target/mips32: add fpu access support

Add access to fpr and cp1 registers.
GDB can now check the FPRs with `info reg f` and change them.
Checkpatch-ignore: MACRO_ARG_REUSE

Change-Id: I63896ab6f6737054d8108db105a13a58e1446fbc
Signed-off-by: Walter Ji <walter.ji@oss.cipunited.com>
Reviewed-on: https://review.openocd.org/c/openocd/+/7866
Tested-by: jenkins
Reviewed-by: Oleksij Rempel <linux@rempel-privat.de>
Reviewed-by: Antonio Borneo <borneo.antonio@gmail.com>
This commit is contained in:
Walter Ji 2023-11-17 16:46:55 +08:00 committed by Antonio Borneo
parent a88db9b121
commit 01a797af14
4 changed files with 245 additions and 12 deletions

View File

@ -262,6 +262,61 @@ static int mips32_set_core_reg(struct reg *reg, uint8_t *buf)
return ERROR_OK;
}
/**
* mips32_set_all_fpr_width - Set the width of all floating-point registers
* @param[in] mips32: MIPS32 common structure
* @param[in] fp64: Flag indicating whether to set the width to 64 bits (double precision)
*
* @brief Sets the width of all floating-point registers based on the specified flag.
*/
static void mips32_set_all_fpr_width(struct mips32_common *mips32, bool fp64)
{
struct reg_cache *cache = mips32->core_cache;
struct reg *reg_list = cache->reg_list;
int i;
for (i = MIPS32_REGLIST_FP_INDEX; i < (MIPS32_REGLIST_FP_INDEX + MIPS32_REG_FP_COUNT); i++) {
reg_list[i].size = fp64 ? 64 : 32;
reg_list[i].reg_data_type->type = fp64 ? REG_TYPE_IEEE_DOUBLE : REG_TYPE_IEEE_SINGLE;
}
}
/**
* mips32_detect_fpr_mode_change - Detect changes in floating-point register mode
* @param[in] mips32: MIPS32 common structure
* @param[in] cp0_status: Value of the CP0 status register
*
* @brief Detects changes in the floating-point register mode based on the CP0 status register.
* If changes are detected, it updates the internal state
* and logs a warning message indicating the mode change.
*/
static void mips32_detect_fpr_mode_change(struct mips32_common *mips32, uint32_t cp0_status)
{
if (!mips32->fp_imp)
return;
/* CP0.Status.FR indicates the working mode of floating-point register.
* When FP = 0, fpr can contain any 32bit data type,
* 64bit data types are stored in even-odd register pairs.
* When FP = 1, fpr can contain any data types.*/
bool fpu_in_64bit = ((cp0_status & BIT(MIPS32_CP0_STATUS_FR_SHIFT)) != 0);
/* CP0.Status.CU1 indicated whether CoProcessor1(which is FPU) is present. */
bool fp_enabled = ((cp0_status & BIT(MIPS32_CP0_STATUS_CU1_SHIFT)) != 0);
if (mips32->fpu_in_64bit != fpu_in_64bit) {
mips32->fpu_in_64bit = fpu_in_64bit;
mips32_set_all_fpr_width(mips32, fpu_in_64bit);
LOG_WARNING("** FP mode changed to %sbit, you must reconnect GDB **", fpu_in_64bit ? "64" : "32");
}
if (mips32->fpu_enabled != fp_enabled) {
