flash/stm32l4x: enhance protect handler to use efficiently all WRP areas

stm32l4_protect: was using one WRP area per bank, without checking
if it is already protecting some sectors.
protection algo is more complicated than that, before using a WRP area
we should check if it is already used, then either reuse it for extension
(or reduction) or use a free area.

introduce a new command: stm32l4x wrp_info bank_num ['bank1'|'bank2']
this command lists the protected areas using WRP.

Note: for some devices like STM32L4R/S in single bank mode, all 4 WRP areas
are usable for that bank, to manage this case an attribute 'use_all_wrpxx'
was introduced into stm32l4_part_info and used later in protection handlers

example usage:
	$ telnet localhost 4444
	> flash probe 0
	  device idcode = 0x10036470 (STM32L4R/L4Sxx - Rev: Y)
	  flash size = 2048kbytes
	  flash mode : dual-bank
	  flash 'stm32l4x' found at 0x08000000
	> stm32l4x wrp_info 0
	  no protected areas
	> flash protect 0 0 4 on
	  set protection for sectors 0 through 4 on flash bank 0
	> flash protect 0 8 9 on
	  set protection for sectors 8 through 9 on flash bank 0
	> stm32l4x wrp_info 0
	  protected areas: [0,4][8,9]
	> flash protect 0 6 6 on
	  the device WRPxy are not enough to set the requested protection
	  failed setting protection for blocks 6 to 6
	> flash protect 0 3 5 on
	  set protection for sectors 3 through 5 on flash bank 0
	> stm32l4x wrp_info 0
	  protected areas: [0,5][8,9]
	> flash protect 0 6 7 on
	  set protection for sectors 6 through 7 on flash bank 0
	> stm32l4x wrp_info 0
	  protected areas: [0,9]
	> flash protect 0 5 6 off
	  cleared protection for sectors 5 through 6 on flash bank 0
	> stm32l4x wrp_info 0
	  protected areas: [0,4][7,9]

Change-Id: I42bd84fa66edd93406e18c6d89310faa5267ffa7
Signed-off-by: Tarek BOCHKATI <tarek.bouchkati@gmail.com>
Reviewed-on: http://openocd.zylin.com/6107
Tested-by: jenkins
Reviewed-by: Tomas Vanek <vanekt@fbl.cz>
This commit is contained in:
Tarek BOCHKATI 2020-11-03 00:50:24 +01:00 committed by Tomas Vanek
parent b8fd9aecb1
commit 03e2bc0f3b
2 changed files with 401 additions and 57 deletions

View File

@ -7249,6 +7249,20 @@ Area A for bank 1. The above example set WRP1AR_END=255, WRP1AR_START=0.
This will effectively write protect all sectors in flash bank 1.
@end deffn
@deffn Command {stm32l4x wrp_info} num [device_bank]
List the protected areas using WRP.
The @var{num} parameter is a value shown by @command{flash banks}.
@var{device_bank} parameter is optional, possible values 'bank1' or 'bank2',
if not specified, the command will display the whole flash protected areas.
@b{Note:} @var{device_bank} is different from banks created using @code{flash bank}.
Devices supported in this flash driver, can have main flash memory organized
in single or dual-banks mode.
Thus the usage of @var{device_bank} is meaningful only in dual-bank mode, to get
write protected areas in a specific @var{device_bank}
@end deffn
@deffn Command {stm32l4x option_load} num
Forces a re-load of the option byte registers. Will cause a system reset of the device.
The @var{num} parameter is a value shown by @command{flash banks}.

