2011-01-31 05:32:07 -06:00
|
|
|
|
/***************************************************************************
|
|
|
|
|
* Copyright (C) 2005 by Dominic Rath *
|
|
|
|
|
* Dominic.Rath@gmx.de *
|
|
|
|
|
* *
|
|
|
|
|
* Copyright (C) 2008 by Spencer Oliver *
|
|
|
|
|
* spen@spen-soft.co.uk *
|
|
|
|
|
* *
|
|
|
|
|
* Copyright (C) 2011 Øyvind Harboe *
|
|
|
|
|
* oyvind.harboe@zylin.com *
|
|
|
|
|
* *
|
|
|
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
|
|
|
* it under the terms of the GNU General Public License as published by *
|
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
|
|
|
* (at your option) any later version. *
|
|
|
|
|
* *
|
|
|
|
|
* This program is distributed in the hope that it will be useful, *
|
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
|
|
|
* GNU General Public License for more details. *
|
|
|
|
|
* *
|
|
|
|
|
* You should have received a copy of the GNU General Public License *
|
|
|
|
|
* along with this program; if not, write to the *
|
|
|
|
|
* Free Software Foundation, Inc., *
|
|
|
|
|
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
|
|
|
|
|
***************************************************************************/
|
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
|
|
|
#include "config.h"
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#include "imp.h"
|
|
|
|
|
#include <helper/binarybuffer.h>
|
|
|
|
|
#include <target/algorithm.h>
|
|
|
|
|
#include <target/armv7m.h>
|
|
|
|
|
|
|
|
|
|
/* Regarding performance:
|
|
|
|
|
*
|
|
|
|
|
* Short story - it might be best to leave the performance at
|
|
|
|
|
* current levels.
|
|
|
|
|
*
|
|
|
|
|
* You may see a jump in speed if you change to using
|
|
|
|
|
* 32bit words for the block programming.
|
|
|
|
|
*
|
|
|
|
|
* Its a shame you cannot use the double word as its
|
|
|
|
|
* even faster - but you require external VPP for that mode.
|
|
|
|
|
*
|
|
|
|
|
* Having said all that 16bit writes give us the widest vdd
|
|
|
|
|
* operating range, so may be worth adding a note to that effect.
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
|
2011-07-28 05:42:27 -05:00
|
|
|
|
/* Danger!!!! The STM32F1x and STM32F2x series actually have
|
2011-01-31 05:32:07 -06:00
|
|
|
|
* quite different flash controllers.
|
|
|
|
|
*
|
|
|
|
|
* What's more scary is that the names of the registers and their
|
|
|
|
|
* addresses are the same, but the actual bits and what they do are
|
|
|
|
|
* can be very different.
|
|
|
|
|
*
|
|
|
|
|
* To reduce testing complexity and dangers of regressions,
|
2011-07-28 05:42:27 -05:00
|
|
|
|
* a seperate file is used for stm32fx2x.
|
2011-01-31 05:32:07 -06:00
|
|
|
|
*
|
|
|
|
|
* 1mByte part with 4 x 16, 1 x 64, 7 x 128kBytes sectors
|
|
|
|
|
*
|
|
|
|
|
* What's the protection page size???
|
|
|
|
|
*
|
|
|
|
|
* Tested with STM3220F-EVAL board.
|
|
|
|
|
*
|
|
|
|
|
* STM32F21xx series for reference.
|
|
|
|
|
*
|
|
|
|
|
* RM0033
|
|
|
|
|
* http://www.st.com/internet/mcu/product/250192.jsp
|
|
|
|
|
*
|
|
|
|
|
* PM0059
|
|
|
|
|
* www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/PROGRAMMING_MANUAL/CD00233952.pdf
|
|
|
|
|
*
|
2011-07-28 05:42:27 -05:00
|
|
|
|
* STM32F1x series - notice that this code was copy, pasted and knocked
|
|
|
|
|
* into a stm32f2x driver, so in case something has been converted or
|
2011-01-31 05:32:07 -06:00
|
|
|
|
* bugs haven't been fixed, here are the original manuals:
|
|
|
|
|
*
|
|
|
|
|
* RM0008 - Reference manual
|
|
|
|
|
*
|
|
|
|
|
* RM0042, the Flash programming manual for low-, medium- high-density and
|
2011-07-28 05:42:27 -05:00
|
|
|
|
* connectivity line STM32F10x devices
|
2011-01-31 05:32:07 -06:00
|
|
|
|
*
|
2011-07-28 05:42:27 -05:00
|
|
|
|
* PM0068, the Flash programming manual for XL-density STM32F10x devices.