mips32->fpu_enabled = fp_enabled;
const char *s = fp_enabled ? "enabled" : "disabled";
LOG_WARNING("** FP is %s, register update %s **", s, s);
}
}
static int mips32_read_core_reg(struct target *target, unsigned int num)
{
unsigned int cnum;
@ -278,6 +333,8 @@ static int mips32_read_core_reg(struct target *target, unsigned int num)
cnum = num - MIPS32_REGLIST_C0_INDEX;
reg_value = mips32->core_regs.cp0[cnum];
buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
if (cnum == MIPS32_REG_C0_STATUS_INDEX)
mips32_detect_fpr_mode_change(mips32, reg_value);
} else if (num >= MIPS32_REGLIST_FPC_INDEX) {
/* FPCR */
cnum = num - MIPS32_REGLIST_FPC_INDEX;
@ -319,6 +376,8 @@ static int mips32_write_core_reg(struct target *target, unsigned int num)
cnum = num - MIPS32_REGLIST_C0_INDEX;
reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
mips32->core_regs.cp0[cnum] = (uint32_t)reg_value;
if (cnum == MIPS32_REG_C0_STATUS_INDEX)
mips32_detect_fpr_mode_change(mips32, reg_value);
} else if (num >= MIPS32_REGLIST_FPC_INDEX) {
/* FPCR */
cnum = num - MIPS32_REGLIST_FPC_INDEX;
@ -987,8 +1046,8 @@ static int mips32_read_config_fpu(struct mips32_common *mips32, struct mips_ejta
mips32->fp_imp = MIPS32_FP_IMP_NONE;
return ERROR_OK;
}
uint32_t status_value;
bool status_fr, status_cu1;
uint32_t fir_value, status_value;
bool fpu_in_64bit, fp_enabled;
retval = mips32_cp0_read(ejtag_info, &status_value, MIPS32_C0_STATUS, 0);
if (retval != ERROR_OK) {
@ -996,20 +1055,34 @@ static int mips32_read_config_fpu(struct mips32_common *mips32, struct mips_ejta
return retval;
}
status_fr = (status_value >> MIPS32_CP0_STATUS_FR_SHIFT) & 0x1;
status_cu1 = (status_value >> MIPS32_CP0_STATUS_CU1_SHIFT) & 0x1;
if (status_cu1) {
/* TODO: read fpu(cp1) config register for current operating mode.
* Now its set to 32 bits by default. */
snprintf(buf, sizeof(buf), "yes");
fp_imp = MIPS32_FP_IMP_32;
fpu_in_64bit = (status_value & BIT(MIPS32_CP0_STATUS_FR_SHIFT)) != 0;
fp_enabled = (status_value & BIT(MIPS32_CP0_STATUS_CU1_SHIFT)) != 0;
if (fp_enabled) {
retval = mips32_cp1_control_read(ejtag_info, &fir_value, 0);
if (retval != ERROR_OK) {
LOG_ERROR("Failed to read cp1 FIR register");
return retval;
}
if ((fir_value >> MIPS32_CP1_FIR_F64_SHIFT) & 0x1)
fp_imp++;
} else {
/* This is the only condition that writes to buf */
snprintf(buf, sizeof(buf), "yes, disabled");
fp_imp = MIPS32_FP_IMP_UNKNOWN;
}
mips32->fpu_in_64bit = status_fr;
mips32->fpu_enabled = status_cu1;
mips32->fpu_in_64bit = fpu_in_64bit;
mips32->fpu_enabled = fp_enabled;
mips32_set_all_fpr_width(mips32, fpu_in_64bit);
/* If fpu is not disabled, print out more information */
if (!buf[0])
snprintf(buf, sizeof(buf), "yes, %sbit (%s, working in %sbit)",
