Merge branch 'riscv' into keepalive
This commit is contained in:
commit
12aca4ab7e
|
@ -302,7 +302,7 @@ int add_service(char *name,
|
|||
|
||||
struct sockaddr_in addr_in;
|
||||
socklen_t addr_in_size = sizeof(addr_in);
|
||||
getsockname(c->fd, &addr_in, &addr_in_size);
|
||||
getsockname(c->fd, (struct sockaddr *)&addr_in, &addr_in_size);
|
||||
LOG_INFO("Listening on port %d for %s connections",
|
||||
ntohs(addr_in.sin_port), name);
|
||||
} else if (c->type == CONNECTION_STDINOUT) {
|
||||
|
|
|
@ -44,7 +44,12 @@ bool riscv_batch_full(struct riscv_batch *batch)
|
|||
|
||||
void riscv_batch_run(struct riscv_batch *batch)
|
||||
{
|
||||
keep_alive();
|
||||
if (batch->used_scans == 0) {
|
||||
LOG_DEBUG("Ignoring empty batch.");
|
||||
return;
|
||||
}
|
||||
|
||||
keep_alive();
|
||||
|
||||
LOG_DEBUG("running a batch of %ld scans", (long)batch->used_scans);
|
||||
riscv_batch_add_nop(batch);
|
||||
|
|
|
@ -39,26 +39,26 @@
|
|||
*
|
||||
* There are a few functions to just instantly shift a register and get its
|
||||
* value:
|
||||
* dtmcontrol_scan
|
||||
* idcode_scan
|
||||
* dbus_scan
|
||||
* dtmcontrol_scan
|
||||
* idcode_scan
|
||||
* dbus_scan
|
||||
*
|
||||
* Because doing one scan and waiting for the result is slow, most functions
|
||||
* batch up a bunch of dbus writes and then execute them all at once. They use
|
||||
* the scans "class" for this:
|
||||
* scans_new
|
||||
* scans_delete
|
||||
* scans_execute
|
||||
* scans_add_...
|
||||
* scans_new
|
||||
* scans_delete
|
||||
* scans_execute
|
||||
* scans_add_...
|
||||
* Usually you new(), call a bunch of add functions, then execute() and look
|
||||
* at the results by calling scans_get...()
|
||||
*
|
||||
* Optimized functions will directly use the scans class above, but slightly
|
||||
* lazier code will use the cache functions that in turn use the scans
|
||||
* functions:
|
||||
* cache_get...
|
||||
* cache_set...
|
||||
* cache_write
|
||||
* cache_get...
|
||||
* cache_set...
|
||||
* cache_write
|
||||
* cache_set... update a local structure, which is then synced to the target
|
||||
* with cache_write(). Only Debug RAM words that are actually changed are sent
|
||||
* to the target. Afterwards use cache_get... to read results.
|
||||
|
@ -80,10 +80,10 @@
|
|||
#define CSR_BPCONTROL_BPMATCH (0xf<<7)
|
||||
#define CSR_BPCONTROL_BPACTION (0xff<<11)
|
||||
|
||||
#define DEBUG_ROM_START 0x800
|
||||
#define DEBUG_ROM_RESUME (DEBUG_ROM_START + 4)
|
||||
#define DEBUG_ROM_EXCEPTION (DEBUG_ROM_START + 8)
|
||||
#define DEBUG_RAM_START 0x400
|
||||
#define DEBUG_ROM_START 0x800
|
||||
#define DEBUG_ROM_RESUME (DEBUG_ROM_START + 4)
|
||||
#define DEBUG_ROM_EXCEPTION (DEBUG_ROM_START + 8)
|
||||
#define DEBUG_RAM_START 0x400
|
||||
|
||||
#define SETHALTNOT 0x10c
|
||||
|
||||
|
@ -154,7 +154,6 @@ typedef enum slot {
|
|||
/*** Info about the core being debugged. ***/
|
||||
|
||||
#define DBUS_ADDRESS_UNKNOWN 0xffff
|
||||
#define WALL_CLOCK_TIMEOUT 2
|
||||
|
||||
// gdb's register list is defined in riscv_gdb_reg_names gdb/riscv-tdep.c in
|
||||
// its source tree. We must interpret the numbers the same here.
|
||||
|
@ -730,8 +729,9 @@ static int wait_for_debugint_clear(struct target *target, bool ignore_first)
|
|||
if (!bits.interrupt) {
|
||||
return ERROR_OK;
|
||||
}
|
||||
if (time(NULL) - start > WALL_CLOCK_TIMEOUT) {
|
||||
LOG_ERROR("Timed out waiting for debug int to clear.");
|
||||
if (time(NULL) - start > riscv_command_timeout_sec) {
|
||||
LOG_ERROR("Timed out waiting for debug int to clear."