|
2011-01-31 05:32:07 -06:00
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
// Erase time can be as high as 1000ms, 10x this and it's toast...
|
|
|
|
|
#define FLASH_ERASE_TIMEOUT 10000
|
|
|
|
|
#define FLASH_WRITE_TIMEOUT 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define STM32_FLASH_BASE 0x40023c00
|
|
|
|
|
#define STM32_FLASH_ACR 0x40023c00
|
|
|
|
|
#define STM32_FLASH_KEYR 0x40023c04
|
|
|
|
|
#define STM32_FLASH_OPTKEYR 0x40023c08
|
|
|
|
|
#define STM32_FLASH_SR 0x40023c0C
|
|
|
|
|
#define STM32_FLASH_CR 0x40023c10
|
|
|
|
|
#define STM32_FLASH_OPTCR 0x40023c14
|
|
|
|
|
#define STM32_FLASH_OBR 0x40023c1C
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* option byte location */
|
|
|
|
|
|
|
|
|
|
#define STM32_OB_RDP 0x1FFFF800
|
|
|
|
|
#define STM32_OB_USER 0x1FFFF802
|
|
|
|
|
#define STM32_OB_DATA0 0x1FFFF804
|
|
|
|
|
#define STM32_OB_DATA1 0x1FFFF806
|
|
|
|
|
#define STM32_OB_WRP0 0x1FFFF808
|
|
|
|
|
#define STM32_OB_WRP1 0x1FFFF80A
|
|
|
|
|
#define STM32_OB_WRP2 0x1FFFF80C
|
|
|
|
|
#define STM32_OB_WRP3 0x1FFFF80E
|
|
|
|
|
|
|
|
|
|
/* FLASH_CR register bits */
|
|
|
|
|
|
|
|
|
|
#define FLASH_PG (1 << 0)
|
|
|
|
|
#define FLASH_SER (1 << 1)
|
|
|
|
|
#define FLASH_MER (1 << 2)
|
|
|
|
|
#define FLASH_STRT (1 << 16)
|
|
|
|
|
#define FLASH_PSIZE_8 (0 << 8)
|
|
|
|
|
#define FLASH_PSIZE_16 (1 << 8)
|
|
|
|
|
#define FLASH_PSIZE_32 (2 << 8)
|
|
|
|
|
#define FLASH_PSIZE_64 (3 << 8)
|
|
|
|
|
#define FLASH_SNB(a) ((a) << 3)
|
|
|
|
|
#define FLASH_LOCK (1 << 31)
|
|
|
|
|
|
|
|
|
|
/* FLASH_SR register bits */
|
|
|
|
|
|
|
|
|
|
#define FLASH_BSY (1 << 16)
|
|
|
|
|
#define FLASH_PGSERR (1 << 7) // Programming sequence error
|
|
|
|
|
#define FLASH_PGPERR (1 << 6) // Programming parallelism error
|
|
|
|
|
#define FLASH_PGAERR (1 << 5) // Programming alignment error
|
|
|
|
|
#define FLASH_WRPERR (1 << 4) // Write protection error
|
|
|
|
|
#define FLASH_OPERR (1 << 1) // Operation error
|
|
|
|
|
|
|
|
|
|
#define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR| FLASH_WRPERR| FLASH_OPERR)
|
|
|
|
|
|
|
|
|
|
/* STM32_FLASH_OBR bit definitions (reading) */
|
|
|
|
|
|
|
|
|
|
#define OPT_ERROR 0
|
|
|
|
|
#define OPT_READOUT 1
|
|
|
|
|
#define OPT_RDWDGSW 2
|
|
|
|
|
#define OPT_RDRSTSTOP 3
|
|
|
|
|
#define OPT_RDRSTSTDBY 4
|
|
|
|
|
#define OPT_BFB2 5 /* dual flash bank only */
|
|
|
|
|
|
|
|
|
|
/* register unlock keys */
|
|
|
|
|
|
|
|
|
|
#define KEY1 0x45670123
|
|
|
|
|
#define KEY2 0xCDEF89AB
|
|
|
|
|
|
|
|
|
|
struct stm32x_flash_bank
|
|
|
|
|
{
|
|
|
|
|
struct working_area *write_algorithm;
|
|
|
|
|
int probed;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* flash bank stm32x <base> <size> 0 0 <target#>
|
|
|
|
|
*/
|
|
|
|
|
FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
|
|
|
|
|
{
|
|
|
|
|
struct stm32x_flash_bank *stm32x_info;
|
|
|
|
|
|
|
|
|
|
if (CMD_ARGC < 6)
|
|
|
|
|
{
|
2011-12-16 00:48:39 -06:00
|
|
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
2011-01-31 05:32:07 -06:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
|
|
|
|
|
bank->driver_priv = stm32x_info;
|
|
|
|
|
|
|
|
|
|
stm32x_info->write_algorithm = NULL;
|
|
|
|
|
stm32x_info->probed = 0;
|
|
|
|
|
|
|
|
|
|
return ERROR_OK;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
