Merge pull request #871 from en-sc/en-sc/fix-mdx-err

target/riscv: refactor read_memory_progbuf()
This commit is contained in:
Tim Newsome 2023-07-17 09:30:11 -07:00 committed by GitHub
commit 814a3b5e7b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 514 additions and 359 deletions

View File

@ -161,7 +161,7 @@ size_t riscv_batch_add_dmi_read(struct riscv_batch *batch, unsigned address)
return batch->read_keys_used++;
}
unsigned riscv_batch_get_dmi_read_op(struct riscv_batch *batch, size_t key)
unsigned int riscv_batch_get_dmi_read_op(const struct riscv_batch *batch, size_t key)
{
assert(key < batch->read_keys_used);
size_t index = batch->read_keys[key];
@ -171,7 +171,7 @@ unsigned riscv_batch_get_dmi_read_op(struct riscv_batch *batch, size_t key)
return (unsigned)buf_get_u32(base, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH);
}
uint32_t riscv_batch_get_dmi_read_data(struct riscv_batch *batch, size_t key)
uint32_t riscv_batch_get_dmi_read_data(const struct riscv_batch *batch, size_t key)
{
assert(key < batch->read_keys_used);
size_t index = batch->read_keys[key];

View File

@ -66,8 +66,8 @@ void riscv_batch_add_dmi_write(struct riscv_batch *batch, unsigned address, uint
* provides a key, the second one actually obtains the result of the read -
* status (op) and the actual data. */
size_t riscv_batch_add_dmi_read(struct riscv_batch *batch, unsigned address);
unsigned riscv_batch_get_dmi_read_op(struct riscv_batch *batch, size_t key);
uint32_t riscv_batch_get_dmi_read_data(struct riscv_batch *batch, size_t key);
unsigned int riscv_batch_get_dmi_read_op(const struct riscv_batch *batch, size_t key);
uint32_t riscv_batch_get_dmi_read_data(const struct riscv_batch *batch, size_t key);
/* Scans in a NOP. */
void riscv_batch_add_nop(struct riscv_batch *batch);

View File

@ -119,6 +119,23 @@ int riscv_program_lbr(struct riscv_program *p, enum gdb_regno d, enum gdb_regno
return riscv_program_insert(p, lb(d, b, offset));
}
int riscv_program_load(struct riscv_program *p, enum gdb_regno d, enum gdb_regno b, int offset,
unsigned int size)
{
switch (size) {
case 1:
return riscv_program_lbr(p, d, b, offset);
case 2:
return riscv_program_lhr(p, d, b, offset);
case 4:
return riscv_program_lwr(p, d, b, offset);
case 8:
return riscv_program_ldr(p, d, b, offset);
}
assert(false && "Unsupported size");
return ERROR_FAIL;
}
int riscv_program_csrrsi(struct riscv_program *p, enum gdb_regno d, unsigned int z, enum gdb_regno csr)
{
assert(csr >= GDB_REGNO_CSR0 && csr <= GDB_REGNO_CSR4095);

View File

@ -51,6 +51,8 @@ int riscv_program_ldr(struct riscv_program *p, enum gdb_regno d, enum gdb_regno
int riscv_program_lwr(struct riscv_program *p, enum gdb_regno d, enum gdb_regno a, int o);
int riscv_program_lhr(struct riscv_program *p, enum gdb_regno d, enum gdb_regno a, int o);
int riscv_program_lbr(struct riscv_program *p, enum gdb_regno d, enum gdb_regno a, int o);
int riscv_program_load(struct riscv_program *p, enum gdb_regno d, enum gdb_regno b, int o,
unsigned int s);
int riscv_program_sdr(struct riscv_program *p, enum gdb_regno s, enum gdb_regno a, int o);
int riscv_program_swr(struct riscv_program *p, enum gdb_regno s, enum gdb_regno a, int o);

View File

@ -3396,310 +3396,514 @@ static int write_memory_abstract(struct target *target, target_addr_t address,
}
/**
* Read the requested memory, taking care to execute every read exactly once,
* even if cmderr=busy is encountered.
* This function is used to start the memory-reading pipeline.
* The pipeline looks like this:
* memory -> s1 -> dm_data[0:1] -> debugger
* Prior to calling it, the program buffer should contain the appropriate
* program.
* This function sets DM_ABSTRACTAUTO_AUTOEXECDATA to trigger second stage of the
* pipeline (s1 -> dm_data[0:1]) whenever dm_data is read.
*/
static int read_memory_progbuf_inner(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment)
static int read_memory_progbuf_inner_startup(struct target *target,
target_addr_t address, uint32_t increment, uint32_t index)
{
RISCV013_INFO(info);
/* s0 holds the next address to read from.
* s1 holds the next data value read.
* a0 is a counter in case increment is 0.
