PIC32: add flash algorithm support

Add flash algorithm support for the PIC32MX.
Still a few things todo but this dramatically decreases
the programing time, eg. approx programming for 2.5k test file.
 - without fastload: 60secs
 - with fastload: 45secs
 - with fastload and algorithm: 2secs.

Add new devices to supported list.

Signed-off-by: Spencer Oliver <ntfreak@users.sourceforge.net>
This commit is contained in:
Spencer Oliver 2010-03-08 22:54:18 +00:00
parent f10ed95a5c
commit 257a764582
6 changed files with 250 additions and 479 deletions

View File

@ -29,38 +29,40 @@
#include "imp.h"
#include "pic32mx.h"
#include <target/algorithm.h>
#include <target/mips32.h>
static
struct pic32mx_devs_s {
static const struct pic32mx_devs_s {
uint8_t devid;
char *name;
uint32_t pfm_size;
} pic32mx_devs[] = {
{ 0x78, "460F512L USB", 512 },
{ 0x74, "460F256L USB", 256 },
{ 0x6D, "440F128L USB", 128 },
{ 0x56, "440F512H USB", 512 },
{ 0x52, "440F256H USB", 256 },
{ 0x4D, "440F128H USB", 128 },
{ 0x42, "420F032H USB", 32 },
{ 0x38, "360F512L", 512 },
{ 0x34, "360F256L", 256 },
{ 0x2D, "340F128L", 128 },
{ 0x2A, "320F128L", 128 },
{ 0x16, "340F512H", 512 },
{ 0x12, "340F256H", 256 },
{ 0x0D, "340F128H", 128 },
{ 0x0A, "320F128H", 128 },
{ 0x06, "320F064H", 64 },
{ 0x02, "320F032H", 32 },
{ 0x00, NULL, 0 }
{0x38, "360F512L"},
{0x34, "360F256L"},
{0x2D, "340F128L"},
{0x2A, "320F128L"},
{0x16, "340F512H"},
{0x12, "340F256H"},
{0x0D, "340F128H"},
{0x0A, "320F128H"},
{0x06, "320F064H"},
{0x02, "320F032H"},
{0x07, "795F512L"},
{0x0E, "795F512H"},
{0x11, "675F512L"},
{0x0C, "675F512H"},
{0x0F, "575F512L"},
{0x09, "575F512H"},
{0x17, "575F256H"},
{0x78, "460F512L"},
{0x74, "460F256L"},
{0x6D, "440F128L"},
{0x56, "440F512H"},
{0x52, "440F256H"},
{0x4D, "440F128H"},
{0x42, "420F032H"},
{0x00, NULL}
};
static int pic32mx_write_row(struct flash_bank *bank, uint32_t address, uint32_t srcaddr);
static int pic32mx_write_word(struct flash_bank *bank, uint32_t address, uint32_t word);
/* flash bank pic32mx <base> <size> 0 0 <target#>
*/
FLASH_BANK_COMMAND_HANDLER(pic32mx_flash_bank_command)
@ -145,9 +147,10 @@ static int pic32mx_protect_check(struct flash_bank *bank)
}
target_read_u32(target, PIC32MX_DEVCFG0, &devcfg0);
if ((devcfg0 & (1 << 28)) == 0) /* code protect bit */
num_pages = 0xffff; /* All pages protected */
else if (bank->base == PIC32MX_KSEG1_BOOT_FLASH)
else if (Virt2Phys(bank->base) == PIC32MX_PHYS_BOOT_FLASH)
{
if (devcfg0 & (1 << 24))
num_pages = 0; /* All pages unprotected */
@ -156,6 +159,7 @@ static int pic32mx_protect_check(struct flash_bank *bank)
}
else /* pgm flash */
num_pages = (~devcfg0 >> 12) & 0xff;
for (s = 0; s < bank->num_sectors && s < num_pages; s++)
bank->sectors[s].is_protected = 1;
for (; s < bank->num_sectors; s++)
@ -176,8 +180,11 @@ static int pic32mx_erase(struct flash_bank *bank, int first, int last)
return ERROR_TARGET_NOT_HALTED;
}
if ((first == 0) && (last == (bank->num_sectors - 1)) && (bank->base == PIC32MX_KSEG0_PGM_FLASH || bank->base == PIC32MX_KSEG1_PGM_FLASH))
if ((first == 0) && (last == (bank->num_sectors - 1))
&& (Virt2Phys(bank->base) == PIC32MX_PHYS_PGM_FLASH))
{
/* this will only erase the Program Flash (PFM), not the Boot Flash (BFM)
* we need to use the MTAP to perform a full erase */
LOG_DEBUG("Erasing entire program flash");
status = pic32mx_nvm_exec(bank, NVMCON_OP_PFM_ERASE, 50);
if (status & NVMCON_NVMERR)
@ -189,10 +196,7 @@ static int pic32mx_erase(struct flash_bank *bank, int first, int last)
for (i = first; i <= last; i++)
{
if (bank->base >= PIC32MX_KSEG1_PGM_FLASH)
target_write_u32(target, PIC32MX_NVMADDR, KS1Virt2Phys(bank->base + bank->sectors[i].offset));
else
target_write_u32(target, PIC32MX_NVMADDR, KS0Virt2Phys(bank->base + bank->sectors[i].offset));
target_write_u32(target, PIC32MX_NVMADDR, Virt2Phys(bank->base + bank->sectors[i].offset));
status = pic32mx_nvm_exec(bank, NVMCON_OP_PAGE_ERASE, 10);
@ -210,12 +214,6 @@ static int pic32mx_protect(struct flash_bank *bank, int set, int first, int last
