : Error reading page 3");
return retval;
} }
if (nand->page_size > 512 && mxc_nf_info->flags.biswap_enabled) { if (nand->page_size > 512 && mxc_nf_info->flags.biswap_enabled) {
uint32_t SPARE_BUFFER3;
/* BI-swap - work-around of mxc NFC for NAND device with page == 2k */ /* BI-swap - work-around of mxc NFC for NAND device with page == 2k */
target_read_u16(target, MXC_NF_MAIN_BUFFER3 + 464, &swap1); target_read_u16(target, MXC_NF_MAIN_BUFFER3 + 464, &swap1);
target_read_u16(target, MXC_NF_SPARE_BUFFER3 + 4, &swap2); if (nfc_is_v1())
SPARE_BUFFER3 = MXC_NF_V1_SPARE_BUFFER3;
else
SPARE_BUFFER3 = MXC_NF_V2_SPARE_BUFFER3;
target_read_u16(target, SPARE_BUFFER3, &swap2);
new_swap1 = (swap1 & 0xFF00) | (swap2 >> 8); new_swap1 = (swap1 & 0xFF00) | (swap2 >> 8);
swap2 = (swap1 << 8) | (swap2 & 0xFF); swap2 = (swap1 << 8) | (swap2 & 0xFF);
target_write_u16(target, MXC_NF_MAIN_BUFFER3 + 464, new_swap1); target_write_u16(target, MXC_NF_MAIN_BUFFER3 + 464, new_swap1);
target_write_u16(target, MXC_NF_SPARE_BUFFER3 + 4, swap2); target_write_u16(target, SPARE_BUFFER3, swap2);
} }
if (data) if (data)
target_read_buffer(target, MXC_NF_MAIN_BUFFER0, data_size, data); target_read_buffer(target, MXC_NF_MAIN_BUFFER0, data_size, data);
if (oob) if (oob) {
target_read_buffer(target, MXC_NF_SPARE_BUFFER0, oob_size, oob); if (nfc_is_v1())
target_read_buffer(target, MXC_NF_V1_SPARE_BUFFER0, oob_size, oob);
else {
uint32_t addr = MXC_NF_V2_SPARE_BUFFER0;
while (oob_size > 0) {
uint8_t len = MIN(oob_size, MXC_NF_SPARE_BUFFER_LEN);
target_read_buffer(target, addr, len, oob);
addr = align_address_v2(nand, addr + len);
oob += len;
oob_size -= len;
}
}
}
#ifdef _MXC_PRINT_STAT #ifdef _MXC_PRINT_STAT
if (data_size > 0) { if (data_size > 0) {
@ -642,17 +682,31 @@ static int mxc_read_page(struct nand_device *nand, uint32_t page,
return ERROR_OK; return ERROR_OK;
} }
static uint32_t align_address_v2(struct nand_device *nand, uint32_t addr)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
uint32_t ret = addr;
if (addr > MXC_NF_V2_SPARE_BUFFER0 &&
(addr & 0x1F) == MXC_NF_SPARE_BUFFER_LEN) {
ret += MXC_NF_SPARE_BUFFER_MAX - MXC_NF_SPARE_BUFFER_LEN;
} else if (addr >= (mxc_nf_info->mxc_base_addr + (uint32_t)nand->page_size))
ret = MXC_NF_V2_SPARE_BUFFER0;
return ret;
}
static int initialize_nf_controller(struct nand_device *nand) static int initialize_nf_controller(struct nand_device *nand)
{ {
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv; struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target; struct target *target = nand->target;
uint16_t work_mode; uint16_t work_mode = 0;
uint16_t temp; uint16_t temp;
/* /*
* resets NAND flash controller in zero time ? I dont know. * resets NAND flash controller in zero time ? I dont know.
