Added support for ARMv7-M in arm io.

Added support for ARMv7-M targets in arm_nandwrite and
arm_nandread.

Change-Id: Iab1d78d401f735e191c6a8519f3619035a300fae
Signed-off-by: Henrik Nilsson <henrik.nilsson@bytequest.se>
Reviewed-on: http://openocd.zylin.com/1188
Tested-by: jenkins
Reviewed-by: Freddie Chopin <freddie.chopin@gmail.com>
This commit is contained in:
Henrik Nilsson 2013-02-27 19:16:47 +01:00 committed by Spencer Oliver
parent 704fc7eb3d
commit 70fb53f90b
2 changed files with 147 additions and 25 deletions

View File

@ -0,0 +1,60 @@
/***************************************************************************
* Copyright (C) 2013 by Henrik Nilsson *
* henrik.nilsson@bytequest.se *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
.text
.syntax unified
.arch armv7-m
.thumb
.thumb_func
.align 4
/* Inputs:
* r0 buffer address
* r1 NAND data address (byte wide)
* r2 buffer length
*/
read:
ldrb r3, [r1]
strb r3, [r0], #1
subs r2, r2, #1
bne read
done_read:
bkpt #0
.align 4
/* Inputs:
* r0 NAND data address (byte wide)
* r1 buffer address
* r2 buffer length
*/
write:
ldrb r3, [r1], #1
strb r3, [r0]
subs r2, r2, #1
bne write
done_write:
bkpt #0
.end

