stlink: detect mem_ap R/W and dequeue set TAR and CSW

By using the stlink commands for memory read write we can gain
some performance, but only when TAR and/or CSW are changed.
During long transfers with constant CSW and TAR auto-incremented
there is no gain, since the same amount of USB/TCP packet is used.
Plus, by dropping ADIv5 packed transfers the performance is lower
on 8 and 16 bits transfers.
This changes opens the opportunity for collapsing memory burst
accesses in a single stlink USB/TCP packet.

Initialize the values of enum queue_cmd to easily extract the word
size through a macro, even if this is not used here.

Change-Id: I6661a00d468a1591a253cba9feb3bdb3f7474f5a
Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com>
Reviewed-on: https://review.openocd.org/c/openocd/+/6603
Tested-by: jenkins
Reviewed-by: Tarek BOCHKATI <tarek.bouchkati@gmail.com>
This commit is contained in:
Antonio Borneo 2021-07-22 23:50:33 +02:00
parent 6f914cd899
commit 7920110665
1 changed files with 172 additions and 8 deletions

View File

@ -186,10 +186,25 @@ struct stlink_backend_s {
enum queue_cmd {
CMD_DP_READ = 1,
CMD_DP_WRITE,
CMD_AP_READ,
CMD_AP_WRITE,
/*
* encode the bytes size in the enum's value. This makes easy to extract it
* with a simple logic AND, by using the macro CMD_MEM_AP_2_SIZE() below
*/
CMD_MEM_AP_READ8 = 0x10 + 1,
CMD_MEM_AP_READ16 = 0x10 + 2,
CMD_MEM_AP_READ32 = 0x10 + 4,
CMD_MEM_AP_WRITE8 = 0x20 + 1,
CMD_MEM_AP_WRITE16 = 0x20 + 2,
CMD_MEM_AP_WRITE32 = 0x20 + 4,
};
#define CMD_MEM_AP_2_SIZE(cmd) ((cmd) & 7)
struct dap_queue {
enum queue_cmd cmd;
union {
@ -213,6 +228,15 @@ struct dap_queue {
struct adiv5_ap *ap;
uint32_t data;
} ap_w;
struct mem_ap {
uint32_t addr;
struct adiv5_ap *ap;
union {
uint32_t *p_data;
uint32_t data;
};
uint32_t csw;
} mem_ap;
};
};
@ -4119,6 +4143,7 @@ static void stlink_dap_run_internal(struct adiv5_dap *dap)
unsigned int i = stlink_dap_handle->queue_index;
struct dap_queue *q = &stlink_dap_handle->queue[0];
uint8_t buf[4];
while (i && stlink_dap_get_error() == ERROR_OK) {
switch (q->cmd) {
@ -4132,8 +4157,59 @@ static void stlink_dap_run_internal(struct adiv5_dap *dap)
retval = stlink_dap_ap_read(q->ap_r.ap, q->ap_r.reg, q->ap_r.p_data);
break;
case CMD_AP_WRITE:
/* ignore increment packed, not supported */
if (q->ap_w.reg == MEM_AP_REG_CSW)
q->ap_w.data &= ~CSW_ADDRINC_PACKED;
retval = stlink_dap_ap_write(q->ap_w.ap, q->ap_w.reg, q->ap_w.data);
break;
case CMD_MEM_AP_READ8:
retval = stlink_dap_open_ap(q->mem_ap.ap->ap_num);
if (retval == ERROR_OK)
retval = stlink_usb_read_mem8(stlink_dap_handle, q->mem_ap.ap->ap_num, q->mem_ap.csw, q->mem_ap.addr,
1, buf);
if (retval == ERROR_OK)
*q->mem_ap.p_data = *buf << 8 * (q->mem_ap.addr & 3);
break;
case CMD_MEM_AP_READ16:
retval = stlink_dap_open_ap(q->mem_ap.ap->ap_num);
if (retval == ERROR_OK)
retval = stlink_usb_read_mem16(stlink_dap_handle, q->mem_ap.ap->ap_num, q->mem_ap.csw, q->mem_ap.addr,
2, buf);
if (retval == ERROR_OK)
*q->mem_ap.p_data = le_to_h_u16(buf) << 8 * (q->mem_ap.addr & 2);
break;
case CMD_MEM_AP_READ32:
retval = stlink_dap_open_ap(q->mem_ap.ap->ap_num);
if (retval == ERROR_OK)
retval = stlink_usb_read_mem32(stlink_dap_handle, q->mem_ap.ap->ap_num, q->mem_ap.csw, q->mem_ap.addr,
4, buf);
if (retval == ERROR_OK)
*q->mem_ap.p_data = le_to_h_u32(buf);
break;
case CMD_MEM_AP_WRITE8:
*buf = q->mem_ap.data >> 8 * (q->mem_ap.addr & 3);
retval = stlink_dap_open_ap(q->mem_ap.ap->ap_num);
if (retval == ERROR_OK)
retval = stlink_usb_write_mem8(stlink_dap_handle, q->mem_ap.ap->ap_num, q->mem_ap.csw, q->mem_ap.addr,
1, buf);
break;
case CMD_MEM_AP_WRITE16:
h_u16_to_le(buf, q->mem_ap.data >> 8 * (q->mem_ap.addr & 2));