*/ */
target_write_u16(target, MXC_NF_CFG1, MXC_NF_BIT_RESET_EN); target_write_u16(target, MXC_NF_CFG1, MXC_NF_BIT_RESET_EN);
if (mxc_nf_info->mxc_version == MXC_VERSION_MX27)
work_mode = MXC_NF_BIT_INT_DIS; /* disable interrupt */ work_mode = MXC_NF_BIT_INT_DIS; /* disable interrupt */
if (target->endianness == TARGET_BIG_ENDIAN) { if (target->endianness == TARGET_BIG_ENDIAN) {
LOG_DEBUG("MXC_NF : work in Big Endian mode"); LOG_DEBUG("MXC_NF : work in Big Endian mode");
work_mode |= MXC_NF_BIT_BE_EN; work_mode |= MXC_NF_BIT_BE_EN;
@ -665,7 +719,15 @@ static int initialize_nf_controller(struct nand_device *nand)
} else { } else {
LOG_DEBUG("MXC_NF : work without ECC mode"); LOG_DEBUG("MXC_NF : work without ECC mode");
} }
if (nfc_is_v2()) {
if (nand->page_size) {
uint16_t pages_per_block = nand->erase_size / nand->page_size;
work_mode |= MXC_NF_V2_CFG1_PPB(ffs(pages_per_block) - 6);
}
work_mode |= MXC_NF_BIT_ECC_4BIT;
}
target_write_u16(target, MXC_NF_CFG1, work_mode); target_write_u16(target, MXC_NF_CFG1, work_mode);
/* /*
* unlock SRAM buffer for write; 2 mean "Unlock", other values means "Lock" * unlock SRAM buffer for write; 2 mean "Unlock", other values means "Lock"
*/ */
@ -679,11 +741,23 @@ static int initialize_nf_controller(struct nand_device *nand)
/* /*
* unlock NAND flash for write * unlock NAND flash for write
*/ */
if (nfc_is_v1()) {
target_write_u16(target, MXC_NF_V1_UNLOCKSTART, 0x0000);
target_write_u16(target, MXC_NF_V1_UNLOCKEND, 0xFFFF);
} else {
target_write_u16(target, MXC_NF_V2_UNLOCKSTART0, 0x0000);
target_write_u16(target, MXC_NF_V2_UNLOCKSTART1, 0x0000);
target_write_u16(target, MXC_NF_V2_UNLOCKSTART2, 0x0000);
target_write_u16(target, MXC_NF_V2_UNLOCKSTART3, 0x0000);
target_write_u16(target, MXC_NF_V2_UNLOCKEND0, 0xFFFF);
target_write_u16(target, MXC_NF_V2_UNLOCKEND1, 0xFFFF);
target_write_u16(target, MXC_NF_V2_UNLOCKEND2, 0xFFFF);
target_write_u16(target, MXC_NF_V2_UNLOCKEND3, 0xFFFF);
}
target_write_u16(target, MXC_NF_FWP, 4); target_write_u16(target, MXC_NF_FWP, 4);
target_write_u16(target, MXC_NF_LOCKSTART, 0x0000);
target_write_u16(target, MXC_NF_LOCKEND, 0xFFFF);
/* /*
* 0x0000 means that first SRAM buffer @0xD800_0000 will be used * 0x0000 means that first SRAM buffer @base_addr will be used
*/ */
target_write_u16(target, MXC_NF_BUFADDR, 0x0000); target_write_u16(target, MXC_NF_BUFADDR, 0x0000);
/* /*
@ -706,13 +780,17 @@ static int get_next_byte_from_sram_buffer(struct nand_device *nand, uint8_t *val
if (sign_of_sequental_byte_read == 0) if (sign_of_sequental_byte_read == 0)
even_byte = 0; even_byte = 0;
if (in_sram_address > MXC_NF_LAST_BUFFER_ADDR) { if (in_sram_address >
(nfc_is_v1() ? MXC_NF_V1_LAST_BUFFADDR : MXC_NF_V2_LAST_BUFFADDR)) {
LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address); LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address);
*value = 0; *value = 0;
sign_of_sequental_byte_read = 0; sign_of_sequental_byte_read = 0;
even_byte = 0; even_byte = 0;
return ERROR_NAND_OPERATION_FAILED; return ERROR_NAND_OPERATION_FAILED;
} else { } else {
if (nfc_is_v2())
in_sram_address = align_address_v2(nand, in_sram_address);
target_read_u16(target, in_sram_address, &temp); target_read_u16(target, in_sram_address, &temp);
if (even_byte) { if (even_byte) {
*value = temp >> 8; *value = temp >> 8;
@ -732,11 +810,15 @@ static int get_next_halfword_from_sram_buffer(struct nand_device *nand, uint16_t
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv; struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target; struct target *target = nand->target;
if (in_sram_address > MXC_NF_LAST_BUFFER_ADDR) { if (in_sram_address >
(nfc_is_v1() ? MXC_NF_V1_LAST_BUFFADDR : MXC_NF_V2_LAST_BUFFADDR)) {
LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address); LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address);
*value = 0; *value = 0;
return ERROR_NAND_OPERATION_FAILED; return ERROR_NAND_OPERATION_FAILED;