|
|
|
|
|
{
|
|
|
|
|
return reg;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
|
|
|
|
|
{
|
|
|
|
|
struct target *target = bank->target;
|
|
|
|
|
return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
|
|
|
|
|
{
|
|
|
|
|
struct target *target = bank->target;
|
|
|
|
|
uint32_t status;
|
|
|
|
|
int retval = ERROR_OK;
|
|
|
|
|
|
|
|
|
|
/* wait for busy to clear */
|
|
|
|
|
for (;;)
|
|
|
|
|
{
|
|
|
|
|
retval = stm32x_get_flash_status(bank, &status);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
LOG_DEBUG("status: 0x%" PRIx32 "", status);
|
|
|
|
|
if ((status & FLASH_BSY) == 0)
|
|
|
|
|
break;
|
|
|
|
|
if (timeout-- <= 0)
|
|
|
|
|
{
|
|
|
|
|
LOG_ERROR("timed out waiting for flash");
|
|
|
|
|
return ERROR_FAIL;
|
|
|
|
|
}
|
|
|
|
|
alive_sleep(1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (status & FLASH_WRPERR)
|
|
|
|
|
{
|
|
|
|
|
LOG_ERROR("stm32x device protected");
|
|
|
|
|
retval = ERROR_FAIL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Clear but report errors */
|
|
|
|
|
if (status & FLASH_ERROR)
|
|
|
|
|
{
|
|
|
|
|
/* If this operation fails, we ignore it and report the original
|
|
|
|
|
* retval
|
|
|
|
|
*/
|
|
|
|
|
target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
|
|
|
|
|
status & FLASH_ERROR);
|
|
|
|
|
}
|
|
|
|
|
return retval;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int stm32x_unlock_reg(struct target *target)
|
|
|
|
|
{
|
2011-12-16 00:51:17 -06:00
|
|
|
|
uint32_t ctrl;
|
|
|
|
|
|
2012-01-10 09:21:00 -06:00
|
|
|
|
/* first check if not already unlocked
|
|
|
|
|
* otherwise writing on STM32_FLASH_KEYR will fail
|
|
|
|
|
*/
|
|
|
|
|
int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
|
|
if ((ctrl & FLASH_LOCK) == 0)
|
|
|
|
|
return ERROR_OK;
|
|
|
|
|
|
2011-01-31 05:32:07 -06:00
|
|
|
|
/* unlock flash registers */
|
2012-01-10 09:21:00 -06:00
|
|
|
|
retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
|
2011-01-31 05:32:07 -06:00
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
|
|
retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
2011-12-16 00:51:17 -06:00
|
|
|
|
|
|
|
|
|
retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
|
|
if (ctrl & FLASH_LOCK) {
|
|
|
|
|
LOG_ERROR("flash not unlocked STM32_FLASH_CR: %x", ctrl);
|
|
|
|
|
return ERROR_TARGET_FAILURE;
|
|
|
|
|
}
|
|
|
|
|
|
2011-01-31 05:32:07 -06:00
|
|
|
|
return ERROR_OK;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int stm32x_protect_check(struct flash_bank *bank)
|
|
|
|
|
{
|
|
|
|
|
return ERROR_OK;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int stm32x_erase(struct flash_bank *bank, int first, int last)
|
|
|
|
|
{
|
|
|
|
|
struct target *target = bank->target;
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
if (bank->target->state != TARGET_HALTED)
|
|
|
|
|
{
|
|
|
|
|
LOG_ERROR("Target not halted");
|
|
|
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int retval;
|
|
|
|
|
retval = stm32x_unlock_reg(target);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
Sector Erase
|
|
|
|
|
To erase a sector, follow the procedure below:
|
|
|
|
|
1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
|
|
|
|
|
FLASH_SR register
|
|
|
|
|
2. Set the SER bit and select the sector (out of the 12 sectors in the main memory block)