{
struct pic32mx_flash_bank *pic32mx_info = NULL;
struct target *target = bank->target;
#if 0
uint16_t prot_reg[4] = {0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF};
int i, reg, bit;
int status;
uint32_t protection;
#endif
pic32mx_info = bank->driver_priv;
@ -225,205 +223,177 @@ static int pic32mx_protect(struct flash_bank *bank, int set, int first, int last
return ERROR_TARGET_NOT_HALTED;
}
#if 0
if ((first && (first % pic32mx_info->ppage_size)) || ((last + 1) && (last + 1) % pic32mx_info->ppage_size))
{
LOG_WARNING("sector start/end incorrect - stm32 has %dK sector protection", pic32mx_info->ppage_size);
return ERROR_FLASH_SECTOR_INVALID;
}
/* medium density - each bit refers to a 4bank protection
* high density - each bit refers to a 2bank protection */
target_read_u32(target, PIC32MX_FLASH_WRPR, &protection);
prot_reg[0] = (uint16_t)protection;
prot_reg[1] = (uint16_t)(protection >> 8);
prot_reg[2] = (uint16_t)(protection >> 16);
prot_reg[3] = (uint16_t)(protection >> 24);
if (pic32mx_info->ppage_size == 2)
{
/* high density flash */
/* bit 7 controls sector 62 - 255 protection */
if (last > 61)
{
if (set)
prot_reg[3] &= ~(1 << 7);
else
prot_reg[3] |= (1 << 7);
}
if (first > 61)
first = 62;
if (last > 61)
last = 61;
for (i = first; i <= last; i++)
{
reg = (i / pic32mx_info->ppage_size) / 8;
bit = (i / pic32mx_info->ppage_size) - (reg * 8);
if (set)
prot_reg[reg] &= ~(1 << bit);
else
prot_reg[reg] |= (1 << bit);
}
}
else
{
/* medium density flash */
for (i = first; i <= last; i++)
{
reg = (i / pic32mx_info->ppage_size) / 8;
bit = (i / pic32mx_info->ppage_size) - (reg * 8);
if (set)
prot_reg[reg] &= ~(1 << bit);
else
prot_reg[reg] |= (1 << bit);
}
}
if ((status = pic32mx_erase_options(bank)) != ERROR_OK)
return status;
pic32mx_info->option_bytes.protection[0] = prot_reg[0];
pic32mx_info->option_bytes.protection[1] = prot_reg[1];
pic32mx_info->option_bytes.protection[2] = prot_reg[2];
pic32mx_info->option_bytes.protection[3] = prot_reg[3];
return pic32mx_write_options(bank);
#else
return ERROR_OK;
#endif
}
static int pic32mx_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
static const uint32_t pic32mx_flash_write_code[] = {
/* write: */
0x3C08AA99, /* lui $t0, 0xaa99 */
0x35086655, /* ori $t0, 0x6655 */
0x3C095566, /* lui $t1, 0x5566 */
0x352999AA, /* ori $t1, 0x99aa */
0x3C0ABF80, /* lui $t2, 0xbf80 */
0x354AF400, /* ori $t2, 0xf400 */
0x340B4003, /* ori $t3, $zero, 0x4003 */
0x340C8000, /* ori $t4, $zero, 0x8000 */
/* write_row: */
0x2CD30080, /* sltiu $s3, $a2, 128 */
0x16600008, /* bne $s3, $zero, write_word */
0x340D4000, /* ori $t5, $zero, 0x4000 */
0xAD450020, /* sw $a1, 32($t2) */
0xAD440040, /* sw $a0, 64($t2) */
0x04110016, /* bal progflash */
0x24840200, /* addiu $a0, $a0, 512 */
0x24A50200, /* addiu $a1, $a1, 512 */
0x1000FFF7, /* beq $zero, $zero, write_row */
0x24C6FF80, /* addiu $a2, $a2, -128 */
/* write_word: */
0x3C15A000, /* lui $s5, 0xa000 */
0x36B50000, /* ori $s5, $s5, 0x0 */
0x00952025, /* or $a0, $a0, $s5 */
0x10000008, /* beq $zero, $zero, next_word */
0x340B4001, /* ori $t3, $zero, 0x4001 */
/* prog_word: */
0x8C940000, /* lw $s4, 0($a0) */
0xAD540030, /* sw $s4, 48($t2) */
0xAD450020, /* sw $a1, 32($t2) */
0x04110009, /* bal progflash */
0x24840004, /* addiu $a0, $a0, 4 */
0x24A50004, /* addiu $a1, $a1, 4 */
0x24C6FFFF, /* addiu $a2, $a2, -1 */
/* next_word: */
0x14C0FFF8, /* bne $a2, $zero, prog_word */
0x00000000, /* nop */
/* done: */
0x10000002, /* beq $zero, $zero, exit */
0x24040000, /* addiu $a0, $zero, 0 */
/* error: */
0x26240000, /* addiu $a0, $s1, 0 */
/* exit: */
0x7000003F, /* sdbbp */
/* progflash: */
0xAD4B0000, /* sw $t3, 0($t2) */
0xAD480010, /* sw $t0, 16($t2) */
0xAD490010, /* sw $t1, 16($t2) */
0xAD4C0008, /* sw $t4, 8($t2) */
/* waitflash: */
0x8D500000, /* lw $s0, 0($t2) */
0x020C8024, /* and $s0, $s0, $t4 */
0x1600FFFD, /* bne $s0, $zero, waitflash */
0x00000000, /* nop */
0x00000000, /* nop */
0x00000000, /* nop */