} else { } else {
if (nfc_is_v2())
in_sram_address = align_address_v2(nand, in_sram_address);
target_read_u16(target, in_sram_address, value); target_read_u16(target, in_sram_address, value);
in_sram_address += 2; in_sram_address += 2;
} }
@ -745,18 +827,7 @@ static int get_next_halfword_from_sram_buffer(struct nand_device *nand, uint16_t
static int poll_for_complete_op(struct nand_device *nand, const char *text) static int poll_for_complete_op(struct nand_device *nand, const char *text)
{ {
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv; if (mxc_nand_ready(nand, 1000) == -1) {
struct target *target = nand->target;
uint16_t poll_complete_status;
for (int poll_cycle_count = 0; poll_cycle_count < 100; poll_cycle_count++) {
target_read_u16(target, MXC_NF_CFG2, &poll_complete_status);
if (poll_complete_status & MXC_NF_BIT_OP_DONE)
break;
usleep(10);
}
if (!(poll_complete_status & MXC_NF_BIT_OP_DONE)) {
LOG_ERROR("%s sending timeout", text); LOG_ERROR("%s sending timeout", text);
return ERROR_NAND_OPERATION_FAILED; return ERROR_NAND_OPERATION_FAILED;
} }
@ -783,12 +854,62 @@ static int validate_target_state(struct nand_device *nand)
return ERROR_OK; return ERROR_OK;
} }
int ecc_status_v1(struct nand_device *nand)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
uint16_t ecc_status;
target_read_u16(target, MXC_NF_ECCSTATUS, &ecc_status);
switch (ecc_status & 0x000c) {
case 1 << 2:
LOG_INFO("main area read with 1 (correctable) error");
break;
case 2 << 2:
LOG_INFO("main area read with more than 1 (incorrectable) error");
return ERROR_NAND_OPERATION_FAILED;
break;
}
switch (ecc_status & 0x0003) {
case 1:
LOG_INFO("spare area read with 1 (correctable) error");
break;
case 2:
LOG_INFO("main area read with more than 1 (incorrectable) error");
return ERROR_NAND_OPERATION_FAILED;
break;
}
return ERROR_OK;
}
int ecc_status_v2(struct nand_device *nand)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
uint16_t ecc_status;
uint8_t no_subpages;
uint8_t err;
no_subpages = nand->page_size >> 9;
target_read_u16(target, MXC_NF_ECCSTATUS, &ecc_status);
do {
err = ecc_status & 0xF;
if (err > 4) {
LOG_INFO("UnCorrectable RS-ECC Error");
return ERROR_NAND_OPERATION_FAILED;
} else if (err > 0)
LOG_INFO("%d Symbol Correctable RS-ECC Error", err);
ecc_status >>= 4;
} while (--no_subpages);
return ERROR_OK;
}
static int do_data_output(struct nand_device *nand) static int do_data_output(struct nand_device *nand)
{ {
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv; struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target; struct target *target = nand->target;
int poll_result; int poll_result;
uint16_t ecc_status;
switch (mxc_nf_info->fin) { switch (mxc_nf_info->fin) {
case MXC_NF_FIN_DATAOUT: case MXC_NF_FIN_DATAOUT:
/* /*
@ -803,27 +924,15 @@ static int do_data_output(struct nand_device *nand)
/* /*
* ECC stuff * ECC stuff
*/ */
if ((mxc_nf_info->optype == MXC_NF_DATAOUT_PAGE) && if (mxc_nf_info->optype == MXC_NF_DATAOUT_PAGE &&
mxc_nf_info->flags.hw_ecc_enabled) { mxc_nf_info->flags.hw_ecc_enabled) {
target_read_u16(target, MXC_NF_ECCSTATUS, &ecc_status); int ecc_status;
switch (ecc_status & 0x000c) { if (nfc_is_v1())
case 1 << 2: ecc_status = ecc_status_v1(nand);
LOG_INFO("main area readed with 1 (correctable) error"); else
break; ecc_status = ecc_status_v2(nand);
case 2 << 2: if (ecc_status != ERROR_OK)
LOG_INFO("main area readed with more than 1 (incorrectable) error"); return ecc_status;
return ERROR_NAND_OPERATION_FAILED;
break;
}
switch (ecc_status & 0x0003) {
case 1:
LOG_INFO("spare area readed with 1 (correctable) error");
break;
case 2:
LOG_INFO("main area readed with more than 1 (incorrectable) error");
return ERROR_NAND_OPERATION_FAILED;
break;
}
} }
break; break;
case MXC_NF_FIN_NONE: case MXC_NF_FIN_NONE:

View File

@ -27,44 +27,69 @@
* Many thanks to Ben Dooks for writing s3c24xx driver. * Many thanks to Ben Dooks for writing s3c24xx driver.