|
|
|
|
|
you wish to erase (SNB) in the FLASH_CR register
|
|
|
|
|
3. Set the STRT bit in the FLASH_CR register
|
|
|
|
|
4. Wait for the BSY bit to be cleared
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
for (i = first; i <= last; i++)
|
|
|
|
|
{
|
|
|
|
|
retval = target_write_u32(target,
|
|
|
|
|
stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_SER | FLASH_SNB(i) | FLASH_STRT);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
|
|
retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
|
|
bank->sectors[i].is_erased = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
|
|
return ERROR_OK;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
|
|
|
|
|
{
|
|
|
|
|
return ERROR_OK;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer,
|
|
|
|
|
uint32_t offset, uint32_t count)
|
|
|
|
|
{
|
|
|
|
|
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
|
|
|
|
|
struct target *target = bank->target;
|
|
|
|
|
uint32_t buffer_size = 16384;
|
|
|
|
|
struct working_area *source;
|
|
|
|
|
uint32_t address = bank->base + offset;
|
|
|
|
|
struct reg_param reg_params[5];
|
|
|
|
|
struct armv7m_algorithm armv7m_info;
|
|
|
|
|
int retval = ERROR_OK;
|
|
|
|
|
|
2011-11-14 07:00:42 -06:00
|
|
|
|
/* see contrib/loaders/flash/stm32f2x.S for src */
|
2011-01-31 05:32:07 -06:00
|
|
|
|
|
|
|
|
|
static const uint16_t stm32x_flash_write_code_16[] = {
|
2011-11-14 07:33:30 -06:00
|
|
|
|
/* 00000000 <write>: */
|
|
|
|
|
0x4b07, /* ldr r3, [pc, #28] (20 <STM32_PROG16>) */
|
|
|
|
|
0x6123, /* str r3, [r4, #16] */
|
|
|
|
|
0xf830, 0x3b02, /* ldrh.w r3, [r0], #2 */
|
|
|
|
|
0xf821, 0x3b02, /* strh.w r3, [r1], #2 */
|
|
|
|
|
|
|
|
|
|
/* 0000000c <busy>: */
|
|
|
|
|
0x68e3, /* ldr r3, [r4, #12] */
|
|
|
|
|
0xf413, 0x3f80, /* tst.w r3, #65536 ; 0x10000 */
|
|
|
|
|
0xd0fb, /* beq.n c <busy> */
|
|
|
|
|
0xf013, 0x0ff0, /* tst.w r3, #240 ; 0xf0 */
|
|
|
|
|
0xd101, /* bne.n 1e <exit> */
|
|
|
|
|
0x3a01, /* subs r2, #1 */
|
|
|
|
|
0xd1f0, /* bne.n 0 <write> */
|
|
|
|
|
/* 0000001e <exit>: */
|
|
|
|
|
0xbe00, /* bkpt 0x0000 */
|
|
|
|
|
|
|
|
|
|
/* 00000020 <STM32_PROG16>: */
|
|
|
|
|
0x0101, 0x0000, /* .word 0x00000101 */
|
2011-01-31 05:32:07 -06:00
|
|
|
|
};
|
|
|
|
|
|
2011-11-14 07:33:30 -06:00
|
|
|
|
/* Flip endian */
|
2011-01-31 05:32:07 -06:00
|
|
|
|
uint8_t stm32x_flash_write_code[sizeof(stm32x_flash_write_code_16)*2];
|
|
|
|
|
for (unsigned i = 0; i < sizeof(stm32x_flash_write_code_16) / 2; i++)
|
|
|
|
|
{
|
|
|
|
|
stm32x_flash_write_code[i*2 + 0] = stm32x_flash_write_code_16[i] & 0xff;
|
|
|
|
|
stm32x_flash_write_code[i*2 + 1] = (stm32x_flash_write_code_16[i] >> 8) & 0xff;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
|
|
|
|
|
&stm32x_info->write_algorithm) != ERROR_OK)
|
|
|
|
|
{
|
|
|
|
|
LOG_WARNING("no working area available, can't do block memory writes");
|
|
|
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
if ((retval = target_write_buffer(target, stm32x_info->write_algorithm->address,
|
|
|
|
|
sizeof(stm32x_flash_write_code),
|
|
|
|
|
(uint8_t*)stm32x_flash_write_code)) != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
|
|
/* memory buffer */
|
|
|
|
|
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
|
|
|
|
|
{
|
|
|
|
|
buffer_size /= 2;
|
|