0x00000000, /* nop */
0x00000000, /* nop */
0x8D510000, /* lw $s1, 0($t2) */
0x30113000, /* andi $s1, $zero, 0x3000 */
0x1620FFEF, /* bne $s1, $zero, error */
0xAD4D0004, /* sw $t5, 4($t2) */
0x03E00008, /* jr $ra */
0x00000000 /* nop */
};
static int pic32mx_write_block(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t buffer_size = 512;
uint32_t buffer_size = 16384;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[3];
int retval = ERROR_OK;
#if 0
struct pic32mx_flash_bank *pic32mx_info = bank->driver_priv;
struct armv7m_algorithm armv7m_info;
uint8_t pic32mx_flash_write_code[] = {
/* write: */
0xDF, 0xF8, 0x24, 0x40, /* ldr r4, PIC32MX_FLASH_CR */
0x09, 0x4D, /* ldr r5, PIC32MX_FLASH_SR */
0x4F, 0xF0, 0x01, 0x03, /* mov r3, #1 */
0x23, 0x60, /* str r3, [r4, #0] */
0x30, 0xF8, 0x02, 0x3B, /* ldrh r3, [r0], #2 */
0x21, 0xF8, 0x02, 0x3B, /* strh r3, [r1], #2 */
/* busy: */
0x2B, 0x68, /* ldr r3, [r5, #0] */
0x13, 0xF0, 0x01, 0x0F, /* tst r3, #0x01 */
0xFB, 0xD0, /* beq busy */
0x13, 0xF0, 0x14, 0x0F, /* tst r3, #0x14 */
0x01, 0xD1, /* bne exit */
0x01, 0x3A, /* subs r2, r2, #1 */
0xED, 0xD1, /* bne write */
/* exit: */
0xFE, 0xE7, /* b exit */
0x10, 0x20, 0x02, 0x40, /* PIC32MX_FLASH_CR: .word 0x40022010 */
0x0C, 0x20, 0x02, 0x40 /* PIC32MX_FLASH_SR: .word 0x4002200C */
};
struct pic32mx_flash_bank *pic32mx_info = bank->driver_priv;
struct mips32_algorithm mips32_info;
/* flash write code */
if (target_alloc_working_area(target, sizeof(pic32mx_flash_write_code), &pic32mx_info->write_algorithm) != ERROR_OK)
if (target_alloc_working_area(target, sizeof(pic32mx_flash_write_code),
&pic32mx_info->write_algorithm) != ERROR_OK)
{
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
};
if ((retval = target_write_buffer(target, pic32mx_info->write_algorithm->address, sizeof(pic32mx_flash_write_code), pic32mx_flash_write_code)) != ERROR_OK)
if ((retval = target_write_buffer(target,
pic32mx_info->write_algorithm->address,
sizeof(pic32mx_flash_write_code),
(uint8_t*)pic32mx_flash_write_code)) != ERROR_OK)
return retval;
#endif
/* memory buffer */
if (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK)
while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK)
{
#if 0
/* if we already allocated the writing code, but failed to get a buffer, free the algorithm */
buffer_size /= 2;
if (buffer_size <= 256)
{
/* if we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
if (pic32mx_info->write_algorithm)
target_free_working_area(target, pic32mx_info->write_algorithm);
#endif
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
};
while (count >= buffer_size/4)
mips32_info.common_magic = MIPS32_COMMON_MAGIC;
mips32_info.isa_mode = MIPS32_ISA_MIPS32;
init_reg_param(&reg_params[0], "a0", 32, PARAM_IN_OUT);
init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);
init_reg_param(&reg_params[2], "a2", 32, PARAM_OUT);
while (count > 0)
{
uint32_t status;
uint32_t thisrun_count = (count > (buffer_size / 4)) ?
(buffer_size / 4) : count;
if ((retval = target_write_buffer(target, source->address, buffer_size, buffer)) != ERROR_OK) {
LOG_ERROR("Failed to write row buffer (%d words) to RAM", (int)(buffer_size/4));
if ((retval = target_write_buffer(target, source->address,
thisrun_count * 4, buffer)) != ERROR_OK)
break;
}
#if 0
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, address);
buf_set_u32(reg_params[2].value, 0, 32, buffer_size/4);
buf_set_u32(reg_params[0].value, 0, 32, Virt2Phys(source->address));
buf_set_u32(reg_params[1].value, 0, 32, Virt2Phys(address));
buf_set_u32(reg_params[2].value, 0, 32, thisrun_count);
if ((retval = target_run_algorithm(target, 0, NULL, 4, reg_params, pic32mx_info->write_algorithm->address, \
pic32mx_info->write_algorithm->address + (sizeof(pic32mx_flash_write_code) - 10), 10000, &armv7m_info)) != ERROR_OK)
if ((retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
pic32mx_info->write_algorithm->address,
pic32mx_info->write_algorithm->address + (sizeof(pic32mx_flash_write_code) - 76),