View File

@ -168,6 +168,9 @@ struct stm32l4_part_info {
const size_t num_revs;
const uint16_t max_flash_size_kb;
const bool has_dual_bank;
/* this field is used for dual bank devices only, it indicates if the
* 4 WRPxx are usable if the device is configured in single-bank mode */
const bool use_all_wrpxx;
const uint32_t flash_regs_base;
const uint32_t *default_flash_regs;
const uint32_t fsize_addr;
@ -188,6 +191,21 @@ struct stm32l4_flash_bank {
bool otp_enabled;
};
enum stm32_bank_id {
STM32_BANK1,
STM32_BANK2,
STM32_ALL_BANKS
};
struct stm32l4_wrp {
enum stm32l4_flash_reg_index reg_idx;
uint32_t value;
bool used;
int first;
int last;
int offset;
};
/* human readable list of families this drivers supports (sorted alphabetically) */
static const char *device_families = "STM32G0/G4/L4/L4+/L5/WB/WL";
@ -263,6 +281,7 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
.device_str = "STM32L47/L48xx",
.max_flash_size_kb = 1024,
.has_dual_bank = true,
.use_all_wrpxx = false,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
@ -276,6 +295,7 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
.device_str = "STM32L43/L44xx",
.max_flash_size_kb = 256,
.has_dual_bank = false,
.use_all_wrpxx = false,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
@ -289,6 +309,7 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
.device_str = "STM32G07/G08xx",
.max_flash_size_kb = 128,
.has_dual_bank = false,
.use_all_wrpxx = false,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
@ -302,6 +323,7 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
.device_str = "STM32L49/L4Axx",
.max_flash_size_kb = 1024,
.has_dual_bank = true,
.use_all_wrpxx = false,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
@ -315,6 +337,7 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
.device_str = "STM32L45/L46xx",
.max_flash_size_kb = 512,
.has_dual_bank = false,
.use_all_wrpxx = false,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
@ -328,6 +351,7 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
.device_str = "STM32L41/L42xx",
.max_flash_size_kb = 128,
.has_dual_bank = false,
.use_all_wrpxx = false,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
@ -341,6 +365,7 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
.device_str = "STM32G03/G04xx",
.max_flash_size_kb = 64,
.has_dual_bank = false,
.use_all_wrpxx = false,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
@ -354,6 +379,7 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
.device_str = "STM32G43/G44xx",
.max_flash_size_kb = 128,
.has_dual_bank = false,
.use_all_wrpxx = false,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
@ -367,6 +393,7 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
.device_str = "STM32G47/G48xx",
.max_flash_size_kb = 512,
.has_dual_bank = true,
.use_all_wrpxx = true,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
@ -380,6 +407,7 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
.device_str = "STM32L4R/L4Sxx",
.max_flash_size_kb = 2048,
.has_dual_bank = true,
.use_all_wrpxx = true,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
@ -393,6 +421,7 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
.device_str = "STM32L4P5/L4Q5x",
.max_flash_size_kb = 1024,
.has_dual_bank = true,
.use_all_wrpxx = true,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
@ -406,6 +435,7 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
.device_str = "STM32L55/L56xx",
.max_flash_size_kb = 512,
.has_dual_bank = true,
.use_all_wrpxx = true,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l5_ns_flash_regs,
.fsize_addr = 0x0BFA05E0,