|
||||
"Increase timeout with riscv set_command_timeout_sec.");
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
}
|
||||
|
@ -864,7 +864,7 @@ static int cache_write(struct target *target, unsigned int address, bool run)
|
|||
|
||||
if (last == info->dramsize) {
|
||||
// Nothing needs to be written to RAM.
|
||||
dbus_write(target, DMCONTROL, DMCONTROL_HALTNOT | (run ? DMCONTROL_INTERRUPT : 0));
|
||||
dbus_write(target, DMCONTROL, DMCONTROL_HALTNOT | (run ? DMCONTROL_INTERRUPT : 0));
|
||||
|
||||
} else {
|
||||
for (unsigned int i = 0; i < info->dramsize; i++) {
|
||||
|
@ -1016,8 +1016,9 @@ static int wait_for_state(struct target *target, enum target_state state)
|
|||
if (target->state == state) {
|
||||
return ERROR_OK;
|
||||
}
|
||||
if (time(NULL) - start > WALL_CLOCK_TIMEOUT) {
|
||||
LOG_ERROR("Timed out waiting for state %d.", state);
|
||||
if (time(NULL) - start > riscv_command_timeout_sec) {
|
||||
LOG_ERROR("Timed out waiting for state %d. "
|
||||
"Increase timeout with riscv set_command_timeout_sec.", state);
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
}
|
||||
|
@ -1174,8 +1175,9 @@ static int full_step(struct target *target, bool announce)
|
|||
return result;
|
||||
if (target->state != TARGET_DEBUG_RUNNING)
|
||||
break;
|
||||
if (time(NULL) - start > WALL_CLOCK_TIMEOUT) {
|
||||
LOG_ERROR("Timed out waiting for step to complete.");
|
||||
if (time(NULL) - start > riscv_command_timeout_sec) {
|
||||
LOG_ERROR("Timed out waiting for step to complete."
|
||||
"Increase timeout with riscv set_command_timeout_sec");
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
}
|
||||
|
@ -1471,6 +1473,7 @@ static int init_target(struct command_context *cmd_ctx,
|
|||
riscv_info_t *generic_info = (riscv_info_t *) target->arch_info;
|
||||
generic_info->get_register = get_register;
|
||||
generic_info->set_register = set_register;
|
||||
|
||||
generic_info->version_specific = calloc(1, sizeof(riscv011_info_t));
|
||||
if (!generic_info->version_specific)
|
||||
return ERROR_FAIL;
|
||||
|
|
|
@ -121,9 +121,6 @@ typedef enum slot {
|
|||
|
||||
/*** Info about the core being debugged. ***/
|
||||
|
||||
#define WALL_CLOCK_TIMEOUT 2
|
||||
#define WALL_CLOCK_RESET_TIMEOUT 30
|
||||
|
||||
struct trigger {
|
||||
uint64_t address;
|
||||
uint32_t length;
|
||||
|
@ -367,17 +364,6 @@ static void increase_dmi_busy_delay(struct target *target)
|
|||
dtmcontrol_scan(target, DTM_DTMCS_DMIRESET);
|
||||
}
|
||||
|
||||
static void increase_ac_busy_delay(struct target *target)
|
||||
{
|
||||
riscv013_info_t *info = get_info(target);
|
||||
info->ac_busy_delay += info->ac_busy_delay / 10 + 1;
|
||||
LOG_INFO("dtmcontrol_idle=%d, dmi_busy_delay=%d, ac_busy_delay=%d",
|
||||
info->dtmcontrol_idle, info->dmi_busy_delay,
|
||||
info->ac_busy_delay);
|
||||
|
||||
dtmcontrol_scan(target, DTM_DTMCS_DMIRESET);
|
||||
}
|
||||
|
||||
/**
|
||||
* exec: If this is set, assume the scan results in an execution, so more
|
||||
* run-test/idle cycles may be required.
