armv7a ,cortex a : add L1, L2 cache support, va to pa support

This commit is contained in:
Michel Jaouen 2011-09-29 17:17:27 +02:00 committed by Øyvind Harboe
parent ef885d3b2a
commit 00ded4eb01
6 changed files with 911 additions and 230 deletions

View File

@ -109,7 +109,7 @@ static int dpm_mcr(struct target *target, int cpnum,
/* Toggles between recorded core mode (USR, SVC, etc) and a temporary one.
* Routines *must* restore the original mode before returning!!
*/
static int dpm_modeswitch(struct arm_dpm *dpm, enum arm_mode mode)
int dpm_modeswitch(struct arm_dpm *dpm, enum arm_mode mode)
{
int retval;
uint32_t cpsr;

View File

@ -133,6 +133,9 @@ int arm_dpm_setup(struct arm_dpm *dpm);
int arm_dpm_initialize(struct arm_dpm *dpm);
int arm_dpm_read_current_registers(struct arm_dpm *);
int dpm_modeswitch(struct arm_dpm *dpm, enum arm_mode mode);
int arm_dpm_write_dirty_registers(struct arm_dpm *, bool bpwp);
void arm_dpm_report_wfar(struct arm_dpm *, uint32_t wfar);

View File

@ -1,6 +1,8 @@
/***************************************************************************
* Copyright (C) 2009 by David Brownell *
* *
* Copyright (C) ST-Ericsson SA 2011 michel.jaouen@stericsson.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
@ -34,7 +36,8 @@
#include <unistd.h>
#include "arm_opcodes.h"
#include "target.h"
#include "target_type.h"
static void armv7a_show_fault_registers(struct target *target)
{
@ -84,6 +87,661 @@ done:
/* (void) */ dpm->finish(dpm);
}
int armv7a_read_ttbcr(struct target *target)
{
struct armv7a_common *armv7a = target_to_armv7a(target);
struct arm_dpm *dpm = armv7a->armv4_5_common.dpm;
uint32_t ttbcr;
int retval = dpm->prepare(dpm);
if (retval!=ERROR_OK) goto done;
/* MRC p15,0,<Rt>,c2,c0,2 ; Read CP15 Translation Table Base Control Register*/
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 0, 0, 2, 0, 2),
&ttbcr);
if (retval!=ERROR_OK) goto done;
armv7a->armv7a_mmu.ttbr1_used = ((ttbcr & 0x7)!=0)? 1: 0;
armv7a->armv7a_mmu.ttbr0_mask = 7 << (32 -((ttbcr & 0x7)));
#if 0
LOG_INFO("ttb1 %s ,ttb0_mask %x",
armv7a->armv7a_mmu.ttbr1_used ? "used":"not used",
armv7a->armv7a_mmu.ttbr0_mask);
#endif
if (armv7a->armv7a_mmu.ttbr1_used == 1)
{
LOG_INFO("SVC access above %x",
(0xffffffff & armv7a->armv7a_mmu.ttbr0_mask));
armv7a->armv7a_mmu.os_border = 0xffffffff & armv7a->armv7a_mmu.ttbr0_mask;
}
else
{
/* fix me , default is hard coded LINUX border */
armv7a->armv7a_mmu.os_border = 0xc0000000;
}
done:
dpm->finish(dpm);
return retval;
}
/* method adapted to cortex A : reused arm v4 v5 method*/
int armv7a_mmu_translate_va(struct target *target, uint32_t va, uint32_t *val)
{
uint32_t first_lvl_descriptor = 0x0;
uint32_t second_lvl_descriptor = 0x0;
int retval;
uint32_t cb;
struct armv7a_common *armv7a = target_to_armv7a(target);
struct arm_dpm *dpm = armv7a->armv4_5_common.dpm;
uint32_t ttb = 0; /* default ttb0 */
if (armv7a->armv7a_mmu.ttbr1_used == -1) armv7a_read_ttbcr(target);
if ((armv7a->armv7a_mmu.ttbr1_used) &&
(va > (0xffffffff & armv7a->armv7a_mmu.ttbr0_mask)))
{
/* select ttb 1 */
ttb = 1;
}
retval = dpm->prepare(dpm);
if (retval != ERROR_OK)
goto done;
/* MRC p15,0,<Rt>,c2,c0,ttb */
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 0, 0, 2, 0, ttb),
&ttb);
retval = armv7a->armv7a_mmu.read_physical_memory(target,
(ttb & 0xffffc000) | ((va & 0xfff00000) >> 18),
4, 1, (uint8_t*)&first_lvl_descriptor);
if (retval != ERROR_OK)
return retval;
first_lvl_descriptor = target_buffer_get_u32(target, (uint8_t*)
&first_lvl_descriptor);
/* reuse armv4_5 piece of code, specific armv7a changes may come later */
LOG_DEBUG("1st lvl desc: %8.8" PRIx32 "", first_lvl_descriptor);
if ((first_lvl_descriptor & 0x3) == 0)
{
LOG_ERROR("Address translation failure");
return ERROR_TARGET_TRANSLATION_FAULT;
}
if ((first_lvl_descriptor & 0x3) == 2)
{
/* section descriptor */
cb = (first_lvl_descriptor & 0xc) >> 2;
*val = (first_lvl_descriptor & 0xfff00000) | (va & 0x000fffff);
return ERROR_OK;
}
if ((first_lvl_descriptor & 0x3) == 1)
{
/* coarse page table */
retval = armv7a->armv7a_mmu.read_physical_memory(target,
(first_lvl_descriptor & 0xfffffc00) | ((va & 0x000ff000) >> 10),
4, 1, (uint8_t*)&second_lvl_descriptor);
if (retval != ERROR_OK)
return retval;
}
else if ((first_lvl_descriptor & 0x3) == 3)
{
/* fine page table */
retval = armv7a->armv7a_mmu.read_physical_memory(target,
(first_lvl_descriptor & 0xfffff000) | ((va & 0x000ffc00) >> 8),
4, 1, (uint8_t*)&second_lvl_descriptor);
if (retval != ERROR_OK)
return retval;
}
second_lvl_descriptor = target_buffer_get_u32(target, (uint8_t*)
&second_lvl_descriptor);
LOG_DEBUG("2nd lvl desc: %8.8" PRIx32 "", second_lvl_descriptor);
if ((second_lvl_descriptor & 0x3) == 0)
{
LOG_ERROR("Address translation failure");
return ERROR_TARGET_TRANSLATION_FAULT;
}
/* cacheable/bufferable is always specified in bits 3-2 */
cb = (second_lvl_descriptor & 0xc) >> 2;