10000, &mips32_info)) != ERROR_OK)
{
LOG_ERROR("error executing pic32mx flash write algorithm");
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
if (buf_get_u32(reg_params[3].value, 0, 32) & 0x14)
status = buf_get_u32(reg_params[0].value, 0, 32);
if (status & NVMCON_NVMERR)
{
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
#endif
status = pic32mx_write_row(bank, address, source->address);
if (status & NVMCON_NVMERR) {
LOG_ERROR("Flash write error NVMERR (status = 0x%08" PRIx32 ")", status);
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
if (status & NVMCON_LVDERR) {
if (status & NVMCON_LVDERR)
{
LOG_ERROR("Flash write error LVDERR (status = 0x%08" PRIx32 ")", status);
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
buffer += buffer_size;
address += buffer_size;
count -= buffer_size/4;
buffer += thisrun_count * 4;
address += thisrun_count * 4;
count -= thisrun_count;
}
target_free_working_area(target, source);
target_free_working_area(target, pic32mx_info->write_algorithm);
while (count > 0)
{
uint32_t value;
memcpy(&value, buffer, sizeof(uint32_t));
uint32_t status = pic32mx_write_word(bank, address, value);
if (status & NVMCON_NVMERR) {
LOG_ERROR("Flash write error NVMERR (status = 0x%08" PRIx32 ")", status);
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
if (status & NVMCON_LVDERR) {
LOG_ERROR("Flash write error LVDERR (status = 0x%08" PRIx32 ")", status);
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
buffer += 4;
address += 4;
count--;
}
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
return retval;
}
@ -432,36 +402,12 @@ static int pic32mx_write_word(struct flash_bank *bank, uint32_t address, uint32_
{
struct target *target = bank->target;
if (bank->base >= PIC32MX_KSEG1_PGM_FLASH)
target_write_u32(target, PIC32MX_NVMADDR, KS1Virt2Phys(address));
else
target_write_u32(target, PIC32MX_NVMADDR, KS0Virt2Phys(address));
target_write_u32(target, PIC32MX_NVMADDR, Virt2Phys(address));
target_write_u32(target, PIC32MX_NVMDATA, word);
return pic32mx_nvm_exec(bank, NVMCON_OP_WORD_PROG, 5);
}
/*
* Write a 128 word (512 byte) row to flash address from RAM srcaddr.
*/
static int pic32mx_write_row(struct flash_bank *bank, uint32_t address, uint32_t srcaddr)
{
struct target *target = bank->target;
LOG_DEBUG("addr: 0x%08" PRIx32 " srcaddr: 0x%08" PRIx32 "", address, srcaddr);
if (address >= PIC32MX_KSEG1_PGM_FLASH)
target_write_u32(target, PIC32MX_NVMADDR, KS1Virt2Phys(address));
else
target_write_u32(target, PIC32MX_NVMADDR, KS0Virt2Phys(address));
if (srcaddr >= PIC32MX_KSEG1_RAM)
target_write_u32(target, PIC32MX_NVMSRCADDR, KS1Virt2Phys(srcaddr));
else
target_write_u32(target, PIC32MX_NVMSRCADDR, KS0Virt2Phys(srcaddr));
return pic32mx_nvm_exec(bank, NVMCON_OP_ROW_PROG, 100);
}
static int pic32mx_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
{
uint32_t words_remaining = (count / 4);
@ -477,6 +423,9 @@ static int pic32mx_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offs
return ERROR_TARGET_NOT_HALTED;
}
LOG_DEBUG("writing to flash at address 0x%08" PRIx32 " at offset 0x%8.8" PRIx32
" count: 0x%8.8" PRIx32 "", bank->base, offset, count);
if (offset & 0x3)
{
LOG_WARNING("offset 0x%" PRIx32 "breaks required 4-byte alignment", offset);
@ -515,10 +464,18 @@ static int pic32mx_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offs
memcpy(&value, buffer + bytes_written, sizeof(uint32_t));
status = pic32mx_write_word(bank, address, value);
if (status & NVMCON_NVMERR)
{
LOG_ERROR("Flash write error NVMERR (status = 0x%08" PRIx32 ")", status);
return ERROR_FLASH_OPERATION_FAILED;
}
if (status & NVMCON_LVDERR)
{
LOG_ERROR("Flash write error LVDERR (status = 0x%08" PRIx32 ")", status);
return ERROR_FLASH_OPERATION_FAILED;
}
bytes_written += 4;
words_remaining--;
@ -531,11 +488,19 @@ static int pic32mx_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offs
memcpy(&value, buffer + bytes_written, bytes_remaining);
status = pic32mx_write_word(bank, address, value);