*/ */
#define MXC_NF_BUFSIZ (mxc_nf_info->mxc_base_addr + 0xe00) #define MXC_NF_BUFSIZ (mxc_nf_info->mxc_regs_addr + 0x00)
#define MXC_NF_BUFADDR (mxc_nf_info->mxc_base_addr + 0xe04) #define MXC_NF_BUFADDR (mxc_nf_info->mxc_regs_addr + 0x04)
#define MXC_NF_FADDR (mxc_nf_info->mxc_base_addr + 0xe06) #define MXC_NF_FADDR (mxc_nf_info->mxc_regs_addr + 0x06)
#define MXC_NF_FCMD (mxc_nf_info->mxc_base_addr + 0xe08) #define MXC_NF_FCMD (mxc_nf_info->mxc_regs_addr + 0x08)
#define MXC_NF_BUFCFG (mxc_nf_info->mxc_base_addr + 0xe0a) #define MXC_NF_BUFCFG (mxc_nf_info->mxc_regs_addr + 0x0a)
#define MXC_NF_ECCSTATUS (mxc_nf_info->mxc_base_addr + 0xe0c) #define MXC_NF_ECCSTATUS (mxc_nf_info->mxc_regs_addr + 0x0c)
#define MXC_NF_ECCMAINPOS (mxc_nf_info->mxc_base_addr + 0xe0e) #define MXC_NF_ECCMAINPOS (mxc_nf_info->mxc_regs_addr + 0x0e)
#define MXC_NF_ECCSPAREPOS (mxc_nf_info->mxc_base_addr + 0xe10) #define MXC_NF_ECCSPAREPOS (mxc_nf_info->mxc_regs_addr + 0x10)
#define MXC_NF_FWP (mxc_nf_info->mxc_base_addr + 0xe12) #define MXC_NF_FWP (mxc_nf_info->mxc_regs_addr + 0x12)
#define MXC_NF_LOCKSTART (mxc_nf_info->mxc_base_addr + 0xe14) #define MXC_NF_V1_UNLOCKSTART (mxc_nf_info->mxc_regs_addr + 0x14)
#define MXC_NF_LOCKEND (mxc_nf_info->mxc_base_addr + 0xe16) #define MXC_NF_V1_UNLOCKEND (mxc_nf_info->mxc_regs_addr + 0x16)
#define MXC_NF_FWPSTATUS (mxc_nf_info->mxc_base_addr + 0xe18) #define MXC_NF_V2_UNLOCKSTART0 (mxc_nf_info->mxc_regs_addr + 0x20)
#define MXC_NF_V2_UNLOCKSTART1 (mxc_nf_info->mxc_regs_addr + 0x24)
#define MXC_NF_V2_UNLOCKSTART2 (mxc_nf_info->mxc_regs_addr + 0x28)
#define MXC_NF_V2_UNLOCKSTART3 (mxc_nf_info->mxc_regs_addr + 0x2c)
#define MXC_NF_V2_UNLOCKEND0 (mxc_nf_info->mxc_regs_addr + 0x22)
#define MXC_NF_V2_UNLOCKEND1 (mxc_nf_info->mxc_regs_addr + 0x26)
#define MXC_NF_V2_UNLOCKEND2 (mxc_nf_info->mxc_regs_addr + 0x2a)
#define MXC_NF_V2_UNLOCKEND3 (mxc_nf_info->mxc_regs_addr + 0x2e)
#define MXC_NF_FWPSTATUS (mxc_nf_info->mxc_regs_addr + 0x18)
/* /*
* all bits not marked as self-clearing bit * all bits not marked as self-clearing bit
*/ */
#define MXC_NF_CFG1 (mxc_nf_info->mxc_base_addr + 0xe1a) #define MXC_NF_CFG1 (mxc_nf_info->mxc_regs_addr + 0x1a)