fp_imp == MIPS32_FP_IMP_64 ? "64" : "32",
fp_enabled ? "enabled" : "disabled",
fpu_in_64bit ? "64" : "32");
LOG_USER("FPU implemented: %s", buf);
mips32->fp_imp = fp_imp;

View File

@ -459,10 +459,13 @@ struct mips32_algorithm {
#define MIPS32_OP_AND 0x24u
#define MIPS32_OP_CACHE 0x2Fu
#define MIPS32_OP_COP0 0x10u
#define MIPS32_OP_COP1 0x11u
#define MIPS32_OP_J 0x02u
#define MIPS32_OP_JR 0x08u
#define MIPS32_OP_LUI 0x0Fu
#define MIPS32_OP_LW 0x23u
#define MIPS32_OP_LWC1 0x31u
#define MIPS32_OP_LDC1 0x35u
#define MIPS32_OP_LB 0x20u
#define MIPS32_OP_LBU 0x24u
#define MIPS32_OP_LHU 0x25u
@ -470,6 +473,7 @@ struct mips32_algorithm {
#define MIPS32_OP_MTHI 0x11u
#define MIPS32_OP_MFLO 0x12u
#define MIPS32_OP_MTLO 0x13u
#define MIPS32_OP_MUL 0x02u
#define MIPS32_OP_RDHWR 0x3Bu
#define MIPS32_OP_SB 0x28u
#define MIPS32_OP_SH 0x29u
@ -485,6 +489,8 @@ struct mips32_algorithm {
#define MIPS32_OP_SLLV 0x04u
#define MIPS32_OP_SLTI 0x0Au
#define MIPS32_OP_MOVN 0x0Bu
#define MIPS32_OP_SWC1 0x39u
#define MIPS32_OP_SDC1 0x3Du
#define MIPS32_OP_REGIMM 0x01u
#define MIPS32_OP_SDBBP 0x3Fu
@ -517,6 +523,7 @@ struct mips32_algorithm {
#define MIPS32_ISA_BGTZ(reg, off) MIPS32_I_INST(MIPS32_OP_BGTZ, reg, 0, off)
#define MIPS32_ISA_BNE(src, tar, off) MIPS32_I_INST(MIPS32_OP_BNE, src, tar, off)
#define MIPS32_ISA_CACHE(op, off, base) MIPS32_I_INST(MIPS32_OP_CACHE, base, op, off)
#define MIPS32_ISA_CFC1(gpr, cpr) MIPS32_R_INST(MIPS32_OP_COP1, MIPS32_COP_CF, gpr, cpr, 0, 0)
#define MIPS32_ISA_J(tar) MIPS32_J_INST(MIPS32_OP_J, (0x0FFFFFFFu & (tar)) >> 2)
#define MIPS32_ISA_JR(reg) MIPS32_R_INST(0, reg, 0, 0, 0, MIPS32_OP_JR)
#define MIPS32_ISA_JRHB(reg) MIPS32_R_INST(0, reg, 0, 0, 0x10, MIPS32_OP_JR)
@ -526,9 +533,15 @@ struct mips32_algorithm {
#define MIPS32_ISA_LHU(reg, off, base) MIPS32_I_INST(MIPS32_OP_LHU, base, reg, off)
#define MIPS32_ISA_LUI(reg, val) MIPS32_I_INST(MIPS32_OP_LUI, 0, reg, val)
#define MIPS32_ISA_LW(reg, off, base) MIPS32_I_INST(MIPS32_OP_LW, base, reg, off)
#define MIPS32_ISA_LWC1(reg, off, base) MIPS32_I_INST(MIPS32_OP_LWC1, base, reg, off)
#define MIPS32_ISA_LDC1(reg, off, base) MIPS32_I_INST(MIPS32_OP_LDC1, base, reg, off)
#define MIPS32_ISA_MFC0(gpr, cpr, sel) MIPS32_R_INST(MIPS32_OP_COP0, MIPS32_COP_MF, gpr, cpr, 0, sel)
#define MIPS32_ISA_MTC0(gpr, cpr, sel) MIPS32_R_INST(MIPS32_OP_COP0, MIPS32_COP_MT, gpr, cpr, 0, sel)
#define MIPS32_ISA_MFC1(gpr, cpr) MIPS32_R_INST(MIPS32_OP_COP1, MIPS32_COP_MF, gpr, cpr, 0, 0)
#define MIPS32_ISA_MFHC1(gpr, cpr) MIPS32_R_INST(MIPS32_OP_COP1, MIPS32_COP_MFH, gpr, cpr, 0, 0)
#define MIPS32_ISA_MTC1(gpr, cpr) MIPS32_R_INST(MIPS32_OP_COP1, MIPS32_COP_MT, gpr, cpr, 0, 0)