if ((second_lvl_descriptor & 0x3) == 1)
{
/* large page descriptor */
*val = (second_lvl_descriptor & 0xffff0000) | (va & 0x0000ffff);
return ERROR_OK;
}
if ((second_lvl_descriptor & 0x3) == 2)
{
/* small page descriptor */
*val = (second_lvl_descriptor & 0xfffff000) | (va & 0x00000fff);
return ERROR_OK;
}
if ((second_lvl_descriptor & 0x3) == 3)
{
*val = (second_lvl_descriptor & 0xfffffc00) | (va & 0x000003ff);
return ERROR_OK;
}
/* should not happen */
LOG_ERROR("Address translation failure");
return ERROR_TARGET_TRANSLATION_FAULT;
done:
return retval;
}
/* V7 method VA TO PA */
int armv7a_mmu_translate_va_pa(struct target *target, uint32_t va,
uint32_t *val, int meminfo)
{
int retval = ERROR_FAIL;
struct armv7a_common *armv7a = target_to_armv7a(target);
struct arm_dpm *dpm = armv7a->armv4_5_common.dpm;
uint32_t virt = va & ~0xfff;
uint32_t NOS,NS,SH,INNER,OUTER;
*val = 0xdeadbeef;
retval = dpm->prepare(dpm);
if (retval != ERROR_OK)
goto done;
/* mmu must be enable in order to get a correct translation */
/* use VA to PA CP15 register for conversion */
retval = dpm->instr_write_data_r0(dpm,
ARMV4_5_MCR(15, 0, 0, 7, 8, 0),
virt);
if (retval!=ERROR_OK) goto done;
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 0, 0, 7, 4, 0),
val);
/* decode memory attribute */
NOS = (*val >> 10) & 1; /* Not Outer shareable */
NS = (*val >> 9) & 1; /* Non secure */
SH = (*val >> 7 )& 1; /* shareable */
INNER = (*val >> 4) & 0x7;
OUTER = (*val >> 2) & 0x3;
if (retval!=ERROR_OK) goto done;
*val = (*val & ~0xfff) + (va & 0xfff);
if (*val == va)
LOG_WARNING("virt = phys : MMU disable !!");
if (meminfo)
{
LOG_INFO("%x : %x %s outer shareable %s secured",
va, *val,
NOS == 1 ? "not" : " ",
NS == 1 ? "not" :"");
switch (OUTER) {
case 0 : LOG_INFO("outer: Non-Cacheable");
break;
case 1 : LOG_INFO("outer: Write-Back, Write-Allocate");
break;
case 2 : LOG_INFO("outer: Write-Through, No Write-Allocate");
break;
case 3 : LOG_INFO("outer: Write-Back, no Write-Allocate");
break;
}
switch (INNER) {
case 0 : LOG_INFO("inner: Non-Cacheable");
break;
case 1 : LOG_INFO("inner: Strongly-ordered");
break;
case 3 : LOG_INFO("inner: Device");
break;
case 5 : LOG_INFO("inner: Write-Back, Write-Allocate");
break;
case 6 : LOG_INFO("inner: Write-Through");
break;
case 7 : LOG_INFO("inner: Write-Back, no Write-Allocate");
default: LOG_INFO("inner: %x ???",INNER);
}
}
done:
dpm->finish(dpm);
return retval;
}
static int armv7a_handle_inner_cache_info_command(struct command_context *cmd_ctx,
struct armv7a_cache_common *armv7a_cache)
{
if (armv7a_cache->ctype == -1)
{
command_print(cmd_ctx, "cache not yet identified");
return ERROR_OK;
}
command_print(cmd_ctx,
"D-Cache: linelen %i, associativity %i, nsets %i, cachesize %d KBytes",
armv7a_cache->d_u_size.linelen,
armv7a_cache->d_u_size.associativity,
armv7a_cache->d_u_size.nsets,
armv7a_cache->d_u_size.cachesize);
command_print(cmd_ctx,
"I-Cache: linelen %i, associativity %i, nsets %i, cachesize %d KBytes",
armv7a_cache->i_size.linelen,
armv7a_cache->i_size.associativity,
armv7a_cache->i_size.nsets,
armv7a_cache->i_size.cachesize);
return ERROR_OK;
}
static int _armv7a_flush_all_data(struct target *target)
{
struct armv7a_common *armv7a = target_to_armv7a(target);
struct arm_dpm *dpm = armv7a->armv4_5_common.dpm;
struct armv7a_cachesize *d_u_size =
&(armv7a->armv7a_mmu.armv7a_cache.d_u_size);
int32_t c_way, c_index = d_u_size->index;
int retval;
/* check that cache data is on at target halt */
if (!armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled)
{
LOG_INFO("flushed not performed :cache not on at target halt");
return ERROR_OK;
}
retval = dpm->prepare(dpm);
if (retval != ERROR_OK) goto done;
do {
c_way = d_u_size->way;
do {
uint32_t value = (c_index << d_u_size->index_shift)
| (c_way << d_u_size->way_shift);
/* DCCISW */
//LOG_INFO ("%d %d %x",c_way,c_index,value);
retval = dpm->instr_write_data_r0(dpm,
ARMV4_5_MCR(15, 0, 0, 7, 14, 2),
value);
if (retval!= ERROR_OK) goto done;
c_way -= 1;
} while (c_way >=0);
c_index -= 1;
} while (c_index >=0);
return retval;
done:
LOG_ERROR("flushed failed");
dpm->finish(dpm);
return retval;
}
static int armv7a_flush_all_data( struct target * target)
{
int retval = ERROR_FAIL;
/* check that armv7a_cache is correctly identify */
struct armv7a_common *armv7a = target_to_armv7a(target);
if (armv7a->armv7a_mmu.armv7a_cache.ctype == -1)
{
LOG_ERROR("trying to flush un-identified cache");
return retval;
}
if (target->smp)
{
/* look if all the other target have been flushed in order to flush level
* 2 */
struct target_list *head;
struct target *curr;
head = target->head;
while(head != (struct target_list*)NULL)
{
curr = head->target;
if ((curr->state == TARGET_HALTED))
{ LOG_INFO("Wait flushing data l1 on core %d",curr->coreid);
retval = _armv7a_flush_all_data(curr);
}
head = head->next;
}
}
else retval = _armv7a_flush_all_data(target);
return retval;
}
