EmbeddedICE: minor cleanups

Add comments (Doxygen and normal), remove unused code,
shrink some overlong lines.  Get rid of a forward decl.

Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
This commit is contained in:
David Brownell 2009-11-09 09:34:51 -08:00
parent 2689f58f2a
commit 526347f959
1 changed files with 101 additions and 52 deletions

View File

@ -31,15 +31,21 @@
#define ARRAY_SIZE(x) ((int)(sizeof(x)/sizeof((x)[0]))) #define ARRAY_SIZE(x) ((int)(sizeof(x)/sizeof((x)[0])))
#if 0 /**
static bitfield_desc_t embeddedice_comms_ctrl_bitfield_desc[] = * @file
{ *
{"R", 1}, * This provides lowlevel glue to the EmbeddedICE (or EmbeddedICE-RT)
{"W", 1}, * module found on scan chain 2 in ARM7, ARM9, and some other families
{"reserved", 26}, * of ARM cores.
{"version", 4} *
}; * EmbeddedICE provides basic watchpoint/breakpoint hardware and a Debug
#endif * Communications Channel (DCC) used to read or write 32-bit words to
* OpenOCD-aware code running on the target CPU.
* Newer modules also include vector catch hardware. Some versions
* support hardware single-stepping, "monitor mode" debug (which is not
* currently supported by OpenOCD), or extended reporting on why the
* core entered debug mode.
*/
/* /*
* From: ARM9E-S TRM, DDI 0165, table C-4 (and similar, for other cores) * From: ARM9E-S TRM, DDI 0165, table C-4 (and similar, for other cores)
@ -140,9 +146,25 @@ static const struct {
static int embeddedice_reg_arch_type = -1; static int embeddedice_reg_arch_type = -1;
static int embeddedice_get_reg(reg_t *reg); static int embeddedice_get_reg(reg_t *reg)
{
int retval;
reg_cache_t* embeddedice_build_reg_cache(target_t *target, arm7_9_common_t *arm7_9) if ((retval = embeddedice_read_reg(reg)) != ERROR_OK)
LOG_ERROR("error queueing EmbeddedICE register read");
else if ((retval = jtag_execute_queue()) != ERROR_OK)
LOG_ERROR("EmbeddedICE register read failed");
return retval;
}
/**
* Probe EmbeddedICE module and set up local records of its registers.
* Different versions of the modules have different capabilities, such as
* hardware support for vector_catch, single stepping, and monitor mode.
*/
reg_cache_t *
embeddedice_build_reg_cache(target_t *target, arm7_9_common_t *arm7_9)
{ {
int retval; int retval;
reg_cache_t *reg_cache = malloc(sizeof(reg_cache_t)); reg_cache_t *reg_cache = malloc(sizeof(reg_cache_t));
@ -153,7 +175,7 @@ reg_cache_t* embeddedice_build_reg_cache(target_t *target, arm7_9_common_t *arm7
int i; int i;
int eice_version = 0; int eice_version = 0;
/* register a register arch-type for EmbeddedICE registers only once */ /* register arch-type for EmbeddedICE registers only once */
if (embeddedice_reg_arch_type == -1) if (embeddedice_reg_arch_type == -1)
embeddedice_reg_arch_type = register_reg_arch_type( embeddedice_reg_arch_type = register_reg_arch_type(
embeddedice_get_reg, embeddedice_set_reg_w_exec); embeddedice_get_reg, embeddedice_set_reg_w_exec);
@ -267,12 +289,17 @@ reg_cache_t* embeddedice_build_reg_cache(target_t *target, arm7_9_common_t *arm7
if (strcmp(target_get_name(target), "feroceon") == 0 || if (strcmp(target_get_name(target), "feroceon") == 0 ||
strcmp(target_get_name(target), "dragonite") == 0) strcmp(target_get_name(target), "dragonite") == 0)
break; break;
LOG_ERROR("unknown EmbeddedICE version (comms ctrl: 0x%8.8" PRIx32 ")", buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 0, 32)); LOG_ERROR("unknown EmbeddedICE version "
"(comms ctrl: 0x%8.8" PRIx32 ")",
buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 0, 32));
} }
return reg_cache; return reg_cache;
} }
/**
* Initialize EmbeddedICE module, if needed.