#define MXC_NF_CFG2 (mxc_nf_info->mxc_base_addr + 0xe1c) #define MXC_NF_CFG2 (mxc_nf_info->mxc_regs_addr + 0x1c)
#define MXC_NF_MAIN_BUFFER0 (mxc_nf_info->mxc_base_addr + 0x0000) #define MXC_NF_MAIN_BUFFER0 (mxc_nf_info->mxc_base_addr + 0x0000)
#define MXC_NF_MAIN_BUFFER1 (mxc_nf_info->mxc_base_addr + 0x0200) #define MXC_NF_MAIN_BUFFER1 (mxc_nf_info->mxc_base_addr + 0x0200)
#define MXC_NF_MAIN_BUFFER2 (mxc_nf_info->mxc_base_addr + 0x0400) #define MXC_NF_MAIN_BUFFER2 (mxc_nf_info->mxc_base_addr + 0x0400)
#define MXC_NF_MAIN_BUFFER3 (mxc_nf_info->mxc_base_addr + 0x0600) #define MXC_NF_MAIN_BUFFER3 (mxc_nf_info->mxc_base_addr + 0x0600)
#define MXC_NF_SPARE_BUFFER0 (mxc_nf_info->mxc_base_addr + 0x0800) #define MXC_NF_V1_SPARE_BUFFER0 (mxc_nf_info->mxc_base_addr + 0x0800)
#define MXC_NF_SPARE_BUFFER1 (mxc_nf_info->mxc_base_addr + 0x0810) #define MXC_NF_V1_SPARE_BUFFER1 (mxc_nf_info->mxc_base_addr + 0x0810)
#define MXC_NF_SPARE_BUFFER2 (mxc_nf_info->mxc_base_addr + 0x0820) #define MXC_NF_V1_SPARE_BUFFER2 (mxc_nf_info->mxc_base_addr + 0x0820)
#define MXC_NF_SPARE_BUFFER3 (mxc_nf_info->mxc_base_addr + 0x0830) #define MXC_NF_V1_SPARE_BUFFER3 (mxc_nf_info->mxc_base_addr + 0x0830)
#define MXC_NF_V2_MAIN_BUFFER4 (mxc_nf_info->mxc_base_addr + 0x0800)
#define MXC_NF_V2_MAIN_BUFFER5 (mxc_nf_info->mxc_base_addr + 0x0a00)
#define MXC_NF_V2_MAIN_BUFFER6 (mxc_nf_info->mxc_base_addr + 0x0c00)
#define MXC_NF_V2_MAIN_BUFFER7 (mxc_nf_info->mxc_base_addr + 0x0e00)
#define MXC_NF_V2_SPARE_BUFFER0 (mxc_nf_info->mxc_base_addr + 0x1000)
#define MXC_NF_V2_SPARE_BUFFER1 (mxc_nf_info->mxc_base_addr + 0x1040)
#define MXC_NF_V2_SPARE_BUFFER2 (mxc_nf_info->mxc_base_addr + 0x1080)
#define MXC_NF_V2_SPARE_BUFFER3 (mxc_nf_info->mxc_base_addr + 0x10c0)
#define MXC_NF_V2_SPARE_BUFFER4 (mxc_nf_info->mxc_base_addr + 0x1100)
#define MXC_NF_V2_SPARE_BUFFER5 (mxc_nf_info->mxc_base_addr + 0x1140)
#define MXC_NF_V2_SPARE_BUFFER6 (mxc_nf_info->mxc_base_addr + 0x1180)
#define MXC_NF_V2_SPARE_BUFFER7 (mxc_nf_info->mxc_base_addr + 0x11c0)
#define MXC_NF_MAIN_BUFFER_LEN 512 #define MXC_NF_MAIN_BUFFER_LEN 512
#define MXC_NF_SPARE_BUFFER_LEN 16 #define MXC_NF_SPARE_BUFFER_LEN 16