/* L2 is not specific to armv7a a specific file is needed */
static int armv7a_l2x_flush_all_data(struct target * target)
{
#define L2X0_CLEAN_INV_WAY 0x7FC
int retval = ERROR_FAIL;
struct armv7a_common *armv7a = target_to_armv7a(target);
struct armv7a_l2x_cache *l2x_cache = (struct armv7a_l2x_cache*)
(armv7a->armv7a_mmu.armv7a_cache.l2_cache);
uint32_t base = l2x_cache->base;
uint32_t l2_way = l2x_cache->way;
uint32_t l2_way_val = (1<<l2_way) -1;
retval = armv7a_flush_all_data(target);
if (retval!=ERROR_OK) return retval;
retval = target->type->write_phys_memory(target,
(uint32_t)(base+(uint32_t)L2X0_CLEAN_INV_WAY),
(uint32_t)4,
(uint32_t)1,
(uint8_t*)&l2_way_val);
return retval;
}
static int armv7a_handle_l2x_cache_info_command(struct command_context *cmd_ctx,
struct armv7a_cache_common *armv7a_cache)
{
struct armv7a_l2x_cache *l2x_cache = (struct armv7a_l2x_cache*)
(armv7a_cache->l2_cache);
if (armv7a_cache->ctype == -1)
{
command_print(cmd_ctx, "cache not yet identified");
return ERROR_OK;
}
command_print(cmd_ctx,
"L1 D-Cache: linelen %i, associativity %i, nsets %i, cachesize %d KBytes",
armv7a_cache->d_u_size.linelen,
armv7a_cache->d_u_size.associativity,
armv7a_cache->d_u_size.nsets,
armv7a_cache->d_u_size.cachesize);
command_print(cmd_ctx,
"L1 I-Cache: linelen %i, associativity %i, nsets %i, cachesize %d KBytes",
armv7a_cache->i_size.linelen,
armv7a_cache->i_size.associativity,
armv7a_cache->i_size.nsets,
armv7a_cache->i_size.cachesize);
command_print(cmd_ctx, "L2 unified cache Base Address 0x%x, %d ways",
l2x_cache->base, l2x_cache->way);
return ERROR_OK;
}
int armv7a_l2x_cache_init(struct target *target, uint32_t base, uint32_t way)
{
struct armv7a_l2x_cache *l2x_cache;
struct target_list *head = target->head;
struct target *curr;
struct armv7a_common *armv7a = target_to_armv7a(target);
if (armv7a == NULL)
LOG_ERROR("not an armv7a target");
l2x_cache = calloc(1, sizeof(struct armv7a_l2x_cache));
l2x_cache->base = base;
l2x_cache->way = way;
/*LOG_INFO("cache l2 initialized base %x way %d",
l2x_cache->base,l2x_cache->way);*/
if (armv7a->armv7a_mmu.armv7a_cache.l2_cache)
{
LOG_INFO("cache l2 already initialized\n");
}
armv7a->armv7a_mmu.armv7a_cache.l2_cache = (void*) l2x_cache;
/* initialize l1 / l2x cache function */
armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache
= armv7a_l2x_flush_all_data;
armv7a->armv7a_mmu.armv7a_cache.display_cache_info =
armv7a_handle_l2x_cache_info_command;
/* initialize all target in this cluster (smp target)*/
/* l2 cache must be configured after smp declaration */
while(head != (struct target_list*)NULL)
{
curr = head->target;
if (curr != target)
{
armv7a = target_to_armv7a(curr);
if (armv7a->armv7a_mmu.armv7a_cache.l2_cache)
{
LOG_ERROR("smp target : cache l2 already initialized\n");
}
armv7a->armv7a_mmu.armv7a_cache.l2_cache = (void*) l2x_cache;
armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache =
armv7a_l2x_flush_all_data;
armv7a->armv7a_mmu.armv7a_cache.display_cache_info =
armv7a_handle_l2x_cache_info_command;
}
head = head -> next;
}
return JIM_OK;
}
COMMAND_HANDLER(handle_cache_l2x)
{
struct target *target = get_current_target(CMD_CTX);
uint32_t base, way;
switch (CMD_ARGC) {
case 0:
return ERROR_COMMAND_SYNTAX_ERROR;
break;
case 2:
//command_print(CMD_CTX, "%s %s", CMD_ARGV[0], CMD_ARGV[1]);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], base);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], way);
/* AP address is in bits 31:24 of DP_SELECT */
armv7a_l2x_cache_init(target, base, way);
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
return ERROR_OK;
}
int armv7a_handle_cache_info_command(struct command_context *cmd_ctx,
struct armv7a_cache_common *armv7a_cache)
{
if (armv7a_cache->ctype == -1)
{
command_print(cmd_ctx, "cache not yet identified");
return ERROR_OK;
}
if (armv7a_cache->display_cache_info)
armv7a_cache->display_cache_info(cmd_ctx, armv7a_cache);
return ERROR_OK;
}
/* retrieve core id cluster id */
int arnv7a_read_mpidr(struct target *target)
{
int retval = ERROR_FAIL;
struct armv7a_common *armv7a = target_to_armv7a(target);
struct arm_dpm *dpm = armv7a->armv4_5_common.dpm;
uint32_t mpidr;
retval = dpm->prepare(dpm);
if (retval!=ERROR_OK) goto done;
/* MRC p15,0,<Rd>,c0,c0,5; read Multiprocessor ID register*/
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 0, 0, 0, 0, 5),
&mpidr);
if (retval!=ERROR_OK) goto done;
if (mpidr & 1<<31)
{
armv7a->multi_processor_system = (mpidr >> 30) & 1;
armv7a->cluster_id = (mpidr >> 8) & 0xf;
armv7a->cpu_id = mpidr & 0x3;
LOG_INFO("%s cluster %x core %x %s", target->cmd_name,
armv7a->cluster_id,
armv7a->cpu_id,
armv7a->multi_processor_system == 0 ? "multi core": "mono core");
}
else
LOG_ERROR("mpdir not in multiprocessor format");
done:
dpm->finish(dpm);
return retval;
}
int armv7a_identify_cache(struct target *target)
{
/* read cache descriptor */
int retval = ERROR_FAIL;