|
||||
|
@ -474,7 +460,7 @@ static uint64_t dmi_read(struct target *target, uint16_t address)
|
|||
} else if (status == DMI_STATUS_SUCCESS) {
|
||||
break;
|
||||
} else {
|
||||
LOG_ERROR("failed read (NOP) at 0x%x, status=%d\n", address, status);
|
||||
LOG_ERROR("failed read (NOP) at 0x%x, status=%d", address, status);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -503,13 +489,13 @@ static void dmi_write(struct target *target, uint16_t address, uint64_t value)
|
|||
} else if (status == DMI_STATUS_SUCCESS) {
|
||||
break;
|
||||
} else {
|
||||
LOG_ERROR("failed write to 0x%x, status=%d\n", address, status);
|
||||
LOG_ERROR("failed write to 0x%x, status=%d", address, status);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (status != DMI_STATUS_SUCCESS) {
|
||||
LOG_ERROR("Failed write to 0x%x;, status=%d\n",
|
||||
LOG_ERROR("Failed write to 0x%x;, status=%d",
|
||||
address, status);
|
||||
abort();
|
||||
}
|
||||
|
@ -524,16 +510,25 @@ static void dmi_write(struct target *target, uint16_t address, uint64_t value)
|
|||
} else if (status == DMI_STATUS_SUCCESS) {
|
||||
break;
|
||||
} else {
|
||||
LOG_ERROR("failed write (NOP) at 0x%x, status=%d\n", address, status);
|
||||
LOG_ERROR("failed write (NOP) at 0x%x, status=%d", address, status);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (status != DMI_STATUS_SUCCESS) {
|
||||
LOG_ERROR("failed to write (NOP) 0x%" PRIx64 " to 0x%x; status=%d\n", value, address, status);
|
||||
LOG_ERROR("failed to write (NOP) 0x%" PRIx64 " to 0x%x; status=%d", value, address, status);
|
||||
abort();
|
||||
}
|
||||
}
|
||||
|
||||
static void increase_ac_busy_delay(struct target *target)
|
||||
{
|
||||
riscv013_info_t *info = get_info(target);
|
||||
info->ac_busy_delay += info->ac_busy_delay / 10 + 1;
|
||||
LOG_INFO("dtmcontrol_idle=%d, dmi_busy_delay=%d, ac_busy_delay=%d",
|
||||
info->dtmcontrol_idle, info->dmi_busy_delay,
|
||||
info->ac_busy_delay);
|
||||
}
|
||||
|
||||
uint32_t abstract_register_size(unsigned width)
|
||||
{
|
||||
switch (width) {
|
||||
|
@ -562,7 +557,7 @@ static int wait_for_idle(struct target *target, uint32_t *abstractcs)
|
|||
return ERROR_OK;
|
||||
}
|
||||
|
||||
if (time(NULL) - start > WALL_CLOCK_TIMEOUT) {
|
||||
if (time(NULL) - start > riscv_command_timeout_sec) {
|
||||
info->cmderr = get_field(*abstractcs, DMI_ABSTRACTCS_CMDERR);
|
||||
if (info->cmderr != CMDERR_NONE) {
|
||||
const char *errors[8] = {
|
||||
|
@ -579,8 +574,10 @@ static int wait_for_idle(struct target *target, uint32_t *abstractcs)
|
|||
errors[info->cmderr], *abstractcs);
|
||||
}
|
||||
|
||||
LOG_ERROR("Timed out waiting for busy to go low. (abstractcs=0x%x)",
|
||||
*abstractcs);
|
||||
LOG_ERROR("Timed out after %ds waiting for busy to go low. (abstractcs=0x%x)"
|
||||
"Increase the timeout with riscv set_command_timeout_sec.",
|
||||
riscv_command_timeout_sec,
|
||||
*abstractcs);
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
}
|
||||
|
@ -909,7 +906,6 @@ static int init_target(struct command_context *cmd_ctx,
|
|||
generic_info->fill_dmi_nop_u64 = &riscv013_fill_dmi_nop_u64;
|
||||
generic_info->dmi_write_u64_bits = &riscv013_dmi_write_u64_bits;
|
||||
generic_info->reset_current_hart = &riscv013_reset_current_hart;
|
||||
|
||||
generic_info->version_specific = calloc(1, sizeof(riscv013_info_t));
|
||||
if (!generic_info->version_specific)
|
||||
return ERROR_FAIL;
|
||||
|
@ -1148,7 +1144,7 @@ static int examine(struct target *target)
|
|||
r->xlen[i], r->debug_buffer_addr[i]);
|
||||
|
||||
if (riscv_program_gah(&program64, r->debug_buffer_addr[i])) {
|
||||
LOG_ERROR("This implementation will not work with hart %d with debug_buffer_addr of 0x%lx\n", i,
|
||||
LOG_ERROR("This implementation will not work with hart %d with debug_buffer_addr of 0x%lx", i,
|
||||
(long)r->debug_buffer_addr[i]);
|
||||
abort();
|
||||
}
|
||||
|
@ -1252,6 +1248,31 @@ static int deassert_reset(struct target *target)
|
|||
return ERROR_OK;
|
||||
}
|
||||
|
||||
static void write_to_buf(uint8_t *buffer, uint64_t value, unsigned size)
|
||||
{
|
||||
switch (size) {
|
||||
case 8:
|
||||
buffer[7] = value >> 56;
|
||||
buffer[6] = value >> 48;
|
||||
buffer[5] = value >> 40;
|
||||
buffer[4] = value >> 32;
|
||||
case 4:
|
||||
buffer[3] = value >> 24;
|
||||
buffer[2] = value >> 16;
|
||||
case 2:
|
||||
buffer[1] = value >> 8;
|
||||
case 1:
|
||||
buffer[0] = value;
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Read the requested memory, taking care to execute every read exactly once,
|
||||
* even if cmderr=busy is encountered.