|
|
|
if (buffer_size <= 256)
|
|
|
|
|
{
|
|
|
|
|
/* if we already allocated the writing code, but failed to get a
|
|
|
|
|
* buffer, free the algorithm */
|
|
|
|
|
if (stm32x_info->write_algorithm)
|
|
|
|
|
target_free_working_area(target, stm32x_info->write_algorithm);
|
|
|
|
|
|
|
|
|
|
LOG_WARNING("no large enough working area available, can't do block memory writes");
|
|
|
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
|
|
|
|
|
armv7m_info.core_mode = ARMV7M_MODE_ANY;
|
|
|
|
|
|
|
|
|
|
init_reg_param(®_params[0], "r0", 32, PARAM_OUT);
|
|
|
|
|
init_reg_param(®_params[1], "r1", 32, PARAM_OUT);
|
|
|
|
|
init_reg_param(®_params[2], "r2", 32, PARAM_OUT);
|
|
|
|
|
init_reg_param(®_params[3], "r3", 32, PARAM_IN_OUT);
|
|
|
|
|
init_reg_param(®_params[4], "r4", 32, PARAM_OUT);
|
|
|
|
|
|
|
|
|
|
while (count > 0)
|
|
|
|
|
{
|
|
|
|
|
uint32_t thisrun_count = (count > (buffer_size / 2)) ?
|
|
|
|
|
(buffer_size / 2) : count;
|
|
|
|
|
|
|
|
|
|
if ((retval = target_write_buffer(target, source->address,
|
|
|
|
|
thisrun_count * 2, buffer)) != ERROR_OK)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
buf_set_u32(reg_params[0].value, 0, 32, source->address);
|
|
|
|
|
buf_set_u32(reg_params[1].value, 0, 32, address);
|
|
|
|
|
buf_set_u32(reg_params[2].value, 0, 32, thisrun_count);
|
|
|
|
|
// R3 is a return value only
|
|
|
|
|
buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
|
|
|
|
|
|
|
|
|
|
if ((retval = target_run_algorithm(target, 0, NULL,
|
|
|
|
|
sizeof(reg_params) / sizeof(*reg_params),
|
|
|
|
|
reg_params,
|
|
|
|
|
stm32x_info->write_algorithm->address,
|
|
|
|
|
0,
|
|
|
|
|
10000, &armv7m_info)) != ERROR_OK)
|
|
|
|
|
{
|
|
|
|
|
LOG_ERROR("error executing stm32x flash write algorithm");
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
uint32_t error = buf_get_u32(reg_params[3].value, 0, 32) & FLASH_ERROR;
|
|
|
|
|
|
|
|
|
|
if (error & FLASH_WRPERR)
|
|
|
|
|
{
|
|
|
|
|
LOG_ERROR("flash memory write protected");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (error != 0)
|
|
|
|
|
{
|
|
|
|
|
LOG_ERROR("flash write failed = %08x", error);
|
|
|
|
|
/* Clear but report errors */
|
|
|
|
|
target_write_u32(target, STM32_FLASH_SR, error);
|
|
|
|
|
retval = ERROR_FAIL;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
buffer += thisrun_count * 2;
|
|
|
|
|
address += thisrun_count * 2;
|
|
|
|
|
count -= thisrun_count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
target_free_working_area(target, source);
|
|
|
|
|
target_free_working_area(target, stm32x_info->write_algorithm);
|
|
|
|
|
|
|
|
|
|
destroy_reg_param(®_params[0]);
|
|
|
|
|
destroy_reg_param(®_params[1]);
|
|
|
|
|
destroy_reg_param(®_params[2]);
|
|
|
|
|
destroy_reg_param(®_params[3]);
|
|
|
|
|
destroy_reg_param(®_params[4]);
|
|
|
|
|
|
|
|
|
|
return retval;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int stm32x_write(struct flash_bank *bank, uint8_t *buffer,
|
|
|
|
|
uint32_t offset, uint32_t count)
|
|
|
|
|
{
|
|
|
|
|
struct target *target = bank->target;
|
|
|
|
|
uint32_t words_remaining = (count / 2);
|
|
|
|
|
uint32_t bytes_remaining = (count & 0x00000001);
|
|
|
|
|
uint32_t address = bank->base + offset;
|
|
|
|
|
uint32_t bytes_written = 0;
|
|
|
|
|
int retval;
|
|
|
|
|
|
|
|
|