if (status & NVMCON_NVMERR)
{
LOG_ERROR("Flash write error NVMERR (status = 0x%08" PRIx32 ")", status);
return ERROR_FLASH_OPERATION_FAILED;
}
if (status & NVMCON_LVDERR)
{
LOG_ERROR("Flash write error LVDERR (status = 0x%08" PRIx32 ")", status);
return ERROR_FLASH_OPERATION_FAILED;
}
}
return ERROR_OK;
}
@ -547,70 +512,60 @@ static int pic32mx_probe(struct flash_bank *bank)
struct mips32_common *mips32 = target->arch_info;
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
int i;
uint16_t num_pages = 0;
uint32_t num_pages = 0;
uint32_t device_id;
int page_size;
pic32mx_info->probed = 0;
device_id = ejtag_info->idcode;
LOG_INFO("device id = 0x%08" PRIx32 " (manuf 0x%03x dev 0x%02x, ver 0x%03x)",
LOG_INFO("device id = 0x%08" PRIx32 " (manuf 0x%03x dev 0x%02x, ver 0x%02x)",
device_id,
(unsigned)((device_id >> 1)&0x7ff),
(unsigned)((device_id >> 12)&0xff),
(unsigned)((device_id >> 20)&0xfff));
(unsigned)((device_id >> 1) & 0x7ff),
(unsigned)((device_id >> 12) & 0xff),
(unsigned)((device_id >> 28) & 0xf));
if (((device_id >> 1)&0x7ff) != PIC32MX_MANUF_ID) {
if (((device_id >> 1) & 0x7ff) != PIC32MX_MANUF_ID) {
LOG_WARNING("Cannot identify target as a PIC32MX family.");
return ERROR_FLASH_OPERATION_FAILED;
}
page_size = 4096;
if (bank->base == PIC32MX_KSEG1_BOOT_FLASH || bank->base == 1) {
/* 0xBFC00000: Boot flash size fixed at 12k */
num_pages = 12;
} else {
/* 0xBD000000: Program flash size varies with device */
for (i = 0; pic32mx_devs[i].name != NULL; i++)
if (pic32mx_devs[i].devid == ((device_id >> 12) & 0xff)) {
num_pages = pic32mx_devs[i].pfm_size;
break;
}
if (pic32mx_devs[i].name == NULL) {
LOG_WARNING("Cannot identify target as a PIC32MX family.");
return ERROR_FLASH_OPERATION_FAILED;
}
}
if (Virt2Phys(bank->base) == PIC32MX_PHYS_BOOT_FLASH)
{
/* 0x1FC00000: Boot flash size */
#if 0
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* get flash size from target */
if (target_read_u16(target, 0x1FFFF7E0, &num_pages) != ERROR_OK)
{
/* failed reading flash size, default to max target family */
num_pages = 0xffff;
/* for some reason this register returns 8k for the boot bank size
* this does not match the docs, so for now set the boot bank at a
* fixed 12k */
if (target_read_u32(target, PIC32MX_BMXBOOTSZ, &num_pages) != ERROR_OK) {
LOG_WARNING("PIC32MX flash size failed, probe inaccurate - assuming 12k flash");
num_pages = (12 * 1024);
}
#else
/* fixed 12k boot bank - see comments above */
num_pages = (12 * 1024);
#endif
}
else
{
/* read the flash size from the device */
if (target_read_u32(target, PIC32MX_BMXPFMSZ, &num_pages) != ERROR_OK) {
LOG_WARNING("PIC32MX flash size failed, probe inaccurate - assuming 512k flash");
num_pages = (512 * 1024);
}
}
LOG_INFO("flash size = %dkbytes", num_pages);
LOG_INFO("flash size = %dkbytes", num_pages / 1024);
/* calculate numbers of pages */
num_pages /= (page_size / 1024);
if (bank->base == 0) bank->base = PIC32MX_KSEG1_PGM_FLASH;
if (bank->base == 1) bank->base = PIC32MX_KSEG1_BOOT_FLASH;
num_pages /= page_size;
bank->size = (num_pages * page_size);
bank->num_sectors = num_pages;
bank->chip_width = 4;
bank->bus_width = 4;
bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
for (i = 0; i < num_pages; i++)
for (i = 0; i < (int)num_pages; i++)
{
bank->sectors[i].offset = i * page_size;
bank->sectors[i].size = page_size;
@ -631,13 +586,6 @@ static int pic32mx_auto_probe(struct flash_bank *bank)
return pic32mx_probe(bank);
}
#if 0
COMMAND_HANDLER(pic32mx_handle_part_id_command)
{
return ERROR_OK;
}
#endif
static int pic32mx_info(struct flash_bank *bank, char *buf, int buf_size)
{
struct target *target = bank->target;
@ -648,198 +596,30 @@ static int pic32mx_info(struct flash_bank *bank, char *buf, int buf_size)
device_id = ejtag_info->idcode;
if (((device_id >> 1)&0x7ff) != PIC32MX_MANUF_ID) {
if (((device_id >> 1) & 0x7ff) != PIC32MX_MANUF_ID) {
snprintf(buf, buf_size,
"Cannot identify target as a PIC32MX family (manufacturer 0x%03d != 0x%03d)\n",
(unsigned)((device_id >> 1)&0x7ff),