*/
if (register_write_direct(target, GDB_REGNO_S0, address + index * increment)
!= ERROR_OK)
return ERROR_FAIL;
if (/*is_repeated_read*/ increment == 0 &&
register_write_direct(target, GDB_REGNO_A0, index) != ERROR_OK)
return ERROR_FAIL;
/* AC_ACCESS_REGISTER_POSTEXEC is used to trigger first stage of the
* pipeline (memory -> s1) whenever this command is executed.
*/
const uint32_t startup_command = access_register_command(target,
GDB_REGNO_S1, riscv_xlen(target),
AC_ACCESS_REGISTER_TRANSFER | AC_ACCESS_REGISTER_POSTEXEC);
if (execute_abstract_command(target, startup_command) != ERROR_OK)
return ERROR_FAIL;
/* First read has just triggered. Result is in s1.
* dm_data registers contain the previous value of s1 (garbage).
*/
if (dmi_write(target, DM_ABSTRACTAUTO,
set_field(0, DM_ABSTRACTAUTO_AUTOEXECDATA, 1)) != ERROR_OK)
return ERROR_FAIL;
/* Read garbage from dm_data0, which triggers another execution of the
* program. Now dm_data contains the first good result (from s1),
* and s1 the next memory value.
*/
if (dmi_read_exec(target, NULL, DM_DATA0) != ERROR_OK)
goto clear_abstractauto_and_fail;
uint32_t abstractcs;
if (wait_for_idle(target, &abstractcs) != ERROR_OK)
goto clear_abstractauto_and_fail;
info->cmderr = get_field(abstractcs, DM_ABSTRACTCS_CMDERR);
switch (info->cmderr) {
case CMDERR_NONE:
return ERROR_OK;
case CMDERR_BUSY:
LOG_TARGET_ERROR(target, "Unexpected busy error. This is probably a hardware bug.");
/* fall through */
default:
LOG_TARGET_DEBUG(target, "error when reading memory, cmderr=0x%" PRIx32,
info->cmderr);
riscv013_clear_abstract_error(target);
goto clear_abstractauto_and_fail;
}
clear_abstractauto_and_fail:
dmi_write(target, DM_ABSTRACTAUTO, 0);
return ERROR_FAIL;
}
struct memory_access_info {
uint8_t *buffer_address;
target_addr_t target_address;
uint32_t element_size;
uint32_t increment;
};
/**
* This function attempts to restore the pipeline after a busy on abstract
* access.
* Target's state is as follows:
* s0 contains address + index_on_target * increment
* s1 contains mem[address + (index_on_target - 1) * increment]
* dm_data[0:1] contains mem[address + (index_on_target - 2) * increment]
*/
static int read_memory_progbuf_inner_on_ac_busy(struct target *target,
uint32_t start_index, uint32_t elements_to_read, uint32_t *elements_read,
struct memory_access_info access)
{
increase_ac_busy_delay(target);
riscv013_clear_abstract_error(target);
if (dmi_write(target, DM_ABSTRACTAUTO, 0) != ERROR_OK)
return ERROR_FAIL;
/* See how far we got by reading s0/a0 */
uint32_t index_on_target;
if (/*is_repeated_read*/ access.increment == 0) {
/* s0 is constant, a0 is incremented by one each execution */
riscv_reg_t counter;
if (register_read_direct(target, &counter, GDB_REGNO_A0) != ERROR_OK)
return ERROR_FAIL;
index_on_target = counter;
} else {
target_addr_t address_on_target;
if (register_read_direct(target, &address_on_target, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
index_on_target = (address_on_target - access.target_address) /
access.increment;
}
/* According to the spec, if an abstract command fails, one can't make any
* assumptions about dm_data registers, so all the values in the pipeline
* are clobbered now and need to be reread.
*/
const uint32_t min_index_on_target = start_index + 2;
if (index_on_target < min_index_on_target) {
LOG_TARGET_ERROR(target, "Arithmetic does not work correctly on the target");
return ERROR_FAIL;
} else if (index_on_target == min_index_on_target) {
LOG_TARGET_DEBUG(target, "No forward progress");
}
const uint32_t next_index = (index_on_target - 2);
*elements_read = next_index - start_index;
LOG_TARGET_WARNING(target, "Re-reading memory from addresses 0x%"
TARGET_PRIxADDR " and 0x%" TARGET_PRIxADDR ".",
access.target_address + access.increment * next_index,
access.target_address + access.increment * (next_index + 1));
return read_memory_progbuf_inner_startup(target, access.target_address,
access.increment, next_index);
}
/**
* This function attempts to restore the pipeline after a dmi busy.