|
||||
*/
|
||||
static int read_memory(struct target *target, target_addr_t address,
|
||||
uint32_t size, uint32_t count, uint8_t *buffer)
|
||||
{
|
||||
|
@ -1277,7 +1298,6 @@ static int read_memory(struct target *target, target_addr_t address,
|
|||
riscv_addr_t r_addr = riscv_program_alloc_x(&program);
|
||||
riscv_program_fence(&program);
|
||||
riscv_program_lx(&program, GDB_REGNO_S0, r_addr);
|
||||
riscv_program_addi(&program, GDB_REGNO_S0, GDB_REGNO_S0, size);
|
||||
switch (size) {
|
||||
case 1:
|
||||
riscv_program_lbr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
|
||||
|
@ -1292,6 +1312,7 @@ static int read_memory(struct target *target, target_addr_t address,
|
|||
LOG_ERROR("Unsupported size: %d", size);
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
riscv_program_addi(&program, GDB_REGNO_S0, GDB_REGNO_S0, size);
|
||||
riscv_program_sw(&program, GDB_REGNO_S1, r_data);
|
||||
riscv_program_sx(&program, GDB_REGNO_S0, r_addr);
|
||||
|
||||
|
@ -1299,9 +1320,9 @@ static int read_memory(struct target *target, target_addr_t address,
|
|||
* program execution mechanism. */
|
||||
switch (riscv_xlen(target)) {
|
||||
case 64:
|
||||
riscv_program_write_ram(&program, r_addr + 4, (((riscv_addr_t) address) - size) >> 32);
|
||||
riscv_program_write_ram(&program, r_addr + 4, ((riscv_addr_t) address) >> 32);
|
||||
case 32:
|
||||
riscv_program_write_ram(&program, r_addr, ((riscv_addr_t) address) - size);
|
||||
riscv_program_write_ram(&program, r_addr, (riscv_addr_t) address);
|
||||
break;
|
||||
default:
|
||||
LOG_ERROR("unknown XLEN %d", riscv_xlen(target));
|
||||
|
@ -1318,26 +1339,8 @@ static int read_memory(struct target *target, target_addr_t address,
|
|||
return ERROR_FAIL;
|
||||
}
|
||||
|
||||
uint32_t value = riscv_program_read_ram(&program, r_data);
|
||||
LOG_DEBUG("M[0x%" TARGET_PRIxADDR "] reads 0x%08lx", address, (long)value);
|
||||
switch (size) {
|
||||
case 1:
|
||||
buffer[0] = value;
|
||||
break;
|
||||
case 2:
|
||||
buffer[0] = value;
|
||||
buffer[1] = value >> 8;
|
||||
break;
|
||||
case 4:
|
||||
buffer[0] = value;
|
||||
buffer[1] = value >> 8;
|
||||
buffer[2] = value >> 16;
|
||||
buffer[3] = value >> 24;
|
||||
break;
|
||||
default:
|
||||
LOG_ERROR("unsupported access size: %d", size);
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
// Program has been executed once. d_addr contains address+size, and d_data
|
||||
// contains *address.
|
||||
|
||||
/* The rest of this program is designed to be fast so it reads various
|
||||
* DMI registers directly. */
|
||||
|
@ -1350,45 +1353,30 @@ static int read_memory(struct target *target, target_addr_t address,
|
|||
* case we need to back off a bit and try again. There's two
|
||||
* termination conditions to this loop: a non-BUSY error message, or
|
||||
* the data was all copied. */
|
||||
riscv_addr_t cur_addr = 0xbadbeef;
|
||||
riscv_addr_t cur_addr = riscv_read_debug_buffer_x(target, d_addr);
|
||||
riscv_addr_t fin_addr = address + (count * size);
|
||||
riscv_addr_t prev_addr = ((riscv_addr_t) address) - size;
|
||||
bool first = true;
|
||||
bool this_is_last_read = false;
|
||||
LOG_DEBUG("reading until final address 0x%" PRIx64, fin_addr);
|
||||
while (count > 1 && !this_is_last_read) {
|
||||
cur_addr = riscv_read_debug_buffer_x(target, d_addr);
|
||||
LOG_DEBUG("transferring burst starting at address 0x%" TARGET_PRIxADDR
|
||||
" (previous burst was 0x%" TARGET_PRIxADDR ")", cur_addr,
|
||||
prev_addr);
|
||||
assert(first || prev_addr < cur_addr);
|
||||
first = false;
|
||||
prev_addr = cur_addr;
|
||||
riscv_addr_t start = (cur_addr - address) / size;
|
||||
assert (cur_addr >= address);
|
||||
while (cur_addr < fin_addr) {
|
||||
// Invariant:
|
||||
// d_data contains *addr
|
||||