*/
int embeddedice_setup(target_t *target) int embeddedice_setup(target_t *target)
{ {
int retval; int retval;
@ -296,25 +323,13 @@ int embeddedice_setup(target_t *target)
return jtag_execute_queue(); return jtag_execute_queue();
} }
static int embeddedice_get_reg(reg_t *reg) /**
{ * Queue a read for an EmbeddedICE register into the register cache,
int retval; * optionally checking the value read.
if ((retval = embeddedice_read_reg(reg)) != ERROR_OK) * Note that at this level, all registers are 32 bits wide.
{ */
LOG_ERROR("BUG: error scheduling EmbeddedICE register read"); int embeddedice_read_reg_w_check(reg_t *reg,
return retval; uint8_t *check_value, uint8_t *check_mask)
}
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
LOG_ERROR("register read failed");
return retval;
}
return ERROR_OK;
}
int embeddedice_read_reg_w_check(reg_t *reg, uint8_t* check_value, uint8_t* check_mask)
{ {
embeddedice_reg_t *ice_reg = reg->arch_info; embeddedice_reg_t *ice_reg = reg->arch_info;
uint8_t reg_addr = ice_reg->addr & 0x1f; uint8_t reg_addr = ice_reg->addr & 0x1f;
@ -327,6 +342,7 @@ int embeddedice_read_reg_w_check(reg_t *reg, uint8_t* check_value, uint8_t* chec
arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL); arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL);
/* bits 31:0 -- data (ignored here) */
fields[0].tap = ice_reg->jtag_info->tap; fields[0].tap = ice_reg->jtag_info->tap;
fields[0].num_bits = 32; fields[0].num_bits = 32;
fields[0].out_value = reg->value; fields[0].out_value = reg->value;
@ -334,6 +350,7 @@ int embeddedice_read_reg_w_check(reg_t *reg, uint8_t* check_value, uint8_t* chec
fields[0].check_value = NULL; fields[0].check_value = NULL;
fields[0].check_mask = NULL; fields[0].check_mask = NULL;
/* bits 36:32 -- register */
fields[1].tap = ice_reg->jtag_info->tap; fields[1].tap = ice_reg->jtag_info->tap;
fields[1].num_bits = 5; fields[1].num_bits = 5;
fields[1].out_value = field1_out; fields[1].out_value = field1_out;
@ -342,6 +359,7 @@ int embeddedice_read_reg_w_check(reg_t *reg, uint8_t* check_value, uint8_t* chec
fields[1].check_value = NULL; fields[1].check_value = NULL;
fields[1].check_mask = NULL; fields[1].check_mask = NULL;
/* bit 37 -- 0/read */
fields[2].tap = ice_reg->jtag_info->tap; fields[2].tap = ice_reg->jtag_info->tap;
fields[2].num_bits = 1; fields[2].num_bits = 1;
fields[2].out_value = field2_out; fields[2].out_value = field2_out;
@ -350,8 +368,10 @@ int embeddedice_read_reg_w_check(reg_t *reg, uint8_t* check_value, uint8_t* chec
fields[2].check_value = NULL; fields[2].check_value = NULL;
fields[2].check_mask = NULL; fields[2].check_mask = NULL;
/* traverse Update-DR, setting address for the next read */
jtag_add_dr_scan(3, fields, jtag_get_end_state()); jtag_add_dr_scan(3, fields, jtag_get_end_state());
/* bits 31:0 -- the data we're reading (and maybe checking) */
fields[0].in_value = reg->value; fields[0].in_value = reg->value;
fields[0].check_value = check_value; fields[0].check_value = check_value;
fields[0].check_mask = check_mask; fields[0].check_mask = check_mask;
@ -362,14 +382,19 @@ int embeddedice_read_reg_w_check(reg_t *reg, uint8_t* check_value, uint8_t* chec
*/ */
buf_set_u32(fields[1].out_value, 0, 5, eice_regs[EICE_COMMS_CTRL].addr); buf_set_u32(fields[1].out_value, 0, 5, eice_regs[EICE_COMMS_CTRL].addr);
/* traverse Update-DR, reading but with no other side effects */
jtag_add_dr_scan_check(3, fields, jtag_get_end_state()); jtag_add_dr_scan_check(3, fields, jtag_get_end_state());
return ERROR_OK; return ERROR_OK;
} }
/* receive <size> words of 32 bit from the DCC /**
* we pretend the target is always going to be fast enough * Receive a block of size 32-bit words from the DCC.