*/
static int read_memory_progbuf_inner_on_dmi_busy(struct target *target,
uint32_t start_index, uint32_t next_start_index,
struct memory_access_info access)
{
LOG_TARGET_DEBUG(target, "DMI_STATUS_BUSY encountered in batch. Memory read [%"
PRIu32 ", %" PRIu32 ")", start_index, next_start_index);
if (start_index == next_start_index)
LOG_TARGET_DEBUG(target, "No forward progress");
if (dmi_write(target, DM_ABSTRACTAUTO, 0) != ERROR_OK)
return ERROR_FAIL;
return read_memory_progbuf_inner_startup(target, access.target_address,
access.increment, next_start_index);
}
/**
* This function extracts the data from the batch.
*/
static int read_memory_progbuf_inner_extract_batch_data(struct target *target,
const struct riscv_batch *batch,
uint32_t start_index, uint32_t elements_to_read, uint32_t *elements_read,
struct memory_access_info access)
{
const bool two_reads_per_element = access.element_size > 4;
const uint32_t reads_per_element = (two_reads_per_element ? 2 : 1);
assert(!two_reads_per_element || riscv_xlen(target) == 64);
assert(elements_to_read <= UINT32_MAX / reads_per_element);
const uint32_t nreads = elements_to_read * reads_per_element;
for (uint32_t curr_idx = start_index, read = 0; read < nreads; ++read) {
switch (riscv_batch_get_dmi_read_op(batch, read)) {
case DMI_STATUS_BUSY:
*elements_read = curr_idx - start_index;
return read_memory_progbuf_inner_on_dmi_busy(target, start_index, curr_idx
, access);
case DMI_STATUS_FAILED:
LOG_TARGET_DEBUG(target,
"Batch memory read encountered DMI_STATUS_FAILED on read %"
PRIu32, read);
return ERROR_FAIL;
case DMI_STATUS_SUCCESS:
break;
default:
assert(0);
}
const uint32_t value = riscv_batch_get_dmi_read_data(batch, read);
uint8_t * const curr_buff = access.buffer_address +
curr_idx * access.element_size;
const target_addr_t curr_addr = access.target_address +
curr_idx * access.increment;
const uint32_t size = access.element_size;
assert(size <= 8);
const bool is_odd_read = read % 2;
if (two_reads_per_element && !is_odd_read) {
buf_set_u32(curr_buff + 4, 0, (size * 8) - 32, value);
continue;
}
const bool is_second_read = two_reads_per_element;
buf_set_u32(curr_buff, 0, is_second_read ? 32 : (size * 8), value);
log_memory_access64(curr_addr, buf_get_u64(curr_buff, 0, size * 8),
size, /*is_read*/ true);
++curr_idx;
}
*elements_read = elements_to_read;
return ERROR_OK;
}
/**
* This function reads a batch of elements from memory.
* Prior to calling this function the folowing conditions should be met:
* - Appropriate program loaded to program buffer.
* - DM_ABSTRACTAUTO_AUTOEXECDATA is set.
*/
static int read_memory_progbuf_inner_run_and_process_batch(struct target *target,
struct riscv_batch *batch, struct memory_access_info access,
uint32_t start_index, uint32_t elements_to_read, uint32_t *elements_read)
{
RISCV013_INFO(info);
int result = ERROR_OK;
/* Write address to S0. */
result = register_write_direct(target, GDB_REGNO_S0, address);
if (result != ERROR_OK)
return result;
if (increment == 0 &&
register_write_direct(target, GDB_REGNO_A0, 0) != ERROR_OK)
if (batch_run(target, batch) != ERROR_OK)
return ERROR_FAIL;
uint32_t command = access_register_command(target, GDB_REGNO_S1,
riscv_xlen(target),
AC_ACCESS_REGISTER_TRANSFER | AC_ACCESS_REGISTER_POSTEXEC);
if (execute_abstract_command(target, command) != ERROR_OK)
uint32_t abstractcs;
if (wait_for_idle(target, &abstractcs) != ERROR_OK)
return ERROR_FAIL;
/* First read has just triggered. Result is in s1. */
if (count == 1) {
uint64_t value;
if (register_read_direct(target, &value, GDB_REGNO_S1) != ERROR_OK)
uint32_t elements_to_extract_from_batch;
info->cmderr = get_field(abstractcs, DM_ABSTRACTCS_CMDERR);
switch (info->cmderr) {
case CMDERR_NONE:
LOG_TARGET_DEBUG(target, "successful (partial?) memory read [%"
PRIu32 ", %" PRIu32 ")", start_index, start_index + elements_to_read);
elements_to_extract_from_batch = elements_to_read;
break;
case CMDERR_BUSY:
LOG_TARGET_DEBUG(target, "memory read resulted in busy response");
if (read_memory_progbuf_inner_on_ac_busy(target, start_index,
elements_to_read, &elements_to_extract_from_batch, access)
!= ERROR_OK)
return ERROR_FAIL;
break;
default:
LOG_TARGET_DEBUG(target, "error when reading memory, cmderr=0x%" PRIx32,
info->cmderr);
riscv013_clear_abstract_error(target);
return ERROR_FAIL;
buf_set_u64(buffer, 0, 8 * size, value);