// d_addr contains addr + size
|
||||
|
||||
unsigned start = (cur_addr - address) / size;
|
||||
LOG_DEBUG("creating burst to read address 0x%" TARGET_PRIxADDR
|
||||
" up to 0x%" TARGET_PRIxADDR "; start=0x%d", cur_addr, fin_addr, start);
|
||||
assert(cur_addr >= address && cur_addr < fin_addr);
|
||||
struct riscv_batch *batch = riscv_batch_alloc(
|
||||
target,
|
||||
32,
|
||||
info->dmi_busy_delay + info->ac_busy_delay);
|
||||
|
||||
size_t reads = 0;
|
||||
size_t rereads = reads;
|
||||
for (riscv_addr_t i = start; i < count; ++i) {
|
||||
if (i == count - 1) {
|
||||
// don't do actual read in this batch,
|
||||
// we will do it later after we disable autoexec
|
||||
//
|
||||
// this is done to avoid reading more memory than requested
|
||||
// which in some special cases(like reading stack located
|
||||
// at the very top of RAM) may cause an exception
|
||||
this_is_last_read = true;
|
||||
} else {
|
||||
size_t const index =
|
||||
riscv_batch_add_dmi_read(
|
||||
for (riscv_addr_t addr = cur_addr; addr < fin_addr; addr += size) {
|
||||
size_t const index =
|
||||
riscv_batch_add_dmi_read(
|
||||
batch,
|
||||
riscv013_debug_buffer_register(target, r_data));
|
||||
assert(index == reads);
|
||||
}
|
||||
assert(index == reads);
|
||||
|
||||
reads++;
|
||||
if (riscv_batch_full(batch))
|
||||
|
@ -1397,26 +1385,21 @@ static int read_memory(struct target *target, target_addr_t address,
|
|||
|
||||
riscv_batch_run(batch);
|
||||
|
||||
// Note that if the scan resulted in a Busy DMI response, it
|
||||
// is this read to abstractcs that will cause the dmi_busy_delay
|
||||
// to be incremented if necessary. The loop condition above
|
||||
// catches the case where no writes went through at all.
|
||||
|
||||
bool retry_batch_transaction = false;
|
||||
// Wait for the target to finish performing the last abstract command,
|
||||
// and update our copy of cmderr.
|
||||
uint32_t abstractcs = dmi_read(target, DMI_ABSTRACTCS);
|
||||
while (get_field(abstractcs, DMI_ABSTRACTCS_BUSY))
|
||||
abstractcs = dmi_read(target, DMI_ABSTRACTCS);
|
||||
info->cmderr = get_field(abstractcs, DMI_ABSTRACTCS_CMDERR);
|
||||
|
||||
switch (info->cmderr) {
|
||||
case CMDERR_NONE:
|
||||
LOG_DEBUG("successful (partial?) memory write");
|
||||
LOG_DEBUG("successful (partial?) memory read");
|
||||
break;
|
||||
case CMDERR_BUSY:
|
||||
LOG_DEBUG("memory write resulted in busy response");
|
||||
riscv013_clear_abstract_error(target);
|
||||
LOG_DEBUG("memory read resulted in busy response");
|
||||
increase_ac_busy_delay(target);
|
||||
retry_batch_transaction = true;
|
||||
riscv_batch_free(batch);
|
||||
riscv013_clear_abstract_error(target);
|
||||
break;
|
||||
default:
|
||||
LOG_ERROR("error when reading memory, abstractcs=0x%08lx", (long)abstractcs);
|
||||
|
@ -1427,51 +1410,45 @@ static int read_memory(struct target *target, target_addr_t address,
|
|||
riscv_batch_free(batch);
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
if (retry_batch_transaction) continue;
|
||||
|
||||
for (size_t i = start; i < start + reads; ++i) {
|
||||
riscv_addr_t offset = size*i;
|
||||
riscv_addr_t t_addr = address + offset;
|
||||
uint8_t *t_buffer = buffer + offset;
|
||||
// Figure out how far we managed to read.
|
||||
riscv_addr_t next_addr = riscv_read_debug_buffer_x(target, d_addr);
|
||||
LOG_DEBUG("Batch read [0x%" TARGET_PRIxADDR ", 0x%" TARGET_PRIxADDR
|
||||
"); reads=%d", cur_addr, next_addr, (unsigned) reads);
|
||||
assert(next_addr >= address && next_addr <= fin_addr);
|
||||
assert(info->cmderr != CMDERR_NONE ||
|
||||
next_addr == cur_addr + reads * size);
|
||||
|
||||
if (this_is_last_read && i == start + reads - 1) {
|
||||
riscv013_set_autoexec(target, d_data, 0);
|
||||
// Now read whatever we got out of the batch.