#define MIPS32_ISA_MTHC1(gpr, cpr) MIPS32_R_INST(MIPS32_OP_COP1, MIPS32_COP_MTH, gpr, cpr, 0, 0)
#define MIPS32_ISA_MFLO(reg) MIPS32_R_INST(0, 0, 0, reg, 0, MIPS32_OP_MFLO)
#define MIPS32_ISA_MFHI(reg) MIPS32_R_INST(0, 0, 0, reg, 0, MIPS32_OP_MFHI)
#define MIPS32_ISA_MTLO(reg) MIPS32_R_INST(0, reg, 0, 0, 0, MIPS32_OP_MTLO)
@ -542,6 +555,8 @@ struct mips32_algorithm {
#define MIPS32_ISA_SB(reg, off, base) MIPS32_I_INST(MIPS32_OP_SB, base, reg, off)
#define MIPS32_ISA_SH(reg, off, base) MIPS32_I_INST(MIPS32_OP_SH, base, reg, off)
#define MIPS32_ISA_SW(reg, off, base) MIPS32_I_INST(MIPS32_OP_SW, base, reg, off)
#define MIPS32_ISA_SWC1(reg, off, base) MIPS32_I_INST(MIPS32_OP_SWC1, base, reg, off)
#define MIPS32_ISA_SDC1(reg, off, base) MIPS32_I_INST(MIPS32_OP_SDC1, base, reg, off)
#define MIPS32_ISA_SLL(dst, src, sa) MIPS32_R_INST(MIPS32_OP_SPECIAL, 0, src, dst, sa, MIPS32_OP_SLL)
#define MIPS32_ISA_SLLV(dst, src, sa) MIPS32_R_INST(MIPS32_OP_SPECIAL, 0, src, dst, sa, MIPS32_OP_SLLV)
@ -588,6 +603,7 @@ struct mips32_algorithm {
#define MMIPS32_OP_BGTZ 0x06u
#define MMIPS32_OP_BNE 0x2Du
#define MMIPS32_OP_CACHE 0x06u
#define MMIPS32_OP_CFC1 0x40u
#define MMIPS32_OP_J 0x35u
#define MMIPS32_OP_JALR 0x03Cu
#define MMIPS32_OP_JALRHB 0x07Cu
@ -596,8 +612,14 @@ struct mips32_algorithm {
#define MMIPS32_OP_LHU 0x0Du
#define MMIPS32_OP_LUI 0x0Du
#define MMIPS32_OP_LW 0x3Fu
#define MMIPS32_OP_LWC1 0x27u
#define MMIPS32_OP_LDC1 0x2Fu
#define MMIPS32_OP_MFC0 0x03u
#define MMIPS32_OP_MFC1 0x80u
#define MMIPS32_OP_MFHC1 0xC0u
#define MMIPS32_OP_MTC0 0x0Bu
#define MMIPS32_OP_MTC1 0xA0u
#define MMIPS32_OP_MTHC1 0xE0u
#define MMIPS32_OP_MFLO 0x075u
#define MMIPS32_OP_MFHI 0x035u
#define MMIPS32_OP_MTLO 0x0F5u
@ -608,6 +630,8 @@ struct mips32_algorithm {
#define MMIPS32_OP_SB 0x06u
#define MMIPS32_OP_SH 0x0Eu
#define MMIPS32_OP_SW 0x3Eu
#define MMIPS32_OP_SWC1 0x26u
#define MMIPS32_OP_SDC1 0x2Eu
#define MMIPS32_OP_SLTU 0x390u
#define MMIPS32_OP_SLL 0x000u
#define MMIPS32_OP_SLTI 0x24u
@ -627,6 +651,7 @@ struct mips32_algorithm {
#define MMIPS32_BGTZ(reg, off) MIPS32_I_INST(MMIPS32_POOL32I, MMIPS32_OP_BGTZ, reg, off)
#define MMIPS32_BNE(src, tar, off) MIPS32_I_INST(MMIPS32_OP_BNE, tar, src, off)
#define MMIPS32_CACHE(op, off, base) MIPS32_R_INST(MMIPS32_POOL32B, op, base, MMIPS32_OP_CACHE << 1, 0, off)
#define MMIPS32_CFC1(gpr, cpr) MIPS32_R_INST(MMIPS32_POOL32F, gpr, cpr, 0, MMIPS32_OP_CFC1, MMIPS32_POOL32FXF)
#define MMIPS32_J(tar) MIPS32_J_INST(MMIPS32_OP_J, ((0x07FFFFFFu & ((tar) >> 1))))
#define MMIPS32_JR(reg) MIPS32_R_INST(MMIPS32_POOL32A, 0, reg, 0, MMIPS32_OP_JALR, MMIPS32_POOL32AXF)
@ -636,13 +661,19 @@ struct mips32_algorithm {
#define MMIPS32_LHU(reg, off, base) MIPS32_I_INST(MMIPS32_OP_LHU, reg, base, off)