struct armv7a_common *armv7a = target_to_armv7a(target);
struct arm_dpm *dpm = armv7a->armv4_5_common.dpm;
uint32_t cache_selected,clidr;
uint32_t cache_i_reg, cache_d_reg;
struct armv7a_cache_common *cache = &(armv7a->armv7a_mmu.armv7a_cache);
armv7a_read_ttbcr(target);
retval = dpm->prepare(dpm);
if (retval!=ERROR_OK) goto done;
/* retrieve CLIDR */
/* mrc p15, 1, r0, c0, c0, 1 @ read clidr */
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 1, 0, 0, 0, 1),
&clidr);
if (retval!=ERROR_OK) goto done;
clidr = (clidr & 0x7000000) >> 23;
LOG_INFO("number of cache level %d",clidr /2 );
if ((clidr /2) > 1)
{
// FIXME not supported present in cortex A8 and later
// in cortex A7, A15
LOG_ERROR("cache l2 present :not supported");
}
/* retrieve selected cache */
/* MRC p15, 2,<Rd>, c0, c0, 0; Read CSSELR */
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 2, 0, 0, 0, 0),
&cache_selected);
if (retval!=ERROR_OK) goto done;
retval = armv7a->armv4_5_common.mrc(target, 15,
2, 0, /* op1, op2 */
0, 0, /* CRn, CRm */
&cache_selected);
/* select instruction cache*/
/* MCR p15, 2,<Rd>, c0, c0, 0; Write CSSELR */
/* [0] : 1 instruction cache selection , 0 data cache selection */
retval = dpm->instr_write_data_r0(dpm,
ARMV4_5_MRC(15, 2, 0, 0, 0, 0),
1);
if (retval!=ERROR_OK) goto done;
/* read CCSIDR*/
/* MRC P15,1,<RT>,C0, C0,0 ;on cortex A9 read CCSIDR */
/* [2:0] line size 001 eight word per line */
/* [27:13] NumSet 0x7f 16KB, 0xff 32Kbytes, 0x1ff 64Kbytes */
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 1, 0, 0, 0, 0),
&cache_i_reg);
if (retval!=ERROR_OK) goto done;
/* select data cache*/
retval = dpm->instr_write_data_r0(dpm,
ARMV4_5_MRC(15, 2, 0, 0, 0, 0),
0);
if (retval!=ERROR_OK) goto done;
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 1, 0, 0, 0, 0),
&cache_d_reg);
if (retval!=ERROR_OK) goto done;
/* restore selected cache */
dpm->instr_write_data_r0(dpm,
ARMV4_5_MRC(15, 2, 0, 0, 0, 0),
cache_selected);
if (retval != ERROR_OK) goto done;
dpm->finish(dpm);
// put fake type
cache->d_u_size.linelen = 16 << (cache_d_reg & 0x7);
cache->d_u_size.cachesize = (((cache_d_reg >> 13) & 0x7fff)+1)/8;
cache->d_u_size.nsets = (cache_d_reg >> 13) & 0x7fff;
cache->d_u_size.associativity = ((cache_d_reg >> 3) & 0x3ff) +1;
/* compute info for set way operation on cache */
cache->d_u_size.index_shift = (cache_d_reg & 0x7) + 4;
cache->d_u_size.index = (cache_d_reg >> 13) & 0x7fff;
cache->d_u_size.way = ((cache_d_reg >> 3) & 0x3ff);
cache->d_u_size.way_shift = cache->d_u_size.way+1;
{
int i=0;
while(((cache->d_u_size.way_shift >> i) & 1)!=1) i++;
cache->d_u_size.way_shift = 32-i;
}
/*LOG_INFO("data cache index %d << %d, way %d << %d",
cache->d_u_size.index, cache->d_u_size.index_shift,
cache->d_u_size.way, cache->d_u_size.way_shift);
LOG_INFO("data cache %d bytes %d KBytes asso %d ways",
cache->d_u_size.linelen,
cache->d_u_size.cachesize,
cache->d_u_size.associativity
);*/
cache->i_size.linelen = 16 << (cache_i_reg & 0x7);
cache->i_size.associativity = ((cache_i_reg >> 3) & 0x3ff) +1;
cache->i_size.nsets = (cache_i_reg >> 13) & 0x7fff;
cache->i_size.cachesize = (((cache_i_reg >> 13) & 0x7fff)+1)/8;
/* compute info for set way operation on cache */
cache->i_size.index_shift = (cache_i_reg & 0x7) + 4;
cache->i_size.index = (cache_i_reg >> 13) & 0x7fff;
cache->i_size.way = ((cache_i_reg >> 3) & 0x3ff);
cache->i_size.way_shift = cache->i_size.way+1;
{
int i=0;
while(((cache->i_size.way_shift >> i) & 1)!=1) i++;
cache->i_size.way_shift = 32-i;
}
/*LOG_INFO("instruction cache index %d << %d, way %d << %d",
cache->i_size.index, cache->i_size.index_shift,
cache->i_size.way, cache->i_size.way_shift);
LOG_INFO("instruction cache %d bytes %d KBytes asso %d ways",
cache->i_size.linelen,
cache->i_size.cachesize,
cache->i_size.associativity
);*/
/* if no l2 cache initialize l1 data cache flush function function */
if (armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache == NULL)
{
armv7a->armv7a_mmu.armv7a_cache.display_cache_info =
armv7a_handle_inner_cache_info_command;
armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache =
armv7a_flush_all_data;
}
armv7a->armv7a_mmu.armv7a_cache.ctype = 0;
done:
dpm->finish(dpm);
arnv7a_read_mpidr(target);
return retval;
}
int armv7a_init_arch_info(struct target *target, struct armv7a_common *armv7a)
{
struct armv7a_common *again;
struct arm *armv4_5 = &armv7a->armv4_5_common;
armv4_5->arch_info = armv7a;
target->arch_info = &armv7a->armv4_5_common;
/* target is useful in all function arm v4 5 compatible */
armv7a->armv4_5_common.target = target;
armv7a->armv4_5_common.common_magic = ARM_COMMON_MAGIC;
armv7a->common_magic = ARMV7_COMMON_MAGIC;
armv7a->armv7a_mmu.armv7a_cache.l2_cache = NULL;
armv7a->armv7a_mmu.armv7a_cache.ctype = -1;
armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache = NULL;
armv7a->armv7a_mmu.armv7a_cache.display_cache_info = NULL;
again =target_to_armv7a(target);