#define MXC_NF_LAST_BUFFER_ADDR ((MXC_NF_SPARE_BUFFER3) + \ #define MXC_NF_SPARE_BUFFER_MAX 64
#define MXC_NF_V1_LAST_BUFFADDR ((MXC_NF_V1_SPARE_BUFFER3) + \
MXC_NF_SPARE_BUFFER_LEN - 2)
#define MXC_NF_V2_LAST_BUFFADDR ((MXC_NF_V2_SPARE_BUFFER7) + \
MXC_NF_SPARE_BUFFER_LEN - 2) MXC_NF_SPARE_BUFFER_LEN - 2)
/* bits in MXC_NF_CFG1 register */ /* bits in MXC_NF_CFG1 register */
#define MXC_NF_BIT_ECC_4BIT (1<<0)
#define MXC_NF_BIT_SPARE_ONLY_EN (1<<2) #define MXC_NF_BIT_SPARE_ONLY_EN (1<<2)
#define MXC_NF_BIT_ECC_EN (1<<3) #define MXC_NF_BIT_ECC_EN (1<<3)
#define MXC_NF_BIT_INT_DIS (1<<4) #define MXC_NF_BIT_INT_DIS (1<<4)
#define MXC_NF_BIT_BE_EN (1<<5) #define MXC_NF_BIT_BE_EN (1<<5)
#define MXC_NF_BIT_RESET_EN (1<<6) #define MXC_NF_BIT_RESET_EN (1<<6)
#define MXC_NF_BIT_FORCE_CE (1<<7) #define MXC_NF_BIT_FORCE_CE (1<<7)
#define MXC_NF_V2_CFG1_PPB(x) (((x) & 0x3) << 9)
/* bits in MXC_NF_CFG2 register */ /* bits in MXC_NF_CFG2 register */
@ -85,10 +110,23 @@
#define MXC_CCM_CGR2 0x53f80028 #define MXC_CCM_CGR2 0x53f80028
#define MXC_GPR 0x43fac008 #define MXC_GPR 0x43fac008
/*#define MXC_PCSR 0x53f8000c*/ #define MX2_FMCR 0x10027814
#define MXC_FMCR 0x10027814 #define MX2_FMCR_NF_16BIT_SEL (1<<4)
#define MXC_FMCR_NF_16BIT_SEL (1<<4) #define MX2_FMCR_NF_FMS (1<<5)
#define MXC_FMCR_NF_FMS (1<<5) #define MX3_PCSR 0x53f8000c
#define MX3_PCSR_NF_16BIT_SEL (1<<31)
#define MX3_PCSR_NF_FMS (1<<30)
#define MX35_RCSR 0x53f80018
#define MX35_RCSR_NF_16BIT_SEL (1<<14)
#define MX35_RCSR_NF_FMS (1<<8)
#define MX35_RCSR_NF_4K (1<<9)
enum mxc_version {
MXC_VERSION_UKWN = 0,
MXC_VERSION_MX27 = 1,
MXC_VERSION_MX31 = 2,
MXC_VERSION_MX35 = 4
};
enum mxc_dataout_type { enum mxc_dataout_type {
MXC_NF_DATAOUT_PAGE = 1, MXC_NF_DATAOUT_PAGE = 1,
@ -111,7 +149,9 @@ struct mxc_nf_flags {
}; };
struct mxc_nf_controller { struct mxc_nf_controller {
enum mxc_version mxc_version;
uint32_t mxc_base_addr; uint32_t mxc_base_addr;
uint32_t mxc_regs_addr;
enum mxc_dataout_type optype; enum mxc_dataout_type optype;
enum mxc_nf_finalize_action fin; enum mxc_nf_finalize_action fin;
struct mxc_nf_flags flags; struct mxc_nf_flags flags;