(unsigned)((device_id >> 1) & 0x7ff),
PIC32MX_MANUF_ID);
return ERROR_FLASH_OPERATION_FAILED;
}
for (i = 0; pic32mx_devs[i].name != NULL; i++)
{
if (pic32mx_devs[i].devid == ((device_id >> 12) & 0xff)) {
printed = snprintf(buf, buf_size, "PIC32MX%s", pic32mx_devs[i].name);
break;
}
if (pic32mx_devs[i].name == NULL) {
snprintf(buf, buf_size, "Cannot identify target as a PIC32MX family\n");
return ERROR_FLASH_OPERATION_FAILED;
}
if (pic32mx_devs[i].name == NULL) {
printed = snprintf(buf, buf_size, "Unknown");
}
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, " Ver: 0x%03x",
(unsigned)((device_id >> 20)&0xfff));
return ERROR_OK;
}
#if 0
COMMAND_HANDLER(pic32mx_handle_lock_command)
{
struct target *target = NULL;
struct pic32mx_flash_bank *pic32mx_info = NULL;
if (CMD_ARGC < 1)
{
command_print(CMD_CTX, "pic32mx lock <bank>");
return ERROR_OK;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
pic32mx_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (pic32mx_erase_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "pic32mx failed to erase options");
return ERROR_OK;
}
/* set readout protection */
pic32mx_info->option_bytes.RDP = 0;
if (pic32mx_write_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "pic32mx failed to lock device");
return ERROR_OK;
}
command_print(CMD_CTX, "pic32mx locked");
return ERROR_OK;
}
COMMAND_HANDLER(pic32mx_handle_unlock_command)
{
struct target *target = NULL;
struct pic32mx_flash_bank *pic32mx_info = NULL;
if (CMD_ARGC < 1)
{
command_print(CMD_CTX, "pic32mx unlock <bank>");
return ERROR_OK;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
pic32mx_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (pic32mx_erase_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "pic32mx failed to unlock device");
return ERROR_OK;
}
if (pic32mx_write_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "pic32mx failed to lock device");
return ERROR_OK;
}
command_print(CMD_CTX, "pic32mx unlocked");
return ERROR_OK;
}
#endif
#if 0
static int pic32mx_chip_erase(struct flash_bank *bank)
{
struct target *target = bank->target;
#if 0
uint32_t status;
#endif
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
LOG_INFO("PIC32MX chip erase called");
#if 0
/* unlock option flash registers */
target_write_u32(target, PIC32MX_FLASH_KEYR, KEY1);
target_write_u32(target, PIC32MX_FLASH_KEYR, KEY2);
/* chip erase flash memory */
target_write_u32(target, PIC32MX_FLASH_CR, FLASH_MER);
target_write_u32(target, PIC32MX_FLASH_CR, FLASH_MER | FLASH_STRT);
status = pic32mx_wait_status_busy(bank, 10);
target_write_u32(target, PIC32MX_FLASH_CR, FLASH_LOCK);
if (status & FLASH_WRPRTERR)
{
LOG_ERROR("pic32mx device protected");
return ERROR_OK;
}
if (status & FLASH_PGERR)
{
LOG_ERROR("pic32mx device programming failed");
return ERROR_OK;
}
#endif
return ERROR_OK;
}
#endif
COMMAND_HANDLER(pic32mx_handle_chip_erase_command)
{
#if 0
int i;
if (CMD_ARGC != 0)
{
command_print(CMD_CTX, "pic32mx chip_erase");
return ERROR_OK;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
if (pic32mx_chip_erase(bank) == ERROR_OK)
{
/* set all sectors as erased */
for (i = 0; i < bank->num_sectors; i++)
{
bank->sectors[i].is_erased = 1;
}
command_print(CMD_CTX, "pic32mx chip erase complete");
}
else
{
command_print(CMD_CTX, "pic32mx chip erase failed");
}
#endif
printed = snprintf(buf, buf_size, " Ver: 0x%02x",
(unsigned)((device_id >> 28) & 0xf));
return ERROR_OK;
}
@ -883,13 +663,8 @@ COMMAND_HANDLER(pic32mx_handle_pgm_word_command)
return ERROR_OK;
}
static const struct command_registration pic32mx_exec_command_handlers[] = {
{
.name = "chip_erase",
.handler = pic32mx_handle_chip_erase_command,
.mode = COMMAND_EXEC,
.help = "erase device",
},
{
.name = "pgm_word",
.handler = pic32mx_handle_pgm_word_command,
@ -898,6 +673,7 @@ static const struct command_registration pic32mx_exec_command_handlers[] = {
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration pic32mx_command_handlers[] = {
{
.name = "pic32mx",