#define MMIPS32_LUI(reg, val) MIPS32_I_INST(MMIPS32_POOL32I, MMIPS32_OP_LUI, reg, val)
#define MMIPS32_LW(reg, off, base) MIPS32_I_INST(MMIPS32_OP_LW, reg, base, off)
#define MMIPS32_LWC1(reg, off, base) MIPS32_I_INST(MMIPS32_OP_LWC1, reg, base, off)
#define MMIPS32_LDC1(reg, off, base) MIPS32_I_INST(MMIPS32_OP_LDC1, reg, base, off)
#define MMIPS32_MFC0(gpr, cpr, sel) MIPS32_R_INST(MMIPS32_POOL32A, gpr, cpr, sel,\
MMIPS32_OP_MFC0, MMIPS32_POOL32AXF)
#define MMIPS32_MFC1(gpr, cpr) MIPS32_R_INST(MMIPS32_POOL32F, gpr, cpr, 0, MMIPS32_OP_MFC1, MMIPS32_POOL32FXF)
#define MMIPS32_MFHC1(gpr, cpr) MIPS32_R_INST(MMIPS32_POOL32F, gpr, cpr, 0, MMIPS32_OP_MFHC1, MMIPS32_POOL32FXF)
#define MMIPS32_MFLO(reg) MIPS32_R_INST(MMIPS32_POOL32A, 0, reg, 0, MMIPS32_OP_MFLO, MMIPS32_POOL32AXF)
#define MMIPS32_MFHI(reg) MIPS32_R_INST(MMIPS32_POOL32A, 0, reg, 0, MMIPS32_OP_MFHI, MMIPS32_POOL32AXF)
#define MMIPS32_MTC0(gpr, cpr, sel) MIPS32_R_INST(MMIPS32_POOL32A, gpr, cpr, sel,\
MMIPS32_OP_MTC0, MMIPS32_POOL32AXF)
#define MMIPS32_MTC1(gpr, cpr) MIPS32_R_INST(MMIPS32_POOL32F, gpr, cpr, 0, MMIPS32_OP_MTC1, MMIPS32_POOL32FXF)
#define MMIPS32_MTHC1(gpr, cpr) MIPS32_R_INST(MMIPS32_POOL32F, gpr, cpr, 0, MMIPS32_OP_MTHC1, MMIPS32_POOL32FXF)
#define MMIPS32_MTLO(reg) MIPS32_R_INST(MMIPS32_POOL32A, 0, reg, 0, MMIPS32_OP_MTLO, MMIPS32_POOL32AXF)
#define MMIPS32_MTHI(reg) MIPS32_R_INST(MMIPS32_POOL32A, 0, reg, 0, MMIPS32_OP_MTHI, MMIPS32_POOL32AXF)
@ -653,6 +684,8 @@ struct mips32_algorithm {
#define MMIPS32_SB(reg, off, base) MIPS32_I_INST(MMIPS32_OP_SB, reg, base, off)
#define MMIPS32_SH(reg, off, base) MIPS32_I_INST(MMIPS32_OP_SH, reg, base, off)
#define MMIPS32_SW(reg, off, base) MIPS32_I_INST(MMIPS32_OP_SW, reg, base, off)
#define MMIPS32_SWC1(reg, off, base) MIPS32_I_INST(MMIPS32_OP_SWC1, reg, base, off)
#define MMIPS32_SDC1(reg, off, base) MIPS32_I_INST(MMIPS32_OP_SDC1, reg, base, off)
#define MMIPS32_SRL(reg, src, off) MIPS32_R_INST(MMIPS32_POOL32A, reg, src, off, 0, MMIPS32_OP_SRL)
#define MMIPS32_SLTU(dst, src, tar) MIPS32_R_INST(MMIPS32_POOL32A, tar, src, dst, 0, MMIPS32_OP_SLTU)
@ -686,6 +719,7 @@ struct mips32_algorithm {
#define MIPS32_BGTZ(isa, reg, off) (isa ? MMIPS32_BGTZ(reg, off) : MIPS32_ISA_BGTZ(reg, off))
#define MIPS32_BNE(isa, src, tar, off) (isa ? MMIPS32_BNE(src, tar, off) : MIPS32_ISA_BNE(src, tar, off))
#define MIPS32_CACHE(isa, op, off, base) (isa ? MMIPS32_CACHE(op, off, base) : MIPS32_ISA_CACHE(op, off, base))
#define MIPS32_CFC1(isa, gpr, cpr) (isa ? MMIPS32_CFC1(gpr, cpr) : MIPS32_ISA_CFC1(gpr, cpr))
#define MIPS32_J(isa, tar) (isa ? MMIPS32_J(tar) : MIPS32_ISA_J(tar))
#define MIPS32_JR(isa, reg) (isa ? MMIPS32_JR(reg) : MIPS32_ISA_JR(reg))