log_memory_access64(address, value, size, true);
return ERROR_OK;
}
if (dmi_write(target, DM_ABSTRACTAUTO,
1 << DM_ABSTRACTAUTO_AUTOEXECDATA_OFFSET) != ERROR_OK)
goto error;
/* Read garbage from dmi_data0, which triggers another execution of the
* program. Now dmi_data0 contains the first good result, and s1 the next
* memory value. */
if (dmi_read_exec(target, NULL, DM_DATA0) != ERROR_OK)
goto error;
if (read_memory_progbuf_inner_extract_batch_data(target, batch, start_index,
elements_to_extract_from_batch, elements_read, access) != ERROR_OK)
return ERROR_FAIL;
/* read_addr is the next address that the hart will read from, which is the
* value in s0. */
unsigned index = 2;
while (index < count) {
riscv_addr_t read_addr = address + index * increment;
LOG_DEBUG("i=%d, count=%d, read_addr=0x%" PRIx64, index, count, read_addr);
/* The pipeline looks like this:
* memory -> s1 -> dm_data0 -> debugger
* Right now:
* s0 contains read_addr
* s1 contains mem[read_addr-size]
* dm_data0 contains[read_addr-size*2]
*/
return ERROR_OK;
}
static uint32_t read_memory_progbuf_inner_fill_batch(struct riscv_batch *batch,
uint32_t count, uint32_t size)
{
assert(size <= 8);
const uint32_t two_regs_used[] = {DM_DATA1, DM_DATA0};
const uint32_t one_reg_used[] = {DM_DATA0};
const uint32_t reads_per_element = size > 4 ? 2 : 1;
const uint32_t * const used_regs = size > 4 ? two_regs_used : one_reg_used;
const uint32_t batch_capacity = riscv_batch_available_scans(batch) / reads_per_element;
const uint32_t end = MIN(batch_capacity, count);
for (uint32_t j = 0; j < end; ++j)
for (uint32_t i = 0; i < reads_per_element; ++i)
riscv_batch_add_dmi_read(batch, used_regs[i]);
return end;
}
static int read_memory_progbuf_inner_try_to_read(struct target *target,
struct memory_access_info access, uint32_t *elements_read,
uint32_t index, uint32_t loop_count)
{
RISCV013_INFO(info);
struct riscv_batch *batch = riscv_batch_alloc(target, RISCV_BATCH_ALLOC_SIZE,
info->dmi_busy_delay + info->ac_busy_delay);
if (!batch)
return ERROR_FAIL;
unsigned reads = 0;
for (unsigned j = index; j < count; j++) {
if (size > 4)
riscv_batch_add_dmi_read(batch, DM_DATA1);
riscv_batch_add_dmi_read(batch, DM_DATA0);
const uint32_t elements_to_read = read_memory_progbuf_inner_fill_batch(batch,
loop_count - index, access.element_size);
reads++;
if (riscv_batch_full(batch))
break;
}
batch_run(target, batch);
/* Wait for the target to finish performing the last abstract command,
* and update our copy of cmderr. If we see that DMI is busy here,
* dmi_busy_delay will be incremented. */
uint32_t abstractcs;
if (dmi_read(target, &abstractcs, DM_ABSTRACTCS) != ERROR_OK)
return ERROR_FAIL;
while (get_field(abstractcs, DM_ABSTRACTCS_BUSY))
if (dmi_read(target, &abstractcs, DM_ABSTRACTCS) != ERROR_OK)
return ERROR_FAIL;
info->cmderr = get_field(abstractcs, DM_ABSTRACTCS_CMDERR);
unsigned next_index;
unsigned ignore_last = 0;
switch (info->cmderr) {
case CMDERR_NONE:
LOG_DEBUG("successful (partial?) memory read");
next_index = index + reads;
break;
case CMDERR_BUSY:
LOG_DEBUG("memory read resulted in busy response");
increase_ac_busy_delay(target);
riscv013_clear_abstract_error(target);
dmi_write(target, DM_ABSTRACTAUTO, 0);
uint32_t dmi_data0, dmi_data1 = 0;
/* This is definitely a good version of the value that we
* attempted to read when we discovered that the target was
* busy. */
if (dmi_read(target, &dmi_data0, DM_DATA0) != ERROR_OK) {
int result = read_memory_progbuf_inner_run_and_process_batch(target, batch,
access, index, elements_to_read, elements_read);
riscv_batch_free(batch);
goto error;
}
if (size > 4 && dmi_read(target, &dmi_data1, DM_DATA1) != ERROR_OK) {
riscv_batch_free(batch);
goto error;
}
/* See how far we got, clobbering dmi_data0. */
if (increment == 0) {
uint64_t counter;
result = register_read_direct(target, &counter, GDB_REGNO_A0);
next_index = counter;
} else {
uint64_t next_read_addr;
result = register_read_direct(target, &next_read_addr,
GDB_REGNO_S0);
next_index = (next_read_addr - address) / increment;
}
if (result != ERROR_OK) {
riscv_batch_free(batch);
goto error;
}
uint64_t value64 = (((uint64_t)dmi_data1) << 32) | dmi_data0;
buf_set_u64(buffer + (next_index - 2) * size, 0, 8 * size, value64);
log_memory_access64(address + (next_index - 2) * size, value64, size, true);
/* Restore the command, and execute it.