retval = stlink_dap_open_ap(q->mem_ap.ap->ap_num);
if (retval == ERROR_OK)
retval = stlink_usb_write_mem16(stlink_dap_handle, q->mem_ap.ap->ap_num, q->mem_ap.csw, q->mem_ap.addr,
2, buf);
break;
case CMD_MEM_AP_WRITE32:
h_u32_to_le(buf, q->mem_ap.data);
retval = stlink_dap_open_ap(q->mem_ap.ap->ap_num);
if (retval == ERROR_OK)
retval = stlink_usb_write_mem32(stlink_dap_handle, q->mem_ap.ap->ap_num, q->mem_ap.csw, q->mem_ap.addr,
4, buf);
break;
default:
LOG_ERROR("ST-Link: Unknown queue command %d", q->cmd);
retval = ERROR_FAIL;
@ -4261,10 +4337,54 @@ static int stlink_dap_op_queue_ap_read(struct adiv5_ap *ap, unsigned int reg,
unsigned int i = stlink_dap_handle->queue_index++;
struct dap_queue *q = &stlink_dap_handle->queue[i];
if ((stlink_dap_handle->version.flags & STLINK_F_HAS_CSW) &&
(reg == MEM_AP_REG_DRW || reg == MEM_AP_REG_BD0 || reg == MEM_AP_REG_BD1 ||
reg == MEM_AP_REG_BD2 || reg == MEM_AP_REG_BD3)) {
/* de-queue previous write-TAR */
struct dap_queue *prev_q = q - 1;
if (i && prev_q->cmd == CMD_AP_WRITE && prev_q->ap_w.ap == ap && prev_q->ap_w.reg == MEM_AP_REG_TAR) {
stlink_dap_handle->queue_index = i;
i--;
q = prev_q;
prev_q--;
}
/* de-queue previous write-CSW */
if (i && prev_q->cmd == CMD_AP_WRITE && prev_q->ap_w.ap == ap && prev_q->ap_w.reg == MEM_AP_REG_CSW) {
stlink_dap_handle->queue_index = i;
q = prev_q;
}
switch (ap->csw_value & CSW_SIZE_MASK) {
case CSW_8BIT:
q->cmd = CMD_MEM_AP_READ8;
break;
case CSW_16BIT:
q->cmd = CMD_MEM_AP_READ16;
break;
case CSW_32BIT:
q->cmd = CMD_MEM_AP_READ32;
break;
default:
LOG_ERROR("ST-Link: Unsupported CSW size %d", ap->csw_value & CSW_SIZE_MASK);
stlink_dap_record_error(ERROR_FAIL);
return ERROR_FAIL;
}
q->mem_ap.addr = (reg == MEM_AP_REG_DRW) ? ap->tar_value : ((ap->tar_value & ~0x0f) | (reg & 0x0c));
q->mem_ap.ap = ap;
q->mem_ap.p_data = data;
q->mem_ap.csw = ap->csw_default;
/* force TAR and CSW update */
ap->tar_valid = false;
ap->csw_value = 0;
} else {
q->cmd = CMD_AP_READ;
q->ap_r.reg = reg;
q->ap_r.ap = ap;
q->ap_r.p_data = data;
}
if (i == MAX_QUEUE_DEPTH - 1)
stlink_dap_run_internal(ap->dap);
@ -4280,10 +4400,54 @@ static int stlink_dap_op_queue_ap_write(struct adiv5_ap *ap, unsigned int reg,
unsigned int i = stlink_dap_handle->queue_index++;
struct dap_queue *q = &stlink_dap_handle->queue[i];
if ((stlink_dap_handle->version.flags & STLINK_F_HAS_CSW) &&
(reg == MEM_AP_REG_DRW || reg == MEM_AP_REG_BD0 || reg == MEM_AP_REG_BD1 ||
reg == MEM_AP_REG_BD2 || reg == MEM_AP_REG_BD3)) {
/* de-queue previous write-TAR */
struct dap_queue *prev_q = q - 1;
if (i && prev_q->cmd == CMD_AP_WRITE && prev_q->ap_w.ap == ap && prev_q->ap_w.reg == MEM_AP_REG_TAR) {
stlink_dap_handle->queue_index = i;
i--;
q = prev_q;
prev_q--;
}
/* de-queue previous write-CSW */
if (i && prev_q->cmd == CMD_AP_WRITE && prev_q->ap_w.ap == ap && prev_q->ap_w.reg == MEM_AP_REG_CSW) {
stlink_dap_handle->queue_index = i;
q = prev_q;
}
switch (ap->csw_value & CSW_SIZE_MASK) {
case CSW_8BIT:
q->cmd = CMD_MEM_AP_WRITE8;
break;
case CSW_16BIT:
q->cmd = CMD_MEM_AP_WRITE16;
break;
case CSW_32BIT:
q->cmd = CMD_MEM_AP_WRITE32;
break;
default:
LOG_ERROR("ST-Link: Unsupported CSW size %d", ap->csw_value & CSW_SIZE_MASK);
stlink_dap_record_error(ERROR_FAIL);
return ERROR_FAIL;
}
q->mem_ap.addr = (reg == MEM_AP_REG_DRW) ? ap->tar_value : ((ap->tar_value & ~0x0f) | (reg & 0x0c));
q->mem_ap.ap = ap;
q->mem_ap.data = data;
q->mem_ap.csw = ap->csw_default;
/* force TAR and CSW update */
ap->tar_valid = false;
ap->csw_value = 0;
} else {
q->cmd = CMD_AP_WRITE;
q->ap_w.reg = reg;
q->ap_w.ap = ap;
q->ap_w.data = data;
}
if (i == MAX_QUEUE_DEPTH - 1)
stlink_dap_run_internal(ap->dap);