|
if (bank->target->state != TARGET_HALTED)
|
|
|
|
|
{
|
|
|
|
|
LOG_ERROR("Target not halted");
|
|
|
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (offset & 0x1)
|
|
|
|
|
{
|
|
|
|
|
LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
|
|
|
|
|
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
retval = stm32x_unlock_reg(target);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
|
|
/* multiple half words (2-byte) to be programmed? */
|
|
|
|
|
if (words_remaining > 0)
|
|
|
|
|
{
|
|
|
|
|
/* try using a block write */
|
|
|
|
|
if ((retval = stm32x_write_block(bank, buffer, offset, words_remaining)) != ERROR_OK)
|
|
|
|
|
{
|
|
|
|
|
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
|
|
|
|
|
{
|
|
|
|
|
/* if block write failed (no sufficient working area),
|
|
|
|
|
* we use normal (slow) single dword accesses */
|
|
|
|
|
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
buffer += words_remaining * 2;
|
|
|
|
|
address += words_remaining * 2;
|
|
|
|
|
words_remaining = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
Standard programming
|
|
|
|
|
The Flash memory programming sequence is as follows:
|
|
|
|
|
1. Check that no main Flash memory operation is ongoing by checking the BSY bit in the
|
|
|
|
|
FLASH_SR register.
|
|
|
|
|
2. Set the PG bit in the FLASH_CR register
|
|
|
|
|
3. Perform the data write operation(s) to the desired memory address (inside main
|
|
|
|
|
memory block or OTP area):
|
|
|
|
|
– – Half-word access in case of x16 parallelism
|
|
|
|
|
– Word access in case of x32 parallelism
|
|
|
|
|
–
|
|
|
|
|
4.
|
|
|
|
|
Byte access in case of x8 parallelism
|
|
|
|
|
Double word access in case of x64 parallelism
|
|
|
|
|
Wait for the BSY bit to be cleared
|
|
|
|
|
*/
|
|
|
|
|
while (words_remaining > 0)
|
|
|
|
|
{
|
|
|
|
|
uint16_t value;
|
|
|
|
|
memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
|
|
|
|
|
|
|
|
|
|
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
|
|
|
|
|
FLASH_PG | FLASH_PSIZE_16);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
|
|
retval = target_write_u16(target, address, value);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
|
|
retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
|
|
bytes_written += 2;
|
|
|
|
|
words_remaining--;
|
|
|
|
|
address += 2;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (bytes_remaining)
|
|
|
|
|
{
|
|
|
|
|
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
|
|
|
|
|
FLASH_PG | FLASH_PSIZE_8);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
retval = target_write_u8(target, address, buffer[bytes_written]);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
|
|
retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void setup_sector(struct flash_bank *bank, int start, int num, int size)
|
|
|
|
|
{
|
|
|
|
|
for (int i = start; i < (start + num) ; i++)
|
|
|
|
|
{
|
|
|
|
|
bank->sectors[i].offset = bank->size;
|
|
|
|
|
bank->sectors[i].size = size;
|
|
|
|
|
bank->size += bank->sectors[i].size;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2012-01-09 07:00:22 -06:00
|
|
|
|
static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
|
|
|
|
|
{
|
|
|
|
|
/* this checks for a stm32f4x errata issue where a
|
|
|
|
|
* stm32f2x DBGMCU_IDCODE is incorrectly returned.