* Now DM_DATA0 contains the next value just as it would if no
* error had occurred. */
dmi_write_exec(target, DM_COMMAND, command, true);
next_index++;
dmi_write(target, DM_ABSTRACTAUTO,
1 << DM_ABSTRACTAUTO_AUTOEXECDATA_OFFSET);
ignore_last = 1;
break;
default:
LOG_DEBUG("error when reading memory, abstractcs=0x%08lx", (long)abstractcs);
riscv013_clear_abstract_error(target);
riscv_batch_free(batch);
result = ERROR_FAIL;
goto error;
}
/* Now read whatever we got out of the batch. */
dmi_status_t status = DMI_STATUS_SUCCESS;
unsigned read_count = 0;
assert(index >= 2);
for (unsigned j = index - 2; j < index + reads; j++) {
assert(j < count);
LOG_DEBUG("index=%d, reads=%d, next_index=%d, ignore_last=%d, j=%d",
index, reads, next_index, ignore_last, j);
if (j + 3 + ignore_last > next_index)
break;
status = riscv_batch_get_dmi_read_op(batch, read_count);
uint64_t value = riscv_batch_get_dmi_read_data(batch, read_count);
read_count++;
if (status != DMI_STATUS_SUCCESS) {
/* If we're here because of busy count, dmi_busy_delay will
* already have been increased and busy state will have been
* cleared in dmi_read(). */
/* In at least some implementations, we issue a read, and then
* can get busy back when we try to scan out the read result,
* and the actual read value is lost forever. Since this is
* rare in any case, we return error here and rely on our
* caller to reread the entire block. */
LOG_WARNING("Batch memory read encountered DMI error %d. "
"Falling back on slower reads.", status);
riscv_batch_free(batch);
result = ERROR_FAIL;
goto error;
}
if (size > 4) {
status = riscv_batch_get_dmi_read_op(batch, read_count);
if (status != DMI_STATUS_SUCCESS) {
LOG_WARNING("Batch memory read encountered DMI error %d. "
"Falling back on slower reads.", status);
riscv_batch_free(batch);
result = ERROR_FAIL;
goto error;
}
value <<= 32;
value |= riscv_batch_get_dmi_read_data(batch, read_count);
read_count++;
}
riscv_addr_t offset = j * size;
buf_set_u64(buffer + offset, 0, 8 * size, value);
log_memory_access64(address + j * increment, value, size, true);
}
index = next_index;
riscv_batch_free(batch);
}
dmi_write(target, DM_ABSTRACTAUTO, 0);
if (count > 1) {
/* Read the penultimate word. */
uint32_t dmi_data0, dmi_data1 = 0;
if (dmi_read(target, &dmi_data0, DM_DATA0) != ERROR_OK)
return ERROR_FAIL;
if (size > 4 && dmi_read(target, &dmi_data1, DM_DATA1) != ERROR_OK)
return ERROR_FAIL;
uint64_t value64 = (((uint64_t)dmi_data1) << 32) | dmi_data0;
buf_set_u64(buffer + size * (count - 2), 0, 8 * size, value64);
log_memory_access64(address + size * (count - 2), value64, size, true);
}
/* Read the last word. */
uint64_t value;
result = register_read_direct(target, &value, GDB_REGNO_S1);
if (result != ERROR_OK)
goto error;
buf_set_u64(buffer + size * (count - 1), 0, 8 * size, value);
log_memory_access64(address + size * (count - 1), value, size, true);
return ERROR_OK;
error:
dmi_write(target, DM_ABSTRACTAUTO, 0);
return result;
}
/* Only need to save/restore one GPR to read a single word, and the progbuf
* program doesn't need to increment. */
static int read_memory_progbuf_one(struct target *target, target_addr_t address,
uint32_t size, uint8_t *buffer)
/**
* read_memory_progbuf_inner_startup() must be called before calling this function
* with the address argument equal to curr_target_address.