* (relative to the JTAG clock), so we don't need to handshake * We assume the target is always going to be fast enough (relative to
* the JTAG clock) that the debugger won't need to poll the handshake
* bit. The JTAG clock is usually at least six times slower than the
* functional clock, so the 50+ JTAG clocks needed to receive the word
* allow hundreds of instruction cycles (per word) in the target.
*/ */
int embeddedice_receive(arm_jtag_t *jtag_info, uint32_t *data, uint32_t size) int embeddedice_receive(arm_jtag_t *jtag_info, uint32_t *data, uint32_t size)
{ {
@ -420,11 +445,19 @@ int embeddedice_receive(arm_jtag_t *jtag_info, uint32_t *data, uint32_t size)
return jtag_execute_queue(); return jtag_execute_queue();
} }
/**
* Queue a read for an EmbeddedICE register into the register cache,
* not checking the value read.
*/
int embeddedice_read_reg(reg_t *reg) int embeddedice_read_reg(reg_t *reg)
{ {
return embeddedice_read_reg_w_check(reg, NULL, NULL); return embeddedice_read_reg_w_check(reg, NULL, NULL);
} }
/**
* Queue a write for an EmbeddedICE register, updating the register cache.
* Uses embeddedice_write_reg().
*/
void embeddedice_set_reg(reg_t *reg, uint32_t value) void embeddedice_set_reg(reg_t *reg, uint32_t value)
{ {
embeddedice_write_reg(reg, value); embeddedice_write_reg(reg, value);
@ -435,19 +468,23 @@ void embeddedice_set_reg(reg_t *reg, uint32_t value)
} }
/**
* Write an EmbeddedICE register, updating the register cache.
* Uses embeddedice_set_reg(); not queued.
*/
int embeddedice_set_reg_w_exec(reg_t *reg, uint8_t *buf) int embeddedice_set_reg_w_exec(reg_t *reg, uint8_t *buf)
{ {
int retval; int retval;
embeddedice_set_reg(reg, buf_get_u32(buf, 0, reg->size));
embeddedice_set_reg(reg, buf_get_u32(buf, 0, reg->size));
if ((retval = jtag_execute_queue()) != ERROR_OK) if ((retval = jtag_execute_queue()) != ERROR_OK)
{
LOG_ERROR("register write failed"); LOG_ERROR("register write failed");
return retval; return retval;
}
return ERROR_OK;
} }
/**
* Queue a write for an EmbeddedICE register, bypassing the register cache.
*/
void embeddedice_write_reg(reg_t *reg, uint32_t value) void embeddedice_write_reg(reg_t *reg, uint32_t value)
{ {
embeddedice_reg_t *ice_reg = reg->arch_info; embeddedice_reg_t *ice_reg = reg->arch_info;
@ -461,17 +498,24 @@ void embeddedice_write_reg(reg_t *reg, uint32_t value)
uint8_t reg_addr = ice_reg->addr & 0x1f; uint8_t reg_addr = ice_reg->addr & 0x1f;
embeddedice_write_reg_inner(ice_reg->jtag_info->tap, reg_addr, value); embeddedice_write_reg_inner(ice_reg->jtag_info->tap, reg_addr, value);
} }
/**
* Queue a write for an EmbeddedICE register, using cached value.