|
||||
unsigned rereads = 0;
|
||||
for (riscv_addr_t addr = cur_addr - size; addr < next_addr - size;
|
||||
addr += size) {
|
||||
riscv_addr_t offset = addr - address;
|
||||
|
||||
uint64_t dmi_out = riscv_batch_get_dmi_read(batch, rereads);
|
||||
uint32_t value = get_field(dmi_out, DTM_DMI_DATA);
|
||||
write_to_buf(buffer + offset, value, size);
|
||||
|
||||
// access debug buffer without executing a program - this address logic was taken from program.c
|
||||
int const off = (r_data - riscv_debug_buffer_addr(program.target)) / sizeof(program.debug_buffer[0]);
|
||||
value = riscv_read_debug_buffer(target, off);
|
||||
} else {
|
||||
uint64_t dmi_out = riscv_batch_get_dmi_read(batch, rereads);
|
||||
value = get_field(dmi_out, DTM_DMI_DATA);
|
||||
}
|
||||
|
||||
rereads++;
|
||||
|
||||
switch (size) {
|
||||
case 1:
|
||||
t_buffer[0] = value;
|
||||
break;
|
||||
case 2:
|
||||
t_buffer[0] = value;
|
||||
t_buffer[1] = value >> 8;
|
||||
break;
|
||||
case 4:
|
||||
t_buffer[0] = value;
|
||||
t_buffer[1] = value >> 8;
|
||||
t_buffer[2] = value >> 16;
|
||||
t_buffer[3] = value >> 24;
|
||||
break;
|
||||
default:
|
||||
LOG_ERROR("unsupported access size: %d", size);
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
|
||||
LOG_DEBUG("M[0x%08lx] reads 0x%08lx", (long)t_addr, (long)value);
|
||||
LOG_DEBUG("M[0x%" TARGET_PRIxADDR "] reads 0x%08x", addr, value);
|
||||
}
|
||||
riscv_batch_free(batch);
|
||||
|
||||
cur_addr = next_addr;
|
||||
}
|
||||
|
||||
riscv013_set_autoexec(target, d_data, 0);
|
||||
|
||||
// Read the last word.
|
||||
|
||||
// Access debug buffer without executing a program. This
|
||||
// address logic was taken from program.c.
|
||||
uint32_t value = riscv013_read_debug_buffer(target, d_data);
|
||||
riscv_addr_t addr = cur_addr - size;
|
||||
write_to_buf(buffer + addr - address, value, size);
|
||||
LOG_DEBUG("M[0x%" TARGET_PRIxADDR "] reads 0x%08x", addr, value);
|
||||
|
||||
riscv_set_register(target, GDB_REGNO_S0, s0);
|
||||
riscv_set_register(target, GDB_REGNO_S1, s1);
|
||||
return ERROR_OK;
|
||||
|
@ -1555,7 +1532,7 @@ static int write_memory(struct target *target, target_addr_t address,
|
|||
}
|
||||
riscv_program_write_ram(&program, r_data, value);
|
||||
|
||||
LOG_DEBUG("M[0x%08lx] writes 0x%08lx", (long)address, (long)value);
|
||||
LOG_DEBUG("M[0x%08lx] writes 0x%08x", (long)address, value);
|
||||
|
||||
if (riscv_program_exec(&program, target) != ERROR_OK) {
|
||||
uint32_t acs = dmi_read(target, DMI_ABSTRACTCS);
|
||||
|
@ -1615,7 +1592,7 @@ static int write_memory(struct target *target, target_addr_t address,
|
|||
return ERROR_FAIL;
|
||||
}
|
||||
|
||||
LOG_DEBUG("M[0x%08lx] writes 0x%08lx", (long)t_addr, (long)value);
|
||||
LOG_DEBUG("M[0x%08lx] writes 0x%08x", (long)t_addr, value);
|
||||
|
||||
riscv_batch_add_dmi_write(
|
||||
batch,
|
||||
|
@ -1918,9 +1895,11 @@ void riscv013_reset_current_hart(struct target *target)
|
|||
if (get_field(dmstatus, DMI_DMSTATUS_ALLHALTED)) {
|
||||
break;
|
||||
}
|
||||
if (time(NULL) - start > WALL_CLOCK_RESET_TIMEOUT) {
|
||||
if (time(NULL) - start > riscv_reset_timeout_sec) {
|
||||
LOG_ERROR("Hart didn't halt coming out of reset in %ds; "
|
||||
"dmstatus=0x%x", WALL_CLOCK_RESET_TIMEOUT, dmstatus);
|
||||
"dmstatus=0x%x"
|
||||
"Increase the timeout with riscv set_reset_timeout_sec.",
|
||||
riscv_reset_timeout_sec, dmstatus);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
@ -2061,6 +2040,11 @@ int riscv013_debug_buffer_register(struct target *target, riscv_addr_t addr)
|
|||
|
||||
void riscv013_clear_abstract_error(struct target *target)
|
||||
{
|
||||
uint32_t acs = dmi_read(target, DMI_ABSTRACTCS);
|
||||
dmi_write(target, DMI_ABSTRACTCS, acs);
|
||||
// Wait for busy to go away.
|
||||
uint32_t abstractcs = dmi_read(target, DMI_ABSTRACTCS);
|
||||
while (get_field(abstractcs, DMI_ABSTRACTCS_BUSY)) {
|
||||
abstractcs = dmi_read(target, DMI_ABSTRACTCS);
|
||||
}
|
||||
// Clear the error status.