return ERROR_OK;
}
int armv7a_arch_state(struct target *target)
{
static const char *state[] =
@ -103,9 +761,9 @@ int armv7a_arch_state(struct target *target)
arm_arch_state(target);
LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
state[armv7a->armv4_5_mmu.mmu_enabled],
state[armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
state[armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);
state[armv7a->armv7a_mmu.mmu_enabled],
state[armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled],
state[armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled]);
if (armv4_5->core_mode == ARM_MODE_ABT)
armv7a_show_fault_registers(target);
@ -116,11 +774,37 @@ int armv7a_arch_state(struct target *target)
return ERROR_OK;
}
static const struct command_registration l2_cache_commands[] = {
{
.name = "l2x",
.handler = handle_cache_l2x,
.mode = COMMAND_EXEC,
.help = "configure l2x cache "
"",
.usage = "[base_addr] [number_of_way]",
},
COMMAND_REGISTRATION_DONE
};
const struct command_registration l2x_cache_command_handlers[] = {
{
.name = "cache_config",
.mode = COMMAND_EXEC,
.help = "cache configuation for a target",
.chain = l2_cache_commands,
},
COMMAND_REGISTRATION_DONE
};
const struct command_registration armv7a_command_handlers[] = {
{
.chain = dap_command_handlers,
},
{
.chain = l2x_cache_command_handlers,
},
COMMAND_REGISTRATION_DONE
};

View File

@ -43,6 +43,56 @@ enum
#define V2POWPW 5
#define V2POWUR 6
#define V2POWUW 7
/* L210/L220 cache controller support */
struct armv7a_l2x_cache {
uint32_t base;
uint32_t way;
};
struct armv7a_cachesize
{
uint32_t level_num;
/* cache dimensionning */
uint32_t linelen;
uint32_t associativity;
uint32_t nsets;
uint32_t cachesize;
/* info for set way operation on cache */
uint32_t index;
uint32_t index_shift;
uint32_t way;
uint32_t way_shift;
};
struct armv7a_cache_common
{
int ctype;
struct armv7a_cachesize d_u_size; /* data cache */
struct armv7a_cachesize i_size; /* instruction cache */
int i_cache_enabled;
int d_u_cache_enabled;
/* l2 external unified cache if some */
void *l2_cache;
int (*flush_all_data_cache)(struct target *target);
int (*display_cache_info)(struct command_context *cmd_ctx,
struct armv7a_cache_common *armv7a_cache);
};
struct armv7a_mmu_common
{
/* following field mmu working way */
int32_t ttbr1_used; /* -1 not initialized, 0 no ttbr1 1 ttbr1 used and */
uint32_t ttbr0_mask;/* masked to be used */
uint32_t os_border;
int (*read_physical_memory)(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
struct armv7a_cache_common armv7a_cache;
uint32_t mmu_enabled;
};
struct armv7a_common
{
@ -57,9 +107,13 @@ struct armv7a_common
uint32_t debug_base;
uint8_t debug_ap;
uint8_t memory_ap;
/* mdir */
uint8_t multi_processor_system;
uint8_t cluster_id;
uint8_t cpu_id;
/* Cache and Memory Management Unit */
struct armv4_5_mmu_common armv4_5_mmu;
/* cache specific to V7 Memory Management Unit compatible with v4_5*/
struct armv7a_mmu_common armv7a_mmu;
int (*examine_debug_reason)(struct target *target);
int (*post_debug_entry)(struct target *target);
@ -112,9 +166,16 @@ target_to_armv7a(struct target *target)
#define CPUDBG_AUTHSTATUS 0xFB8
int armv7a_arch_state(struct target *target);
int armv7a_identify_cache(struct target *target);
struct reg_cache *armv7a_build_reg_cache(struct target *target,
struct armv7a_common *armv7a_common);
int armv7a_init_arch_info(struct target *target, struct armv7a_common *armv7a);
int armv7a_mmu_translate_va_pa(struct target *target, uint32_t va,
uint32_t *val,int meminfo);
int armv7a_mmu_translate_va(struct target *target, uint32_t va, uint32_t *val);
int armv7a_handle_cache_info_command(struct command_context *cmd_ctx,
struct armv7a_cache_common *armv7a_cache);
extern const struct command_registration armv7a_command_handlers[];

View File

@ -66,12 +66,6 @@ static int cortex_a8_dap_write_coreregister_u32(struct target *target,
static int cortex_a8_mmu(struct target *target, int *enabled);
static int cortex_a8_virt2phys(struct target *target,
uint32_t virt, uint32_t *phys);
static int cortex_a8_disable_mmu_caches(struct target *target, int mmu,
int d_u_cache, int i_cache);
static int cortex_a8_enable_mmu_caches(struct target *target, int mmu,
int d_u_cache, int i_cache);
static int cortex_a8_get_ttb(struct target *target, uint32_t *result);
/*
* FIXME do topology discovery using the ROM; don't
@ -82,6 +76,99 @@ static int cortex_a8_get_ttb(struct target *target, uint32_t *result);
#define swjdp_memoryap 0
#define swjdp_debugap 1
/* restore cp15_control_reg at resume */
static int cortex_a8_restore_cp15_control_reg(struct target* target)
{
int retval = ERROR_OK;
struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
struct armv7a_common *armv7a = target_to_armv7a(target);
if (cortex_a8->cp15_control_reg !=cortex_a8->cp15_control_reg_curr)
{
cortex_a8->cp15_control_reg_curr = cortex_a8->cp15_control_reg;
//LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
retval = armv7a->armv4_5_common.mcr(target, 15,
0, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
cortex_a8->cp15_control_reg);
}
return ERROR_OK;
}
/* check address before cortex_a8_apb read write access with mmu on
* remove apb predictible data abort */
static int cortex_a8_check_address(struct target *target, uint32_t address)
{
struct armv7a_common *armv7a = target_to_armv7a(target);
struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
uint32_t os_border = armv7a->armv7a_mmu.os_border;
if ((address < os_border) &&
(armv7a->armv4_5_common.core_mode == ARM_MODE_SVC)){
LOG_ERROR("%x access in userspace and target in supervisor",address);
return ERROR_FAIL;
}
if ((address >= os_border) &&
( cortex_a8->curr_mode != ARM_MODE_SVC)){
dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
cortex_a8->curr_mode = ARM_MODE_SVC;
LOG_INFO("%x access in kernel space and target not in supervisor",
address);
return ERROR_OK;
}
if ((address < os_border) &&
(cortex_a8->curr_mode == ARM_MODE_SVC)){
dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
cortex_a8->curr_mode = ARM_MODE_ANY;
}
return ERROR_OK;
}
/* modify cp15_control_reg in order to enable or disable mmu for :
* - virt2phys address conversion
* - read or write memory in phys or virt address */
static int cortex_a8_mmu_modify(struct target *target, int enable)
{
struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
struct armv7a_common *armv7a = target_to_armv7a(target);
int retval = ERROR_OK;
if (enable)
{
/* if mmu enabled at target stop and mmu not enable */
if (!(cortex_a8->cp15_control_reg & 0x1U))
{
LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
return ERROR_FAIL;
}
if (!(cortex_a8->cp15_control_reg_curr & 0x1U))
{
cortex_a8->cp15_control_reg_curr |= 0x1U;
retval = armv7a->armv4_5_common.mcr(target, 15,
0, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
cortex_a8->cp15_control_reg_curr);
}
}
else
{
if (cortex_a8->cp15_control_reg_curr & 0x4U)
{
/* data cache is active */
cortex_a8->cp15_control_reg_curr &= ~0x4U;
/* flush data cache armv7 function to be called */
if (armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache)
armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache(target);
}
if ( (cortex_a8->cp15_control_reg_curr & 0x1U))
{
cortex_a8->cp15_control_reg_curr &= ~0x1U;
retval = armv7a->armv4_5_common.mcr(target, 15,
0, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
cortex_a8->cp15_control_reg_curr);
}
}
return retval;
}
/*
* Cortex-A8 Basic debug access, very low level assumes state is saved
*/
@ -929,7 +1016,11 @@ static int cortex_a8_internal_restore(struct target *target, int current,
buf_set_u32(armv4_5->pc->value, 0, 32, resume_pc);
armv4_5->pc->dirty = 1;
armv4_5->pc->valid = 1;
/* restore dpm_mode at system halt */
dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
/* called it now before restoring context because it uses cpu
* register r0 for restoring cp15 control register */
retval = cortex_a8_restore_cp15_control_reg(target);
retval = cortex_a8_restore_context(target, handle_breakpoints);
if (retval != ERROR_OK)
return retval;
@ -1147,6 +1238,7 @@ static int cortex_a8_debug_entry(struct target *target)
/* read Current PSR */
retval = cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
/* store current cpsr */
if (retval != ERROR_OK)
return retval;
@ -1220,31 +1312,20 @@ static int cortex_a8_post_debug_entry(struct target *target)
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
cortex_a8->cp15_control_reg_curr = cortex_a8->cp15_control_reg;
if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
if (armv7a->armv7a_mmu.armv7a_cache.ctype == -1)
{
uint32_t cache_type_reg;
/* MRC p15,0,<Rt>,c0,c0,1 ; Read CP15 Cache Type Register */
retval = armv7a->armv4_5_common.mrc(target, 15,
0, 1, /* op1, op2 */
0, 0, /* CRn, CRm */
&cache_type_reg);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("cp15 cache type: %8.8x", (unsigned) cache_type_reg);
/* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
armv4_5_identify_cache(cache_type_reg,
&armv7a->armv4_5_mmu.armv4_5_cache);
armv7a_identify_cache(target);
}
armv7a->armv4_5_mmu.mmu_enabled =
armv7a->armv7a_mmu.mmu_enabled =
(cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
(cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
(cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
cortex_a8->curr_mode = armv7a->armv4_5_common.core_mode;
return ERROR_OK;
}
@ -1990,18 +2071,9 @@ static int cortex_a8_read_phys_memory(struct target *target,
} else {
/* read memory through APB-AP */
int enabled = 0;
retval = cortex_a8_mmu(target, &enabled);
if (retval != ERROR_OK)
return retval;
if (enabled)
{
LOG_WARNING("Reading physical memory through \
APB with MMU enabled is not yet implemented");
return ERROR_TARGET_FAILURE;
}
/* disable mmu */
retval = cortex_a8_mmu_modify(target, 0);