@ -419,6 +449,7 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
.device_str = "STM32G49/G4Axx",
.max_flash_size_kb = 512,
.has_dual_bank = false,
.use_all_wrpxx = false,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
@ -432,6 +463,7 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
.device_str = "STM32WB5x",
.max_flash_size_kb = 1024,
.has_dual_bank = false,
.use_all_wrpxx = false,
.flash_regs_base = 0x58004000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
@ -445,6 +477,7 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
.device_str = "STM32WB3x",
.max_flash_size_kb = 512,
.has_dual_bank = false,
.use_all_wrpxx = false,
.flash_regs_base = 0x58004000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
@ -458,6 +491,7 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
.device_str = "STM32WLEx",
.max_flash_size_kb = 256,
.has_dual_bank = false,
.use_all_wrpxx = false,
.flash_regs_base = 0x58004000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
@ -494,6 +528,63 @@ FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
return ERROR_OK;
}
/* bitmap helper extension */
struct range {
unsigned int start;
unsigned int end;
};
static void bitmap_to_ranges(unsigned long *bitmap, unsigned int nbits,
struct range *ranges, unsigned int *ranges_count) {
*ranges_count = 0;
bool last_bit = 0, cur_bit;
for (unsigned int i = 0; i < nbits; i++) {
cur_bit = test_bit(i, bitmap);
if (cur_bit && !last_bit) {
(*ranges_count)++;
ranges[*ranges_count - 1].start = i;
ranges[*ranges_count - 1].end = i;
} else if (cur_bit && last_bit) {
/* update (increment) the end this range */
ranges[*ranges_count - 1].end = i;
}
last_bit = cur_bit;
}
}
static inline int range_print_one(struct range *range, char *str)
{
if (range->start == range->end)
return sprintf(str, "[%d]", range->start);
return sprintf(str, "[%d,%d]", range->start, range->end);
}
static char *range_print_alloc(struct range *ranges, unsigned int ranges_count)
{
/* each range will be printed like the following: [start,end]
* start and end, both are unsigned int, an unsigned int takes 10 characters max
* plus 3 characters for '[', ',' and ']'
* thus means each range can take maximum 23 character
* after each range we add a ' ' as separator and finally we need the '\0'
* if the ranges_count is zero we reserve one char for '\0' to return an empty string */
char *str = calloc(1, ranges_count * (24 * sizeof(char)) + 1);
char *ptr = str;
for (unsigned int i = 0; i < ranges_count; i++) {
ptr += range_print_one(&(ranges[i]), ptr);
if (i < ranges_count - 1)
*(ptr++) = ' ';
}
return str;
}
/* end of bitmap helper extension */
static inline bool stm32l4_is_otp(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
@ -706,53 +797,125 @@ err_lock:
return retval2;
}
static int stm32l4_protect_check(struct flash_bank *bank)
static int stm32l4_get_one_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy,
enum stm32l4_flash_reg_index reg_idx, int offset)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
int ret;
wrpxy->reg_idx = reg_idx;
wrpxy->offset = offset;
ret = stm32l4_read_flash_reg_by_index(bank, wrpxy->reg_idx , &wrpxy->value);
if (ret != ERROR_OK)
return ret;
wrpxy->first = (wrpxy->value & stm32l4_info->wrpxxr_mask) + wrpxy->offset;
wrpxy->last = ((wrpxy->value >> 16) & stm32l4_info->wrpxxr_mask) + wrpxy->offset;
wrpxy->used = wrpxy->first <= wrpxy->last;
return ERROR_OK;
}
static int stm32l4_get_all_wrpxy(struct flash_bank *bank, enum stm32_bank_id dev_bank_id,
struct stm32l4_wrp *wrpxy, unsigned int *n_wrp)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
int ret;
*n_wrp = 0;
/* for single bank devices there is 2 WRP regions.