|
||||
dmi_write(target, DMI_ABSTRACTCS, abstractcs & DMI_ABSTRACTCS_CMDERR);
|
||||
}
|
||||
|
|
|
@ -29,32 +29,32 @@
|
|||
* Code structure
|
||||
*
|
||||
* At the bottom of the stack are the OpenOCD JTAG functions:
|
||||
* jtag_add_[id]r_scan
|
||||
* jtag_execute_query
|
||||
* jtag_add_runtest
|
||||
* jtag_add_[id]r_scan
|
||||
* jtag_execute_query
|
||||
* jtag_add_runtest
|
||||
*
|
||||
* There are a few functions to just instantly shift a register and get its
|
||||
* value:
|
||||
* dtmcontrol_scan
|
||||
* idcode_scan
|
||||
* dbus_scan
|
||||
* dtmcontrol_scan
|
||||
* idcode_scan
|
||||
* dbus_scan
|
||||
*
|
||||
* Because doing one scan and waiting for the result is slow, most functions
|
||||
* batch up a bunch of dbus writes and then execute them all at once. They use
|
||||
* the scans "class" for this:
|
||||
* scans_new
|
||||
* scans_delete
|
||||
* scans_execute
|
||||
* scans_add_...
|
||||
* scans_new
|
||||
* scans_delete
|
||||
* scans_execute
|
||||
* scans_add_...
|
||||
* Usually you new(), call a bunch of add functions, then execute() and look
|
||||
* at the results by calling scans_get...()
|
||||
*
|
||||
* Optimized functions will directly use the scans class above, but slightly
|
||||
* lazier code will use the cache functions that in turn use the scans
|
||||
* functions:
|
||||
* cache_get...
|
||||
* cache_set...
|
||||
* cache_write
|
||||
* cache_get...
|
||||
* cache_set...
|
||||
* cache_write
|
||||
* cache_set... update a local structure, which is then synced to the target
|
||||
* with cache_write(). Only Debug RAM words that are actually changed are sent
|
||||
* to the target. Afterwards use cache_get... to read results.
|
||||
|
@ -77,8 +77,8 @@
|
|||
#define CSR_BPCONTROL_BPACTION (0xff<<11)
|
||||
|
||||
#define DEBUG_ROM_START 0x800
|
||||
#define DEBUG_ROM_RESUME (DEBUG_ROM_START + 4)
|
||||
#define DEBUG_ROM_EXCEPTION (DEBUG_ROM_START + 8)
|
||||
#define DEBUG_ROM_RESUME (DEBUG_ROM_START + 4)
|
||||
#define DEBUG_ROM_EXCEPTION (DEBUG_ROM_START + 8)
|
||||
#define DEBUG_RAM_START 0x400
|
||||
|
||||
#define SETHALTNOT 0x10c
|
||||
|
@ -150,7 +150,6 @@ typedef enum slot {
|
|||
/*** Info about the core being debugged. ***/
|
||||
|
||||
#define DBUS_ADDRESS_UNKNOWN 0xffff
|
||||
#define WALL_CLOCK_TIMEOUT 2
|
||||
|
||||
// gdb's register list is defined in riscv_gdb_reg_names gdb/riscv-tdep.c in
|
||||
// its source tree. We must interpret the numbers the same here.
|
||||
|
@ -195,6 +194,12 @@ struct trigger {
|
|||
int unique_id;
|
||||
};
|
||||
|
||||
/* Wall-clock timeout for a command/access. Settable via RISC-V Target commands.*/
|
||||
int riscv_command_timeout_sec = DEFAULT_COMMAND_TIMEOUT_SEC;
|
||||
|
||||
/* Wall-clock timeout after reset. Settable via RISC-V Target commands.*/
|
||||
int riscv_reset_timeout_sec = DEFAULT_RESET_TIMEOUT_SEC;
|
||||
|
||||
static uint32_t dtmcontrol_scan(struct target *target, uint32_t out)
|
||||
{
|
||||
struct scan_field field;
|
||||
|
@ -624,7 +629,7 @@ static int riscv_examine(struct target *target)
|
|||
{
|
||||
LOG_DEBUG("riscv_examine()");
|
||||
if (target_was_examined(target)) {
|
||||
LOG_DEBUG("Target was already examined.\n");
|
||||
LOG_DEBUG("Target was already examined.");
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
|
@ -997,7 +1002,7 @@ int riscv_openocd_poll(struct target *target)
|
|||
|
||||
/* If we're here then at least one hart triggered. That means
|
||||
* we want to go and halt _every_ hart in the system, as that's
|
||||
* the invariant we hold here. Some harts might have already
|
||||
* the invariant we hold here. Some harts might have already
|
||||
* halted (as we're either in single-step mode or they also
|
||||
* triggered a breakpoint), so don't attempt to halt those
|
||||
* harts. */
|