* Uses embeddedice_write_reg().
*/
void embeddedice_store_reg(reg_t *reg) void embeddedice_store_reg(reg_t *reg)
{ {
embeddedice_write_reg(reg, buf_get_u32(reg->value, 0, reg->size)); embeddedice_write_reg(reg, buf_get_u32(reg->value, 0, reg->size));
} }
/* send <size> words of 32 bit to the DCC /**
* we pretend the target is always going to be fast enough * Send a block of size 32-bit words to the DCC.
* (relative to the JTAG clock), so we don't need to handshake * We assume the target is always going to be fast enough (relative to
* the JTAG clock) that the debugger won't need to poll the handshake
* bit. The JTAG clock is usually at least six times slower than the
* functional clock, so the 50+ JTAG clocks needed to receive the word
* allow hundreds of instruction cycles (per word) in the target.
*/ */
int embeddedice_send(arm_jtag_t *jtag_info, uint32_t *data, uint32_t size) int embeddedice_send(arm_jtag_t *jtag_info, uint32_t *data, uint32_t size)
{ {
@ -515,7 +559,8 @@ int embeddedice_send(arm_jtag_t *jtag_info, uint32_t *data, uint32_t size)
return ERROR_OK; return ERROR_OK;
} }
/* wait for DCC control register R/W handshake bit to become active /**
* Poll DCC control register until read or write handshake completes.
*/ */
int embeddedice_handshake(arm_jtag_t *jtag_info, int hsbit, uint32_t timeout) int embeddedice_handshake(arm_jtag_t *jtag_info, int hsbit, uint32_t timeout)
{ {
@ -558,8 +603,7 @@ int embeddedice_handshake(arm_jtag_t *jtag_info, int hsbit, uint32_t timeout)
jtag_add_dr_scan(3, fields, jtag_get_end_state()); jtag_add_dr_scan(3, fields, jtag_get_end_state());
gettimeofday(&lap, NULL); gettimeofday(&lap, NULL);
do do {
{
jtag_add_dr_scan(3, fields, jtag_get_end_state()); jtag_add_dr_scan(3, fields, jtag_get_end_state());
if ((retval = jtag_execute_queue()) != ERROR_OK) if ((retval = jtag_execute_queue()) != ERROR_OK)
return retval; return retval;
@ -568,20 +612,25 @@ int embeddedice_handshake(arm_jtag_t *jtag_info, int hsbit, uint32_t timeout)
return ERROR_OK; return ERROR_OK;
gettimeofday(&now, NULL); gettimeofday(&now, NULL);
} } while ((uint32_t)((now.tv_sec - lap.tv_sec) * 1000
while ((uint32_t)((now.tv_sec-lap.tv_sec)*1000 + (now.tv_usec-lap.tv_usec)/1000) <= timeout); + (now.tv_usec - lap.tv_usec) / 1000) <= timeout);
return ERROR_TARGET_TIMEOUT; return ERROR_TARGET_TIMEOUT;
} }
#ifndef HAVE_JTAG_MINIDRIVER_H #ifndef HAVE_JTAG_MINIDRIVER_H
/* this is the inner loop of the open loop DCC write of data to target */ /**
void embeddedice_write_dcc(jtag_tap_t *tap, int reg_addr, uint8_t *buffer, int little, int count) * This is an inner loop of the open loop DCC write of data to target
*/
void embeddedice_write_dcc(jtag_tap_t *tap,
int reg_addr, uint8_t *buffer, int little, int count)
{ {
int i; int i;
for (i = 0; i < count; i++) for (i = 0; i < count; i++)
{ {
embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little)); embeddedice_write_reg_inner(tap, reg_addr,
fast_target_buffer_get_u32(buffer, little));
buffer += 4; buffer += 4;
} }
} }