* for dual bank devices there is 2 WRP regions per bank,
* if configured as single bank only 2 WRP are usable
* except for STM32L4R/S/P/Q, G4 cat3, L5 ... all 4 WRP are usable
* note: this should be revised, if a device will have the SWAP banks option
*/
int wrp2y_sectors_offset = -1; /* -1 : unused */
/* if bank_id is BANK1 or ALL_BANKS */
if (dev_bank_id != STM32_BANK2) {
/* get FLASH_WRP1AR */
ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP1AR_INDEX, 0);
if (ret != ERROR_OK)
return ret;
/* get WRP1BR */
ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP1BR_INDEX, 0);
if (ret != ERROR_OK)
return ret;
/* for some devices (like STM32L4R/S) in single-bank mode, the 4 WRPxx are usable */
if (stm32l4_info->part_info->use_all_wrpxx && !stm32l4_info->dual_bank_mode)
wrp2y_sectors_offset = 0;
}
/* if bank_id is BANK2 or ALL_BANKS */
if (dev_bank_id != STM32_BANK1 && stm32l4_info->dual_bank_mode)
wrp2y_sectors_offset = stm32l4_info->bank1_sectors;
if (wrp2y_sectors_offset > -1) {
/* get WRP2AR */
ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP2AR_INDEX, wrp2y_sectors_offset);
if (ret != ERROR_OK)
return ret;
/* get WRP2BR */
ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP2BR_INDEX, wrp2y_sectors_offset);
if (ret != ERROR_OK)
return ret;
}
return ERROR_OK;
}
static int stm32l4_write_one_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
uint32_t wrp1ar, wrp1br, wrp2ar, wrp2br;
stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_WRP1AR_INDEX, &wrp1ar);
stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_WRP1BR_INDEX, &wrp1br);
if (stm32l4_info->part_info->has_dual_bank) {
stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_WRP2AR_INDEX, &wrp2ar);
stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_WRP2BR_INDEX, &wrp2br);
} else {
/* prevent uninitialized errors */
wrp2ar = 0;
wrp2br = 0;
int wrp_start = wrpxy->first - wrpxy->offset;
int wrp_end = wrpxy->last - wrpxy->offset;
uint32_t wrp_value = (wrp_start & stm32l4_info->wrpxxr_mask) | ((wrp_end & stm32l4_info->wrpxxr_mask) << 16);
return stm32l4_write_option(bank, stm32l4_info->flash_regs[wrpxy->reg_idx], wrp_value, 0xffffffff);
}
static int stm32l4_write_all_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy, unsigned int n_wrp)
{
int ret;
for (unsigned int i = 0; i < n_wrp; i++) {
ret = stm32l4_write_one_wrpxy(bank, &wrpxy[i]);
if (ret != ERROR_OK)
return ret;
}
const uint8_t wrp1a_start = wrp1ar & stm32l4_info->wrpxxr_mask;
const uint8_t wrp1a_end = (wrp1ar >> 16) & stm32l4_info->wrpxxr_mask;
const uint8_t wrp1b_start = wrp1br & stm32l4_info->wrpxxr_mask;
const uint8_t wrp1b_end = (wrp1br >> 16) & stm32l4_info->wrpxxr_mask;
const uint8_t wrp2a_start = wrp2ar & stm32l4_info->wrpxxr_mask;
const uint8_t wrp2a_end = (wrp2ar >> 16) & stm32l4_info->wrpxxr_mask;
const uint8_t wrp2b_start = wrp2br & stm32l4_info->wrpxxr_mask;
const uint8_t wrp2b_end = (wrp2br >> 16) & stm32l4_info->wrpxxr_mask;
return ERROR_OK;
}
for (unsigned int i = 0; i < bank->num_sectors; i++) {
if (i < stm32l4_info->bank1_sectors) {
if (((i >= wrp1a_start) &&
(i <= wrp1a_end)) ||
((i >= wrp1b_start) &&
(i <= wrp1b_end)))
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
} else {
assert(stm32l4_info->part_info->has_dual_bank == true);
uint8_t snb;
snb = i - stm32l4_info->bank1_sectors;
if (((snb >= wrp2a_start) &&
(snb <= wrp2a_end)) ||
((snb >= wrp2b_start) &&
(snb <= wrp2b_end)))
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
static int stm32l4_protect_check(struct flash_bank *bank)
{
unsigned int n_wrp;
struct stm32l4_wrp wrpxy[4];