View File

@ -28,6 +28,7 @@
#include "arm_io.h"
#include <helper/binarybuffer.h>
#include <target/arm.h>
#include <target/armv7m.h>
#include <target/algorithm.h>
/**
@ -78,14 +79,13 @@ static int arm_code_to_working_area(struct target *target,
/**
* ARM-specific bulk write from buffer to address of 8-bit wide NAND.
* For now this only supports ARMv4 and ARMv5 cores.
* For now this supports ARMv4,ARMv5 and ARMv7-M cores.
*
* Enhancements to target_run_algorithm() could enable:
* - ARMv6 and ARMv7 cores in ARM mode
*
* Different code fragments could handle:
* - Thumb2 cores like Cortex-M (needs different byteswapping)
* - 16-bit wide data (needs different setup too)
* - 16-bit wide data (needs different setup)
*
* @param nand Pointer to the arm_nand_data struct that defines the I/O
* @param data Pointer to the data to be copied to flash
@ -95,7 +95,9 @@ static int arm_code_to_working_area(struct target *target,
int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size)
{
struct target *target = nand->target;
struct arm_algorithm algo;
struct arm_algorithm armv4_5_algo;
struct armv7m_algorithm armv7m_algo;
void *arm_algo;
struct arm *arm = target->arch_info;
struct reg_param reg_params[3];
uint32_t target_buf;
@ -107,7 +109,7 @@ int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size)
* r1 buffer address
* r2 buffer length
*/
static const uint32_t code[] = {
static const uint32_t code_armv4_5[] = {
0xe4d13001, /* s: ldrb r3, [r1], #1 */
0xe5c03000, /* strb r3, [r0] */
0xe2522001, /* subs r2, r2, #1 */
@ -117,8 +119,41 @@ int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size)
0xe1200070, /* e: bkpt #0 */
};
/* Inputs:
* r0 NAND data address (byte wide)
* r1 buffer address
* r2 buffer length
*
* see contrib/loaders/flash/armv7m_io.s for src
*/
static const uint32_t code_armv7m[] = {
0x3b01f811,
0x3a017003,
0xaffaf47f,
0xbf00be00,
};
int target_code_size = 0;
const uint32_t *target_code_src = NULL;
/* set up algorithm */
if (is_armv7m(target_to_armv7m(target))) { /* armv7m target */
armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_algo.core_mode = ARM_MODE_THREAD;
arm_algo = &armv7m_algo;
target_code_size = sizeof(code_armv7m);
target_code_src = code_armv7m;
} else {
armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
armv4_5_algo.core_mode = ARM_MODE_SVC;
armv4_5_algo.core_state = ARM_STATE_ARM;
arm_algo = &armv4_5_algo;
target_code_size = sizeof(code_armv4_5);
target_code_src = code_armv4_5;
}
if (nand->op != ARM_NAND_WRITE || !nand->copy_area) {
retval = arm_code_to_working_area(target, code, sizeof(code),
retval = arm_code_to_working_area(target, target_code_src, target_code_size,
nand->chunk_size, &nand->copy_area);
if (retval != ERROR_OK)
return retval;
@ -127,16 +162,12 @@ int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size)
nand->op = ARM_NAND_WRITE;
/* copy data to work area */
target_buf = nand->copy_area->address + sizeof(code);
target_buf = nand->copy_area->address + target_code_size;
retval = target_write_buffer(target, target_buf, size, data);
if (retval != ERROR_OK)
return retval;
/* set up algorithm and parameters */
algo.common_magic = ARM_COMMON_MAGIC;
algo.core_mode = ARM_MODE_SVC;
algo.core_state = ARM_STATE_ARM;
/* set up parameters */
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);
@ -147,11 +178,11 @@ int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size)
/* armv4 must exit using a hardware breakpoint */
if (arm->is_armv4)
exit_var = nand->copy_area->address + sizeof(code) - 4;
exit_var = nand->copy_area->address + target_code_size - 4;
/* use alg to write data from work area to NAND chip */
retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
nand->copy_area->address, exit_var, 1000, &algo);
nand->copy_area->address, exit_var, 1000, arm_algo);
if (retval != ERROR_OK)
LOG_ERROR("error executing hosted NAND write");
@ -174,7 +205,9 @@ int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size)
int arm_nandread(struct arm_nand_data *nand, uint8_t *data, uint32_t size)
{
struct target *target = nand->target;
struct arm_algorithm algo;
struct arm_algorithm armv4_5_algo;
struct armv7m_algorithm armv7m_algo;
void *arm_algo;
struct arm *arm = target->arch_info;
struct reg_param reg_params[3];
uint32_t target_buf;
@ -186,7 +219,7 @@ int arm_nandread(struct arm_nand_data *nand, uint8_t *data, uint32_t size)
* r1 NAND data address (byte wide)
* r2 buffer length
*/
static const uint32_t code[] = {
static const uint32_t code_armv4_5[] = {
0xe5d13000, /* s: ldrb r3, [r1] */
0xe4c03001, /* strb r3, [r0], #1 */
0xe2522001, /* subs r2, r2, #1 */
@ -196,22 +229,51 @@ int arm_nandread(struct arm_nand_data *nand, uint8_t *data, uint32_t size)
0xe1200070, /* e: bkpt #0 */
};
/* Inputs:
* r0 buffer address
* r1 NAND data address (byte wide)
* r2 buffer length
*
* see contrib/loaders/flash/armv7m_io.s for src
*/
static const uint32_t code_armv7m[] = {
0xf800780b,
0x3a013b01,
0xaffaf47f,
0xbf00be00,
};
int target_code_size = 0;
const uint32_t *target_code_src = NULL;
/* set up algorithm */
if (is_armv7m(target_to_armv7m(target))) { /* armv7m target */
armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_algo.core_mode = ARM_MODE_THREAD;
arm_algo = &armv7m_algo;
target_code_size = sizeof(code_armv7m);
target_code_src = code_armv7m;
} else {
armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
armv4_5_algo.core_mode = ARM_MODE_SVC;
armv4_5_algo.core_state = ARM_STATE_ARM;
arm_algo = &armv4_5_algo;
target_code_size = sizeof(code_armv4_5);
target_code_src = code_armv4_5;
}
/* create the copy area if not yet available */
if (nand->op != ARM_NAND_READ || !nand->copy_area) {
retval = arm_code_to_working_area(target, code, sizeof(code),
retval = arm_code_to_working_area(target, target_code_src, target_code_size,
nand->chunk_size, &nand->copy_area);
if (retval != ERROR_OK)
return retval;
}
nand->op = ARM_NAND_READ;
target_buf = nand->copy_area->address + sizeof(code);
/* set up algorithm and parameters */
algo.common_magic = ARM_COMMON_MAGIC;
algo.core_mode = ARM_MODE_SVC;
algo.core_state = ARM_STATE_ARM;
target_buf = nand->copy_area->address + target_code_size;
/* set up parameters */
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);
@ -222,11 +284,11 @@ int arm_nandread(struct arm_nand_data *nand, uint8_t *data, uint32_t size)
/* armv4 must exit using a hardware breakpoint */
if (arm->is_armv4)
exit_var = nand->copy_area->address + sizeof(code) - 4;
exit_var = nand->copy_area->address + target_code_size - 4;
/* use alg to write data from NAND chip to work area */
retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
nand->copy_area->address, exit_var, 1000, &algo);
nand->copy_area->address, exit_var, 1000, arm_algo);
if (retval != ERROR_OK)
LOG_ERROR("error executing hosted NAND read");