if (retval != ERROR_OK) return retval;
retval = cortex_a8_read_apb_ab_memory(target, address, size, count, buffer);
}
}
@ -2040,6 +2112,11 @@ static int cortex_a8_read_memory(struct target *target, uint32_t address,
}
retval = cortex_a8_read_phys_memory(target, address, size, count, buffer);
} else {
retval = cortex_a8_check_address(target, address);
if (retval != ERROR_OK) return retval;
/* enable mmu */
retval = cortex_a8_mmu_modify(target, 1);
if (retval != ERROR_OK) return retval;
retval = cortex_a8_read_apb_ab_memory(target, address, size, count, buffer);
}
return retval;
@ -2081,18 +2158,9 @@ static int cortex_a8_write_phys_memory(struct target *target,
} else {
/* write memory through APB-AP */
int enabled = 0;
retval = cortex_a8_mmu(target, &enabled);
retval = cortex_a8_mmu_modify(target, 0);
if (retval != ERROR_OK)
return retval;
if (enabled)
{
LOG_WARNING("Writing physical memory through APB with MMU" \
"enabled is not yet implemented");
return ERROR_TARGET_FAILURE;
}
return cortex_a8_write_apb_ab_memory(target, address, size, count, buffer);
}
}
@ -2117,7 +2185,7 @@ static int cortex_a8_write_phys_memory(struct target *target,
*/
/* invalidate I-Cache */
if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
if (armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled)
{
/* ICIMVAU - Invalidate Cache single entry
* with MVA to PoU
@ -2135,7 +2203,7 @@ static int cortex_a8_write_phys_memory(struct target *target,
}
/* invalidate D-Cache */
if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
if (armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled)
{
/* DCIMVAC - Invalidate data Cache line
* with MVA to PoC
@ -2191,6 +2259,11 @@ static int cortex_a8_write_memory(struct target *target, uint32_t address,
count, buffer);
}
else {
retval = cortex_a8_check_address(target, address);
if (retval != ERROR_OK) return retval;
/* enable mmu */
retval = cortex_a8_mmu_modify(target, 1);
if (retval != ERROR_OK) return retval;
retval = cortex_a8_write_apb_ab_memory(target, address, size, count, buffer);
}
return retval;
@ -2375,7 +2448,6 @@ static int cortex_a8_init_arch_info(struct target *target,
struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
{
struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
struct arm *armv4_5 = &armv7a->armv4_5_common;
struct adiv5_dap *dap = &armv7a->dap;
armv7a->armv4_5_common.dap = dap;
@ -2387,7 +2459,6 @@ static int cortex_a8_init_arch_info(struct target *target,
{
armv7a->armv4_5_common.dap = dap;
/* Setup struct cortex_a8_common */
armv4_5->arch_info = armv7a;
/* prepare JTAG information for the new target */
cortex_a8->jtag_info.tap = tap;
@ -2406,31 +2477,20 @@ static int cortex_a8_init_arch_info(struct target *target,
cortex_a8->fast_reg_read = 0;
/* Set default value */
cortex_a8->current_address_mode = ARM_MODE_ANY;
/* register arch-specific functions */
armv7a->examine_debug_reason = NULL;
armv7a->post_debug_entry = cortex_a8_post_debug_entry;
armv7a->pre_restore_context = NULL;
armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
armv7a->armv4_5_mmu.get_ttb = cortex_a8_get_ttb;
armv7a->armv4_5_mmu.read_memory = cortex_a8_read_phys_memory;
armv7a->armv4_5_mmu.write_memory = cortex_a8_write_phys_memory;
armv7a->armv4_5_mmu.disable_mmu_caches = cortex_a8_disable_mmu_caches;
armv7a->armv4_5_mmu.enable_mmu_caches = cortex_a8_enable_mmu_caches;
armv7a->armv4_5_mmu.has_tiny_pages = 1;
armv7a->armv4_5_mmu.mmu_enabled = 0;
armv7a->armv7a_mmu.read_physical_memory = cortex_a8_read_phys_memory;
// arm7_9->handle_target_request = cortex_a8_handle_target_request;
/* REVISIT v7a setup should be in a v7a-specific routine */
arm_init_arch_info(target, armv4_5);
armv7a->common_magic = ARMV7_COMMON_MAGIC;
armv7a_init_arch_info(target, armv7a);
target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
return ERROR_OK;
@ -2443,133 +2503,6 @@ static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
return cortex_a8_init_arch_info(target, cortex_a8, target->tap);
}
static int cortex_a8_get_ttb(struct target *target, uint32_t *result)
{
struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
uint32_t ttb = 0, retval = ERROR_OK;
/* current_address_mode is set inside cortex_a8_virt2phys()
where we can determine if address belongs to user or kernel */
if(cortex_a8->current_address_mode == ARM_MODE_SVC)
{
/* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
retval = armv7a->armv4_5_common.mrc(target, 15,
0, 1, /* op1, op2 */
2, 0, /* CRn, CRm */
&ttb);
if (retval != ERROR_OK)
return retval;
}
else if(cortex_a8->current_address_mode == ARM_MODE_USR)
{
/* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
retval = armv7a->armv4_5_common.mrc(target, 15,
0, 0, /* op1, op2 */
2, 0, /* CRn, CRm */
&ttb);
if (retval != ERROR_OK)
return retval;
}
/* we don't know whose address is: user or kernel
we assume that if we are in kernel mode then