*/
static int read_memory_progbuf_inner_ensure_forward_progress(struct target *target,
struct memory_access_info access, uint32_t start_index)
{
uint64_t mstatus = 0;
uint64_t mstatus_old = 0;
if (modify_privilege(target, &mstatus, &mstatus_old) != ERROR_OK)
LOG_TARGET_DEBUG(target,
"Executing one loop iteration to ensure forward progress (index=%"
PRIu32 ")", start_index);
const target_addr_t curr_target_address = access.target_address +
start_index * access.increment;
uint8_t * const curr_buffer_address = access.buffer_address +
start_index * access.element_size;
const struct memory_access_info curr_access = {
.buffer_address = curr_buffer_address,
.target_address = curr_target_address,
.element_size = access.element_size,
.increment = access.increment,
};
uint32_t elements_read;
if (read_memory_progbuf_inner_try_to_read(target, curr_access, &elements_read,
/*index*/ 0, /*loop_count*/ 1) != ERROR_OK)
return ERROR_FAIL;
int result = ERROR_FAIL;
if (elements_read != 1) {
assert(elements_read == 0);
LOG_TARGET_DEBUG(target, "Can not ensure forward progress");
/* FIXME: Here it would be better to retry the read and fail only if the
* delay is greater then some threshold.
*/
return ERROR_FAIL;
}
return ERROR_OK;
}
static void set_buffer_and_log_read(struct memory_access_info access,
uint32_t index, uint64_t value)
{
uint8_t * const buffer = access.buffer_address;
const uint32_t size = access.element_size;
const uint32_t increment = access.increment;
const target_addr_t address = access.target_address;
assert(size <= 8);
buf_set_u64(buffer + index * size, 0, 8 * size, value);
log_memory_access64(address + index * increment, value, size,
/*is_read*/ true);
}
static int read_word_from_dmi_data_regs(struct target *target,
struct memory_access_info access, uint32_t index)
{
assert(access.element_size <= 8);
const uint64_t value = read_abstract_arg(target, /*index*/ 0,
access.element_size > 4 ? 64 : 32);
set_buffer_and_log_read(access, index, value);
return ERROR_OK;
}
static int read_word_from_s1(struct target *target,
struct memory_access_info access, uint32_t index)
{
uint64_t value;
if (register_read_direct(target, &value, GDB_REGNO_S1) != ERROR_OK)
return ERROR_FAIL;
set_buffer_and_log_read(access, index, value);
return ERROR_OK;
}
static int riscv_program_load_mprv(struct riscv_program *p, enum gdb_regno d,
enum gdb_regno b, int offset, unsigned int size, bool mprven)
{
if (mprven && riscv_program_csrrsi(p, GDB_REGNO_ZERO, CSR_DCSR_MPRVEN,
GDB_REGNO_DCSR) != ERROR_OK)
return ERROR_FAIL;
if (riscv_program_load(p, d, b, offset, size) != ERROR_OK)
return ERROR_FAIL;
if (mprven && riscv_program_csrrci(p, GDB_REGNO_ZERO, CSR_DCSR_MPRVEN,
GDB_REGNO_DCSR) != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
}
static int read_memory_progbuf_inner_fill_progbuf(struct target *target,
uint32_t increment, uint32_t size, bool mprven)
{
const bool is_repeated_read = increment == 0;
if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
goto restore_mstatus;
return ERROR_FAIL;
if (riscv_save_register(target, GDB_REGNO_S1) != ERROR_OK)
return ERROR_FAIL;
if (is_repeated_read && riscv_save_register(target, GDB_REGNO_A0) != ERROR_OK)
return ERROR_FAIL;
/* Write the program (load, increment) */
struct riscv_program program;
riscv_program_init(&program, target);
if (riscv_enable_virtual && has_sufficient_progbuf(target, 5) && get_field(mstatus, MSTATUS_MPRV))
riscv_program_csrrsi(&program, GDB_REGNO_ZERO, CSR_DCSR_MPRVEN, GDB_REGNO_DCSR);
switch (size) {
case 1:
riscv_program_lbr(&program, GDB_REGNO_S0, GDB_REGNO_S0, 0);
break;
case 2:
riscv_program_lhr(&program, GDB_REGNO_S0, GDB_REGNO_S0, 0);
break;
case 4:
riscv_program_lwr(&program, GDB_REGNO_S0, GDB_REGNO_S0, 0);
break;
case 8:
riscv_program_ldr(&program, GDB_REGNO_S0, GDB_REGNO_S0, 0);
break;
default:
LOG_ERROR("Unsupported size: %d", size);
goto restore_mstatus;
if (riscv_program_load_mprv(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0, size,
mprven) != ERROR_OK)
return ERROR_FAIL;
if (is_repeated_read) {
if (riscv_program_addi(&program, GDB_REGNO_A0, GDB_REGNO_A0, 1)
!= ERROR_OK)
return ERROR_FAIL;
} else {
if (riscv_program_addi(&program, GDB_REGNO_S0, GDB_REGNO_S0,
increment)
!= ERROR_OK)
return ERROR_FAIL;
}
if (riscv_enable_virtual && has_sufficient_progbuf(target, 5) && get_field(mstatus, MSTATUS_MPRV))
riscv_program_csrrci(&program, GDB_REGNO_ZERO, CSR_DCSR_MPRVEN, GDB_REGNO_DCSR);
if (riscv_program_ebreak(&program) != ERROR_OK)
goto restore_mstatus;
return ERROR_FAIL;
if (riscv_program_write(&program) != ERROR_OK)
goto restore_mstatus;
return ERROR_FAIL;
/* Write address to S0, and execute buffer. */
if (write_abstract_arg(target, 0, address, riscv_xlen(target)) != ERROR_OK)
goto restore_mstatus;
uint32_t command = access_register_command(target, GDB_REGNO_S0,
return ERROR_OK;
}
/**
* Read the requested memory, taking care to minimize the number of reads and
* re-read the data only if `abstract command busy` or `DMI busy`
* is encountered in the process.