@ -694,10 +728,15 @@ struct mips32_algorithm {
#define MIPS32_LBU(isa, reg, off, base) (isa ? MMIPS32_LBU(reg, off, base) : MIPS32_ISA_LBU(reg, off, base))
#define MIPS32_LHU(isa, reg, off, base) (isa ? MMIPS32_LHU(reg, off, base) : MIPS32_ISA_LHU(reg, off, base))
#define MIPS32_LW(isa, reg, off, base) (isa ? MMIPS32_LW(reg, off, base) : MIPS32_ISA_LW(reg, off, base))
#define MIPS32_LWC1(isa, reg, off, base) (isa ? MMIPS32_LWC1(reg, off, base) : MIPS32_ISA_LWC1(reg, off, base))
#define MIPS32_LUI(isa, reg, val) (isa ? MMIPS32_LUI(reg, val) : MIPS32_ISA_LUI(reg, val))
#define MIPS32_MFC0(isa, gpr, cpr, sel) (isa ? MMIPS32_MFC0(gpr, cpr, sel) : MIPS32_ISA_MFC0(gpr, cpr, sel))
#define MIPS32_MTC0(isa, gpr, cpr, sel) (isa ? MMIPS32_MTC0(gpr, cpr, sel) : MIPS32_ISA_MTC0(gpr, cpr, sel))
#define MIPS32_MFC1(isa, gpr, cpr) (isa ? MMIPS32_MFC1(gpr, cpr) : MIPS32_ISA_MFC1(gpr, cpr))
#define MIPS32_MFHC1(isa, gpr, cpr) (isa ? MMIPS32_MFHC1(gpr, cpr) : MIPS32_ISA_MFHC1(gpr, cpr))
#define MIPS32_MTC1(isa, gpr, cpr) (isa ? MMIPS32_MTC1(gpr, cpr) : MIPS32_ISA_MTC1(gpr, cpr))
#define MIPS32_MTHC1(isa, gpr, cpr) (isa ? MMIPS32_MTHC1(gpr, cpr) : MIPS32_ISA_MTHC1(gpr, cpr))
#define MIPS32_MFLO(isa, reg) (isa ? MMIPS32_MFLO(reg) : MIPS32_ISA_MFLO(reg))
#define MIPS32_MFHI(isa, reg) (isa ? MMIPS32_MFHI(reg) : MIPS32_ISA_MFHI(reg))
#define MIPS32_MTLO(isa, reg) (isa ? MMIPS32_MTLO(reg) : MIPS32_ISA_MTLO(reg))
@ -710,6 +749,8 @@ struct mips32_algorithm {
#define MIPS32_SB(isa, reg, off, base) (isa ? MMIPS32_SB(reg, off, base) : MIPS32_ISA_SB(reg, off, base))
#define MIPS32_SH(isa, reg, off, base) (isa ? MMIPS32_SH(reg, off, base) : MIPS32_ISA_SH(reg, off, base))
#define MIPS32_SW(isa, reg, off, base) (isa ? MMIPS32_SW(reg, off, base) : MIPS32_ISA_SW(reg, off, base))
#define MIPS32_SWC1(isa, reg, off, base) (isa ? MMIPS32_SWC1(reg, off, base) : MIPS32_ISA_SWC1(reg, off, base))
#define MIPS32_SDC1(isa, reg, off, base) (isa ? MMIPS32_SDC1(reg, off, base) : MIPS32_ISA_SDC1(reg, off, base))
#define MIPS32_SLL(isa, dst, src, sa) (isa ? MMIPS32_SLL(dst, src, sa) : MIPS32_ISA_SLL(dst, src, sa))
#define MIPS32_EHB(isa) (isa ? MMIPS32_SLL(0, 0, 3) : MIPS32_ISA_SLL(0, 0, 3))

View File

@ -588,6 +588,26 @@ int mips32_cp0_write(struct mips_ejtag *ejtag_info, uint32_t val, uint32_t cp0_r
return ctx.retval;
}
int mips32_cp1_control_read(struct mips_ejtag *ejtag_info, uint32_t *val, uint32_t cp1_c_reg)
{
struct pracc_queue_info ctx = {.ejtag_info = ejtag_info};
pracc_queue_init(&ctx);
pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
pracc_add(&ctx, 0, MIPS32_EHB(ctx.isa));
pracc_add(&ctx, 0, MIPS32_CFC1(ctx.isa, 8, cp1_c_reg)); /* move cp1c reg to $8 */