||||
|
@ -1132,6 +1137,71 @@ int riscv_openocd_deassert_reset(struct target *target)
|
|||
return ERROR_OK;
|
||||
}
|
||||
|
||||
|
||||
/* Command Handlers */
|
||||
COMMAND_HANDLER(riscv_set_command_timeout_sec) {
|
||||
|
||||
if (CMD_ARGC != 1) {
|
||||
LOG_ERROR("Command takes exactly 1 parameter");
|
||||
return ERROR_COMMAND_SYNTAX_ERROR;
|
||||
}
|
||||
int timeout = atoi(CMD_ARGV[0]);
|
||||
if (timeout <= 0){
|
||||
LOG_ERROR("%s is not a valid integer argument for command.", CMD_ARGV[0]);
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
|
||||
riscv_command_timeout_sec = timeout;
|
||||
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
COMMAND_HANDLER(riscv_set_reset_timeout_sec) {
|
||||
|
||||
if (CMD_ARGC != 1) {
|
||||
LOG_ERROR("Command takes exactly 1 parameter");
|
||||
return ERROR_COMMAND_SYNTAX_ERROR;
|
||||
}
|
||||
int timeout = atoi(CMD_ARGV[0]);
|
||||
if (timeout <= 0){
|
||||
LOG_ERROR("%s is not a valid integer argument for command.", CMD_ARGV[0]);
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
|
||||
riscv_reset_timeout_sec = timeout;
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
|
||||
static const struct command_registration riscv_exec_command_handlers[] = {
|
||||
{
|
||||
.name = "set_command_timeout_sec",
|
||||
.handler = riscv_set_command_timeout_sec,
|
||||
.mode = COMMAND_ANY,
|
||||
.usage = "riscv set_command_timeout_sec [sec]",
|
||||
.help = "Set the wall-clock timeout (in seconds) for individual commands"
|
||||
},
|
||||
{
|
||||
.name = "set_reset_timeout_sec",
|
||||
.handler = riscv_set_reset_timeout_sec,
|
||||
.mode = COMMAND_ANY,
|
||||
.usage = "riscv set_reset_timeout_sec [sec]",
|
||||
.help = "Set the wall-clock timeout (in seconds) after reset is deasserted"
|
||||
},
|
||||
COMMAND_REGISTRATION_DONE
|
||||
};
|
||||
|
||||
const struct command_registration riscv_command_handlers[] = {
|
||||
{
|
||||
.name = "riscv",
|
||||
.mode = COMMAND_ANY,
|
||||
.help = "RISC-V Command Group",
|
||||
.usage = "",
|
||||
.chain = riscv_exec_command_handlers
|
||||
},
|
||||
COMMAND_REGISTRATION_DONE
|
||||
};
|
||||
|
||||
struct target_type riscv_target =
|
||||
{
|
||||
.name = "riscv",
|
||||
|
@ -1167,6 +1237,8 @@ struct target_type riscv_target =
|
|||
.arch_state = riscv_arch_state,
|
||||
|
||||
.run_algorithm = riscv_run_algorithm,
|
||||
|
||||
.commands = riscv_command_handlers
|
||||
};
|
||||
|
||||
/*** RISC-V Interface ***/
|
||||
|
@ -1576,7 +1648,6 @@ int riscv_enumerate_triggers(struct target *target)
|
|||
tselect_rb &= ~(1ULL << (riscv_xlen(target)-1));
|
||||
if (tselect_rb != t)
|
||||
break;
|
||||
|
||||
uint64_t tdata1 = riscv_get_register_on_hart(target, hartid,
|
||||
GDB_REGNO_TDATA1);
|
||||
int type = get_field(tdata1, MCONTROL_TYPE(riscv_xlen(target)));
|
||||
|
|
|
@ -13,6 +13,9 @@ struct riscv_program;
|
|||
#define RISCV_MAX_TRIGGERS 32
|
||||
#define RISCV_MAX_HWBPS 16
|
||||
|
||||
#define DEFAULT_COMMAND_TIMEOUT_SEC 2
|
||||
#define DEFAULT_RESET_TIMEOUT_SEC 30
|
||||
|
||||
extern struct target_type riscv011_target;
|
||||
extern struct target_type riscv013_target;
|
||||
|
||||
|
@ -103,6 +106,12 @@ typedef struct {
|
|||
void (*reset_current_hart)(struct target *target);
|
||||
} riscv_info_t;
|
||||
|
||||
/* Wall-clock timeout for a command/access. Settable via RISC-V Target commands.*/
|
||||
extern int riscv_command_timeout_sec;
|
||||
|
||||
/* Wall-clock timeout after reset. Settable via RISC-V Target commands.*/
|
||||
extern int riscv_reset_timeout_sec;
|
||||
|
||||
/* Everything needs the RISC-V specific info structure, so here's a nice macro
|
||||
* that provides that. */
|
||||
static inline riscv_info_t *riscv_info(const struct target *target) __attribute__((unused));
|
||||
|
|
Loading…
Reference in New Issue