View File

@ -29,8 +29,6 @@
struct pic32mx_flash_bank
{
struct working_area *write_algorithm;
int devid;
int ppage_size;
int probed;
};
@ -38,18 +36,6 @@ struct pic32mx_flash_bank
/* pic32mx memory locations */
#define PIC32MX_KUSEG_PGM_FLASH 0x7D000000
#define PIC32MX_KUSEG_RAM 0x7F000000
#define PIC32MX_KSEG0_RAM 0x80000000
#define PIC32MX_KSEG0_PGM_FLASH 0x9D000000
#define PIC32MX_KSEG0_BOOT_FLASH 0x9FC00000
#define PIC32MX_KSEG1_RAM 0xA0000000
#define PIC32MX_KSEG1_PGM_FLASH 0xBD000000
#define PIC32MX_KSEG1_PERIPHERAL 0xBF800000
#define PIC32MX_KSEG1_BOOT_FLASH 0xBFC00000
#define PIC32MX_PHYS_RAM 0x00000000
#define PIC32MX_PHYS_PGM_FLASH 0x1D000000
#define PIC32MX_PHYS_PERIPHERALS 0x1F800000
@ -59,19 +45,21 @@ struct pic32mx_flash_bank
* Translate Virtual and Physical addresses.
* Note: These macros only work for KSEG0/KSEG1 addresses.
*/
#define KS1Virt2Phys(vaddr) ((vaddr)-0xA0000000)
#define Phys2KS1Virt(paddr) ((paddr) + 0xA0000000)
#define KS0Virt2Phys(vaddr) ((vaddr)-0x80000000)
#define Phys2KS0Virt(paddr) ((paddr) + 0x80000000)
#define Virt2Phys(v) ((v) & 0x1FFFFFFF)
/* pic32mx configuration register locations */
#define PIC32MX_DEVCFG0 0xBFC02FFC
#define PIC32MX_DEVCFG1 0xBFC02FF8
#define PIC32MX_DEVCFG2 0xBFC02FF4
#define PIC32MX_DEVCFG3 0XBFC02FF0
#define PIC32MX_DEVCFG3 0xBFC02FF0
#define PIC32MX_DEVID 0xBF80F220
#define PIC32MX_BMXPFMSZ 0xBF882060
#define PIC32MX_BMXBOOTSZ 0xBF882070
#define PIC32MX_BMXDRMSZ 0xBF882040
/* pic32mx flash controller register locations */
#define PIC32MX_NVMCON 0xBF80F400
@ -102,10 +90,5 @@ struct pic32mx_flash_bank
#define NVMKEY1 0xAA996655
#define NVMKEY2 0x556699AA
struct pic32mx_mem_layout {
uint32_t sector_start;
uint32_t sector_size;
};
#endif /* PIC32MX_H */