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET, 15)); /* store $8 to pracc_out */
pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* restore $15 from DeSave */
pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of $8 */
pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_ORI(ctx.isa, 8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of $8 */
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, val, 1);
pracc_queue_free(&ctx);
return ctx.retval;
}
/**
* \b mips32_pracc_sync_cache
*
@ -856,6 +876,9 @@ int mips32_pracc_write_regs(struct mips32_common *mips32)
struct pracc_queue_info ctx = {.ejtag_info = ejtag_info};
uint32_t *gprs = mips32->core_regs.gpr;
uint32_t *c0rs = mips32->core_regs.cp0;
bool fpu_in_64bit = ((c0rs[0] & BIT(MIPS32_CP0_STATUS_FR_SHIFT)) != 0);
bool fp_enabled = ((c0rs[0] & BIT(MIPS32_CP0_STATUS_CU1_SHIFT)) != 0);
uint32_t rel = (ejtag_info->config[0] & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
pracc_queue_init(&ctx);
@ -895,6 +918,31 @@ int mips32_pracc_write_regs(struct mips32_common *mips32)
if (mips32_cpu_support_hazard_barrier(ejtag_info))
pracc_add(&ctx, 0, MIPS32_EHB(ctx.isa));
/* store FPRs */
if (mips32->fp_imp && fp_enabled) {
uint64_t *fprs = mips32->core_regs.fpr;
if (fpu_in_64bit) {
for (int i = 0; i != MIPS32_REG_FP_COUNT; i++) {
uint32_t fp_lo = fprs[i] & 0xffffffff;
uint32_t fp_hi = (fprs[i] >> 32) & 0xffffffff;
pracc_add_li32(&ctx, 2, fp_lo, 0);
pracc_add_li32(&ctx, 3, fp_hi, 0);
pracc_add(&ctx, 0, MIPS32_MTC1(ctx.isa, 2, i));
pracc_add(&ctx, 0, MIPS32_MTHC1(ctx.isa, 3, i));
}
} else {
for (int i = 0; i != MIPS32_REG_FP_COUNT; i++) {
uint32_t fp_lo = fprs[i] & 0xffffffff;
pracc_add_li32(&ctx, 2, fp_lo, 0);
pracc_add(&ctx, 0, MIPS32_MTC1(ctx.isa, 2, i));
}
}
if (rel > MIPS32_RELEASE_1)
pracc_add(&ctx, 0, MIPS32_EHB(ctx.isa));
}
/* load registers 2 to 31 with li32, optimize */
for (int i = 2; i < 32; i++)
pracc_add_li32(&ctx, i, gprs[i], 1);
@ -1014,6 +1062,9 @@ int mips32_pracc_read_regs(struct mips32_common *mips32)
struct mips32_core_regs *core_regs = &mips32->core_regs;
unsigned int offset_gpr = ((uint8_t *)&core_regs->gpr[0]) - (uint8_t *)core_regs;
unsigned int offset_cp0 = ((uint8_t *)&core_regs->cp0[0]) - (uint8_t *)core_regs;
unsigned int offset_fpr = ((uint8_t *)&core_regs->fpr[0]) - (uint8_t *)core_regs;
unsigned int offset_fpcr = ((uint8_t *)&core_regs->fpcr[0]) - (uint8_t *)core_regs;
bool fp_enabled;
/*
* This procedure has to be in 2 distinctive steps, because we can
@ -1040,11 +1091,64 @@ int mips32_pracc_read_regs(struct mips32_common *mips32)
ejtag_info->reg8 = mips32->core_regs.gpr[8];
ejtag_info->reg9 = mips32->core_regs.gpr[9];
if (ctx.retval != ERROR_OK)
return ctx.retval;
/* we only care if FP is actually impl'd and if cp1 is enabled */