address belongs to kernel else if in user mode
- to user */
else if(armv7a->armv4_5_common.core_mode == ARM_MODE_SVC)
{
/* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
retval = armv7a->armv4_5_common.mrc(target, 15,
0, 1, /* op1, op2 */
2, 0, /* CRn, CRm */
&ttb);
if (retval != ERROR_OK)
return retval;
}
else if(armv7a->armv4_5_common.core_mode == ARM_MODE_USR)
{
/* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
retval = armv7a->armv4_5_common.mrc(target, 15,
0, 0, /* op1, op2 */
2, 0, /* CRn, CRm */
&ttb);
if (retval != ERROR_OK)
return retval;
}
/* finally we don't know whose ttb to use: user or kernel */
else
LOG_ERROR("Don't know how to get ttb for current mode!!!");
ttb &= 0xffffc000;
*result = ttb;
return ERROR_OK;
}
static int cortex_a8_disable_mmu_caches(struct target *target, int mmu,
int d_u_cache, int i_cache)
{
struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
uint32_t cp15_control;
int retval;
/* read cp15 control register */
retval = armv7a->armv4_5_common.mrc(target, 15,
0, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
&cp15_control);
if (retval != ERROR_OK)
return retval;
if (mmu)
cp15_control &= ~0x1U;
if (d_u_cache)
cp15_control &= ~0x4U;
if (i_cache)
cp15_control &= ~0x1000U;
retval = armv7a->armv4_5_common.mcr(target, 15,
0, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
cp15_control);
return retval;
}
static int cortex_a8_enable_mmu_caches(struct target *target, int mmu,
int d_u_cache, int i_cache)
{
struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
uint32_t cp15_control;
int retval;
/* read cp15 control register */
retval = armv7a->armv4_5_common.mrc(target, 15,
0, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
&cp15_control);
if (retval != ERROR_OK)
return retval;
if (mmu)
cp15_control |= 0x1U;
if (d_u_cache)
cp15_control |= 0x4U;
if (i_cache)
cp15_control |= 0x1000U;
retval = armv7a->armv4_5_common.mcr(target, 15,
0, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
cp15_control);
return retval;
}
static int cortex_a8_mmu(struct target *target, int *enabled)
@ -2579,36 +2512,35 @@ static int cortex_a8_mmu(struct target *target, int *enabled)
return ERROR_TARGET_INVALID;
}
*enabled = target_to_cortex_a8(target)->armv7a_common.armv4_5_mmu.mmu_enabled;
*enabled = target_to_cortex_a8(target)->armv7a_common.armv7a_mmu.mmu_enabled;
return ERROR_OK;
}
static int cortex_a8_virt2phys(struct target *target,
uint32_t virt, uint32_t *phys)
{
uint32_t cb;
struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
// struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
int retval = ERROR_FAIL;
struct armv7a_common *armv7a = target_to_armv7a(target);
/* We assume that virtual address is separated
between user and kernel in Linux style:
0x00000000-0xbfffffff - User space
0xc0000000-0xffffffff - Kernel space */
if( virt < 0xc0000000 ) /* Linux user space */
cortex_a8->current_address_mode = ARM_MODE_USR;
else /* Linux kernel */
cortex_a8->current_address_mode = ARM_MODE_SVC;
struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
uint8_t apsel = swjdp->apsel;
if (apsel == swjdp_memoryap)
{
uint32_t ret;
int retval = armv4_5_mmu_translate_va(target,
&armv7a->armv4_5_mmu, virt, &cb, &ret);
retval = armv7a_mmu_translate_va(target,
virt, &ret);
if (retval != ERROR_OK)
return retval;
/* Reset the flag. We don't want someone else to use it by error */
cortex_a8->current_address_mode = ARM_MODE_ANY;
goto done;
*phys = ret;
return ERROR_OK;
}
else
{ /* use this method if swjdp_memoryap not selected */
/* mmu must be enable in order to get a correct translation */
retval = cortex_a8_mmu_modify(target, 1);
if (retval != ERROR_OK) goto done;
retval = armv7a_mmu_translate_va_pa(target, virt, phys, 1);
}
done:
return retval;
}
COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
@ -2616,8 +2548,8 @@ COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
struct target *target = get_current_target(CMD_CTX);
struct armv7a_common *armv7a = target_to_armv7a(target);
return armv4_5_handle_cache_info_command(CMD_CTX,
&armv7a->armv4_5_mmu.armv4_5_cache);
return armv7a_handle_cache_info_command(CMD_CTX,
&armv7a->armv7a_mmu.armv7a_cache);
}
@ -2789,5 +2721,4 @@ struct target_type cortexa8_target = {
.write_phys_memory = cortex_a8_write_phys_memory,
.mmu = cortex_a8_mmu,
.virt2phys = cortex_a8_virt2phys,
};

View File

@ -63,6 +63,10 @@ struct cortex_a8_common
/* Saved cp15 registers */
uint32_t cp15_control_reg;
/* latest cp15 register value written and cpsr processor mode */
uint32_t cp15_control_reg_curr;
enum arm_mode curr_mode;
/* Breakpoint register pairs */
int brp_num_context;
@ -73,10 +77,8 @@ struct cortex_a8_common
/* Use cortex_a8_read_regs_through_mem for fast register reads */
int fast_reg_read;
/* Flag that helps to resolve what ttb to use: user or kernel */
int current_address_mode;
struct armv7a_common armv7a_common;
};
static inline struct cortex_a8_common *