View File

@ -969,7 +969,7 @@ int mips32_pracc_fastdata_xfer(struct mips_ejtag *ejtag_info, struct working_are
/* write program into RAM */
mips32_pracc_write_mem32(ejtag_info, source->address, ARRAY_SIZE(handler_code), handler_code);
LOG_DEBUG("%s using 0x%.8" PRIx32 " for write handler\n", __func__, source->address);
LOG_DEBUG("%s using 0x%.8" PRIx32 " for write handler", __func__, source->address);
jmp_code[1] |= UPPER16(source->address);
jmp_code[2] |= LOWER16(source->address);
@ -1030,7 +1030,7 @@ int mips32_pracc_fastdata_xfer(struct mips_ejtag *ejtag_info, struct working_are
mips_ejtag_drscan_32(ejtag_info, &address);
if (address != MIPS32_PRACC_TEXT)
LOG_ERROR("mini program did not return to start\n");
LOG_ERROR("mini program did not return to start");
return retval;
}

View File

@ -40,6 +40,10 @@
#define EJTAG_INST_TCBDATA 0x12
#define EJTAG_INST_BYPASS 0xFF
/* microchip PIC32MX specific instructions */
#define MTAP_SW_MTAP 0x04
#define MTAP_SW_ETAP 0x05
/* ejtag control register bits ECR */
#define EJTAG_CTRL_TOF (1 << 1)
#define EJTAG_CTRL_TIF (1 << 2)

View File

@ -914,7 +914,7 @@ int mips_m4k_examine(struct target *target)
{
/* we are using a pic32mx so select ejtag port
* as it is not selected by default */
mips_ejtag_set_instr(ejtag_info, 0x05, NULL);
mips_ejtag_set_instr(ejtag_info, MTAP_SW_ETAP, NULL);
LOG_DEBUG("PIC32MX Detected - using EJTAG Interface");
}
}

View File

@ -18,6 +18,14 @@ if { [info exists CPUTAPID ] } {
set _CPUTAPID 0x30938053
}
# working area is 16384 - 2048
# loose first 2048 bytes due to BMXDKPBA reg
if { [info exists WORKAREASIZE] } {
set _WORKAREASIZE $WORKAREASIZE
} else {
set _WORKAREASIZE [expr (16384 - 2048)]
}
jtag_nsrst_delay 100
jtag_ntrst_delay 100
@ -31,7 +39,7 @@ jtag newtap $_CHIPNAME cpu -irlen 5 -ircapture 0x1 -irmask 0x1f -expected-id $_
set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME mips_m4k -endian $_ENDIAN -chain-position $_TARGETNAME
$_TARGETNAME configure -work-area-phys 0xa0000800 -work-area-size 16384 -work-area-backup 0
$_TARGETNAME configure -work-area-phys 0xa0000800 -work-area-size $_WORKAREASIZE -work-area-backup 0
$_TARGETNAME configure -event reset-init {
#
@ -50,9 +58,9 @@ $_TARGETNAME configure -event reset-init {
}
set _FLASHNAME $_CHIPNAME.flash
flash bank $_FLASHNAME pic32mx 0xbd000000 0 0 0 $_TARGETNAME
flash bank $_FLASHNAME pic32mx 0x1fc00000 0 0 0 $_TARGETNAME
set _FLASHNAME $_CHIPNAME.flash
flash bank $_FLASHNAME pic32mx 0xbfc00000 0 0 0 $_TARGETNAME
flash bank $_FLASHNAME pic32mx 0x1d000000 0 0 0 $_TARGETNAME
# For more information about the configuration files, take a look at:
# openocd.texi