/* since we already read cp0 in the prev step */
/* now we know what's in cp0.status */
/* TODO: Read FPRs */
fp_enabled = (mips32->core_regs.cp0[0] & BIT(MIPS32_CP0_STATUS_CU1_SHIFT)) != 0;
if (mips32->fp_imp && fp_enabled) {
pracc_queue_init(&ctx);
mips32_pracc_store_regs_set_base_addr(&ctx);
/* FCSR */
pracc_add(&ctx, 0, MIPS32_CFC1(ctx.isa, 8, 31));
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + offset_fpcr,
MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET + offset_fpcr, 1));
/* FIR */
pracc_add(&ctx, 0, MIPS32_CFC1(ctx.isa, 8, 0));
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + offset_fpcr + 4,
MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET + offset_fpcr + 4, 1));
/* f0 to f31 */
if (mips32->fpu_in_64bit) {
for (int i = 0; i != 32; i++) {
size_t offset = offset_fpr + (i * 8);
/* current pracc implementation (or EJTAG itself) only supports 32b access */
/* so there is no way to use SDC1 */
/* lower half */
pracc_add(&ctx, 0, MIPS32_MFC1(ctx.isa, 8, i));
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + offset,
MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET + offset, 1));
/* upper half */
pracc_add(&ctx, 0, MIPS32_MFHC1(ctx.isa, 8, i));
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + offset + 4,
MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET + offset + 4, 1));
}
} else {
for (int i = 0; i != 32; i++) {
size_t offset = offset_fpr + (i * 8);
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + offset,
MIPS32_SWC1(ctx.isa, i, PRACC_OUT_OFFSET + offset, 1));
}
}
mips32_pracc_store_regs_restore(&ctx);
/* jump to start */
pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa)));
/* load $15 in DeSave */
pracc_add(&ctx, 0, MIPS32_MTC0(ctx.isa, 15, 31, 0));
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, (uint32_t *)&mips32->core_regs, 1);
pracc_queue_free(&ctx);
}
return ctx.retval;
}

View File

@ -103,6 +103,21 @@ int mips32_cp0_read(struct mips_ejtag *ejtag_info,
int mips32_cp0_write(struct mips_ejtag *ejtag_info,
uint32_t val, uint32_t cp0_reg, uint32_t cp0_sel);
/**
* mips32_cp1_control_read
*
* @brief Simulates cfc1 ASM instruction (Move Control Word From Floating Point),
* i.e. implements copro C1 Control Register read.
*
* @param[in] ejtag_info
* @param[in] val Storage to hold read value
* @param[in] cp1_c_reg Number of copro C1 control register we want to read
*
* @return ERROR_OK on Success, ERROR_FAIL otherwise
*/
int mips32_cp1_control_read(struct mips_ejtag *ejtag_info,
uint32_t *val, uint32_t cp1_c_reg);
static inline void pracc_swap16_array(struct mips_ejtag *ejtag_info, uint32_t *buf, int count)
{
if (ejtag_info->isa && ejtag_info->endianness)