*/
static int read_memory_progbuf_inner(struct target *target,
struct memory_access_info access, uint32_t count, bool mprven)
{
assert(count > 1 && "If count == 1, read_memory_progbuf_inner_one must be called");
if (read_memory_progbuf_inner_fill_progbuf(target, access.increment,
access.element_size, mprven) != ERROR_OK)
return ERROR_FAIL;
if (read_memory_progbuf_inner_startup(target, access.target_address,
access.increment, /*index*/ 0)
!= ERROR_OK)
return ERROR_FAIL;
/* The program in program buffer is executed twice during
* read_memory_progbuf_inner_startup().
* Here:
* dmi_data[0:1] == M[address]
* s1 == M[address + increment]
* s0 == address + increment * 2
* `count - 2` program executions are performed in this loop.
* No need to execute the program any more, since S1 will already contain
* M[address + increment * (count - 1)] and we can read it directly.
*/
const uint32_t loop_count = count - 2;
for (uint32_t index = 0; index < loop_count;) {
uint32_t elements_read;
if (read_memory_progbuf_inner_try_to_read(target, access, &elements_read,
index, loop_count) != ERROR_OK) {
dmi_write(target, DM_ABSTRACTAUTO, 0);
return ERROR_FAIL;
}
if (elements_read == 0) {
if (read_memory_progbuf_inner_ensure_forward_progress(target, access,
index) != ERROR_OK) {
dmi_write(target, DM_ABSTRACTAUTO, 0);
return ERROR_FAIL;
}
elements_read = 1;
}
index += elements_read;
assert(index <= loop_count);
}
if (dmi_write(target, DM_ABSTRACTAUTO, 0) != ERROR_OK)
return ERROR_FAIL;
/* Read the penultimate word. */
if (read_word_from_dmi_data_regs(target, access, count - 2)
!= ERROR_OK)
return ERROR_FAIL;
/* Read the last word. */
return read_word_from_s1(target, access, count - 1);
}
/**
* Only need to save/restore one GPR to read a single word, and the progbuf
* program doesn't need to increment.
*/
static int read_memory_progbuf_inner_one(struct target *target,
struct memory_access_info access, bool mprven)
{
if (riscv_save_register(target, GDB_REGNO_S1) != ERROR_OK)
return ERROR_FAIL;
struct riscv_program program;
riscv_program_init(&program, target);
if (riscv_program_load_mprv(&program, GDB_REGNO_S1, GDB_REGNO_S1, 0,
access.element_size, mprven) != ERROR_OK)
return ERROR_FAIL;
if (riscv_program_ebreak(&program) != ERROR_OK)
return ERROR_FAIL;
if (riscv_program_write(&program) != ERROR_OK)
return ERROR_FAIL;
/* Write address to S1, and execute buffer. */
if (write_abstract_arg(target, 0, access.target_address, riscv_xlen(target))
!= ERROR_OK)
return ERROR_FAIL;
uint32_t command = access_register_command(target, GDB_REGNO_S1,
riscv_xlen(target), AC_ACCESS_REGISTER_WRITE |
AC_ACCESS_REGISTER_TRANSFER | AC_ACCESS_REGISTER_POSTEXEC);
if (execute_abstract_command(target, command) != ERROR_OK)
goto restore_mstatus;
return ERROR_FAIL;
uint64_t value;
if (register_read_direct(target, &value, GDB_REGNO_S0) != ERROR_OK)
goto restore_mstatus;
buf_set_u64(buffer, 0, 8 * size, value);
log_memory_access64(address, value, size, true);
result = ERROR_OK;
restore_mstatus:
if (mstatus != mstatus_old)
if (register_write_direct(target, GDB_REGNO_MSTATUS, mstatus_old))
result = ERROR_FAIL;
return result;
return read_word_from_s1(target, access, 0);
}
/**
@ -3709,15 +3913,13 @@ static int read_memory_progbuf(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment)
{
if (riscv_xlen(target) < size * 8) {
LOG_ERROR("XLEN (%d) is too short for %d-bit memory read.",
riscv_xlen(target), size * 8);
LOG_TARGET_ERROR(target, "XLEN (%d) is too short for %"
PRIu32 "-bit memory read.", riscv_xlen(target), size * 8);
return ERROR_FAIL;
}
int result = ERROR_OK;
LOG_DEBUG("reading %d words of %d bytes from 0x%" TARGET_PRIxADDR, count,
size, address);