int ret = stm32l4_get_all_wrpxy(bank, STM32_ALL_BANKS, wrpxy, &n_wrp);
if (ret != ERROR_OK)
return ret;
/* initialize all sectors as unprotected */
for (unsigned int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_protected = 0;
/* now check WRPxy and mark the protected sectors */
for (unsigned int i = 0; i < n_wrp; i++) {
if (wrpxy[i].used) {
for (int s = wrpxy[i].first; s <= wrpxy[i].last; s++)
bank->sectors[s].is_protected = 1;
}
}
return ERROR_OK;
}
@ -819,11 +982,12 @@ err_lock:
return retval2;
}
static int stm32l4_protect(struct flash_bank *bank, int set, unsigned int first,
unsigned int last)
static int stm32l4_protect(struct flash_bank *bank, int set, unsigned int first, unsigned int last)
{
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
int ret = ERROR_OK;
unsigned int i;
if (stm32l4_is_otp(bank)) {
LOG_ERROR("cannot protect/unprotect OTP memory");
@ -835,29 +999,116 @@ static int stm32l4_protect(struct flash_bank *bank, int set, unsigned int first,
return ERROR_TARGET_NOT_HALTED;
}
int ret = ERROR_OK;
/* Bank 2 */
uint32_t reg_value = 0xFF; /* Default to bank un-protected */
/* the requested sectors could be located into bank1 and/or bank2 */
bool use_bank2 = false;
if (last >= stm32l4_info->bank1_sectors) {
if (set == 1) {
uint8_t begin = first > stm32l4_info->bank1_sectors ? first : 0x00;
reg_value = ((last & 0xFF) << 16) | begin;
if (first < stm32l4_info->bank1_sectors) {
/* the requested sectors for (un)protection are shared between
* bank 1 and 2, then split the operation */
/* 1- deal with bank 1 sectors */
LOG_DEBUG("The requested sectors for %s are shared between bank 1 and 2",
set ? "protection" : "unprotection");
ret = stm32l4_protect(bank, set, first, stm32l4_info->bank1_sectors - 1);
if (ret != ERROR_OK)
return ret;
/* 2- then continue with bank 2 sectors */
first = stm32l4_info->bank1_sectors;
}
ret = stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_WRP2AR_INDEX], reg_value, 0xffffffff);
use_bank2 = true;
}
/* Bank 1 */
reg_value = 0xFF; /* Default to bank un-protected */
if (first < stm32l4_info->bank1_sectors) {
if (set == 1) {
uint8_t end = last >= stm32l4_info->bank1_sectors ? 0xFF : last;
reg_value = (end << 16) | (first & 0xFF);
/* refresh the sectors' protection */
ret = stm32l4_protect_check(bank);
if (ret != ERROR_OK)
return ret;
/* check if the desired protection is already configured */
for (i = first; i <= last; i++) {
if (bank->sectors[i].is_protected != set)
break;
else if (i == last) {
LOG_INFO("The specified sectors are already %s", set ? "protected" : "unprotected");
return ERROR_OK;
}
ret = stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_WRP1AR_INDEX], reg_value, 0xffffffff);
}
return ret;
/* all sectors from first to last (or part of them) could have different
* protection other than the requested */
unsigned int n_wrp;
struct stm32l4_wrp wrpxy[4];
ret = stm32l4_get_all_wrpxy(bank, use_bank2 ? STM32_BANK2 : STM32_BANK1, wrpxy, &n_wrp);
if (ret != ERROR_OK)
return ret;
/* use bitmap and range helpers to optimize the WRP usage */
DECLARE_BITMAP(pages, bank->num_sectors);
bitmap_zero(pages, bank->num_sectors);
for (i = 0; i < n_wrp; i++) {
if (wrpxy[i].used) {
for (int p = wrpxy[i].first; p <= wrpxy[i].last; p++)
set_bit(p, pages);
}
}
/* we have at most 'n_wrp' WRP areas
* add one range if the user is trying to protect a fifth range */
struct range ranges[n_wrp + 1];
unsigned int ranges_count = 0;
bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
/* pretty-print the currently protected ranges */
if (ranges_count > 0) {
char *ranges_str = range_print_alloc(ranges, ranges_count);
LOG_DEBUG("current protected areas: %s", ranges_str);
free(ranges_str);
} else
LOG_DEBUG("current protected areas: none");
if (set) { /* flash protect */
for (i = first; i <= last; i++)
set_bit(i, pages);
} else { /* flash unprotect */
for (i = first; i <= last; i++)
clear_bit(i, pages);
}
/* check the ranges_count after the user request */
bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
/* pretty-print the requested areas for protection */
if (ranges_count > 0) {
char *ranges_str = range_print_alloc(ranges, ranges_count);
LOG_DEBUG("requested areas for protection: %s", ranges_str);
free(ranges_str);
} else
LOG_DEBUG("requested areas for protection: none");
if (ranges_count > n_wrp) {
LOG_ERROR("cannot set the requested protection "
"(only %u write protection areas are available)" , n_wrp);
return ERROR_FAIL;
}
/* re-init all WRPxy as disabled (first > last)*/
for (i = 0; i < n_wrp; i++) {
wrpxy[i].first = wrpxy[i].offset + 1;
wrpxy[i].last = wrpxy[i].offset;
}
/* then configure WRPxy areas */
for (i = 0; i < ranges_count; i++) {
wrpxy[i].first = ranges[i].start;
wrpxy[i].last = ranges[i].end;
}
/* finally write WRPxy registers */
return stm32l4_write_all_wrpxy(bank, wrpxy, n_wrp);
}
/* Count is in double-words */
@ -1580,6 +1831,78 @@ COMMAND_HANDLER(stm32l4_handle_unlock_command)
return ERROR_OK;
}
COMMAND_HANDLER(stm32l4_handle_wrp_info_command)
{
if (CMD_ARGC < 1 || CMD_ARGC > 2)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
if (stm32l4_is_otp(bank)) {
LOG_ERROR("OTP memory does not have write protection areas");
return ERROR_FLASH_OPER_UNSUPPORTED;
}
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
enum stm32_bank_id dev_bank_id = STM32_ALL_BANKS;
if (CMD_ARGC == 2) {
if (strcmp(CMD_ARGV[1], "bank1") == 0)
dev_bank_id = STM32_BANK1;
else if (strcmp(CMD_ARGV[1], "bank2") == 0)
dev_bank_id = STM32_BANK2;
else
return ERROR_COMMAND_ARGUMENT_INVALID;
}
if (dev_bank_id == STM32_BANK2) {
if (!stm32l4_info->part_info->has_dual_bank) {
LOG_ERROR("this device has no second bank");
return ERROR_FAIL;
} else if (!stm32l4_info->dual_bank_mode) {
LOG_ERROR("this device is configured in single bank mode");
return ERROR_FAIL;
}
}
int ret;
unsigned int n_wrp, i;
struct stm32l4_wrp wrpxy[4];
ret = stm32l4_get_all_wrpxy(bank, dev_bank_id, wrpxy, &n_wrp);
if (ret != ERROR_OK)
return ret;
/* use bitmap and range helpers to better describe protected areas */
DECLARE_BITMAP(pages, bank->num_sectors);
bitmap_zero(pages, bank->num_sectors);
for (i = 0; i < n_wrp; i++) {
if (wrpxy[i].used) {
for (int p = wrpxy[i].first; p <= wrpxy[i].last; p++)
set_bit(p, pages);
}
}
/* we have at most 'n_wrp' WRP areas */
struct range ranges[n_wrp];
unsigned int ranges_count = 0;
bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
if (ranges_count > 0) {
/* pretty-print the protected ranges */
char *ranges_str = range_print_alloc(ranges, ranges_count);
command_print(CMD, "protected areas: %s", ranges_str);
free(ranges_str);
} else
command_print(CMD, "no protected areas");
return ERROR_OK;
}
COMMAND_HANDLER(stm32l4_handle_otp_command)
{
if (CMD_ARGC < 2)
@ -1643,6 +1966,13 @@ static const struct command_registration stm32l4_exec_command_handlers[] = {
.usage = "bank_id reg_offset value mask",
.help = "Write device option bit fields with provided value.",
},
{
.name = "wrp_info",
.handler = stm32l4_handle_wrp_info_command,
.mode = COMMAND_EXEC,
.usage = "bank_id [bank1|bank2]",
.help = "list the protected areas using WRP",
},
{
.name = "option_load",
.handler = stm32l4_handle_option_load_command,