LOG_TARGET_DEBUG(target, "reading %" PRIu32 " elements of %" PRIu32
" bytes from 0x%" TARGET_PRIxADDR, count, size, address);
if (dm013_select_target(target) != ERROR_OK)
return ERROR_FAIL;
@ -3729,90 +3931,24 @@ static int read_memory_progbuf(struct target *target, target_addr_t address,
if (execute_fence(target) != ERROR_OK)
return ERROR_FAIL;
if (count == 1)
return read_memory_progbuf_one(target, address, size, buffer);
uint64_t mstatus = 0;
uint64_t mstatus_old = 0;
if (modify_privilege(target, &mstatus, &mstatus_old) != ERROR_OK)
return ERROR_FAIL;
/* s0 holds the next address to read from
* s1 holds the next data value read
* a0 is a counter in case increment is 0
*/
if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
if (riscv_save_register(target, GDB_REGNO_S1) != ERROR_OK)
return ERROR_FAIL;
if (increment == 0 && riscv_save_register(target, GDB_REGNO_A0) != ERROR_OK)
return ERROR_FAIL;
const bool mprven = riscv_enable_virtual && get_field(mstatus, MSTATUS_MPRV);
const struct memory_access_info access = {
.target_address = address,
.increment = increment,
.buffer_address = buffer,
.element_size = size,
};
int result = (count == 1) ?
read_memory_progbuf_inner_one(target, access, mprven) :
read_memory_progbuf_inner(target, access, count, mprven);
/* Write the program (load, increment) */
struct riscv_program program;
riscv_program_init(&program, target);
if (riscv_enable_virtual && has_sufficient_progbuf(target, 5) && get_field(mstatus, MSTATUS_MPRV))
riscv_program_csrrsi(&program, GDB_REGNO_ZERO, CSR_DCSR_MPRVEN, GDB_REGNO_DCSR);
switch (size) {
case 1:
riscv_program_lbr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
case 2:
riscv_program_lhr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
case 4:
riscv_program_lwr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
case 8:
riscv_program_ldr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
default:
LOG_ERROR("Unsupported size: %d", size);
return ERROR_FAIL;
}
if (riscv_enable_virtual && has_sufficient_progbuf(target, 5) && get_field(mstatus, MSTATUS_MPRV))
riscv_program_csrrci(&program, GDB_REGNO_ZERO, CSR_DCSR_MPRVEN, GDB_REGNO_DCSR);
if (increment == 0)
riscv_program_addi(&program, GDB_REGNO_A0, GDB_REGNO_A0, 1);
else
riscv_program_addi(&program, GDB_REGNO_S0, GDB_REGNO_S0, increment);
if (riscv_program_ebreak(&program) != ERROR_OK)
return ERROR_FAIL;
if (riscv_program_write(&program) != ERROR_OK)
return ERROR_FAIL;
result = read_memory_progbuf_inner(target, address, size, count, buffer, increment);
if (result != ERROR_OK) {
/* The full read did not succeed, so we will try to read each word individually. */
/* This will not be fast, but reading outside actual memory is a special case anyway. */
/* It will make the toolchain happier, especially Eclipse Memory View as it reads ahead. */
target_addr_t address_i = address;
uint32_t count_i = 1;
uint8_t *buffer_i = buffer;
for (uint32_t i = 0; i < count; i++, address_i += increment, buffer_i += size) {
/* TODO: This is much slower than it needs to be because we end up
* writing the address to read for every word we read. */
result = read_memory_progbuf_inner(target, address_i, size, count_i, buffer_i, increment);
/* The read of a single word failed, so we will just return 0 for that instead */
if (result != ERROR_OK) {
LOG_DEBUG("error reading single word of %d bytes from 0x%" TARGET_PRIxADDR,
size, address_i);
buf_set_u64(buffer_i, 0, 8 * size, 0);
}
}
result = ERROR_OK;
}
/* Restore MSTATUS */
if (mstatus != mstatus_old)
if (register_write_direct(target, GDB_REGNO_MSTATUS, mstatus_old))
if (mstatus != mstatus_old &&
register_write_direct(target, GDB_REGNO_MSTATUS, mstatus_old) != ERROR_OK)
return ERROR_FAIL;
return result;