|
|
|
|
|
* If the issue is detected target is forced to stm32f4x Rev A.
|
|
|
|
|
* Only effects Rev A silicon */
|
|
|
|
|
|
|
|
|
|
struct target *target = bank->target;
|
|
|
|
|
uint32_t cpuid;
|
|
|
|
|
|
|
|
|
|
/* read stm32 device id register */
|
|
|
|
|
int retval = target_read_u32(target, 0xE0042000, device_id);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
|
2012-01-12 16:00:09 -06:00
|
|
|
|
if ((*device_id & 0xfff) == 0x411) {
|
2012-01-09 07:00:22 -06:00
|
|
|
|
/* read CPUID reg to check core type */
|
|
|
|
|
retval = target_read_u32(target, 0xE000ED00, &cpuid);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
|
|
/* check for cortex_m4 */
|
|
|
|
|
if (((cpuid >> 4) & 0xFFF) == 0xC24) {
|
2012-01-12 16:00:09 -06:00
|
|
|
|
*device_id &= ~((0xFFFF << 16) | 0xfff);
|
2012-01-09 07:00:22 -06:00
|
|
|
|
*device_id |= (0x1000 << 16) | 0x413;
|
|
|
|
|
LOG_INFO("stm32f4x errata detected - fixing incorrect MCU_IDCODE");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return retval;
|
|
|
|
|
}
|
|
|
|
|
|
2011-01-31 05:32:07 -06:00
|
|
|
|
static int stm32x_probe(struct flash_bank *bank)
|
|
|
|
|
{
|
|
|
|
|
struct target *target = bank->target;
|
|
|
|
|
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
|
|
|
|
|
int i;
|
2012-01-04 16:43:59 -06:00
|
|
|
|
uint16_t flash_size_in_kb;
|
2011-01-31 05:32:07 -06:00
|
|
|
|
uint32_t device_id;
|
|
|
|
|
uint32_t base_address = 0x08000000;
|
|
|
|
|
|
|
|
|
|
stm32x_info->probed = 0;
|
|
|
|
|
|
|
|
|
|
/* read stm32 device id register */
|
2012-01-09 07:00:22 -06:00
|
|
|
|
int retval = stm32x_get_device_id(bank, &device_id);
|
2011-01-31 05:32:07 -06:00
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
|
|
|
|
|
|
2012-01-04 16:43:59 -06:00
|
|
|
|
/* get flash size from target. */
|
|
|
|
|
retval = target_read_u16(target, 0x1FFF7A10, &flash_size_in_kb);
|
|
|
|
|
if (retval != ERROR_OK) {
|
|
|
|
|
LOG_WARNING("failed reading flash size, default to max target family");
|
|
|
|
|
/* failed reading flash size, default to max target family */
|
|
|
|
|
flash_size_in_kb = 0xffff;
|
|
|
|
|
}
|
|
|
|
|
|
2012-01-09 06:42:31 -06:00
|
|
|
|
if ((device_id & 0xfff) == 0x411) {
|
2012-01-04 16:43:59 -06:00
|
|
|
|
/* check for early silicon */
|
|
|
|
|
if (flash_size_in_kb == 0xffff) {
|
|
|
|
|
/* number of sectors may be incorrrect on early silicon */
|
2012-01-09 06:44:48 -06:00
|
|
|
|
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 1024k flash");
|
|
|
|
|
flash_size_in_kb = 1024;
|
2012-01-04 16:43:59 -06:00
|
|
|
|
}
|
2012-01-09 06:42:31 -06:00
|
|
|
|
} else if ((device_id & 0xfff) == 0x413) {
|
2012-01-04 16:55:49 -06:00
|
|
|
|
/* check for early silicon */
|
|
|
|
|
if (flash_size_in_kb == 0xffff) {
|
|
|
|
|
/* number of sectors may be incorrrect on early silicon */
|
2012-01-09 06:44:48 -06:00
|
|
|
|
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 1024k flash");
|
|
|
|
|
flash_size_in_kb = 1024;
|
2012-01-04 16:55:49 -06:00
|
|
|
|
}
|
2012-01-04 16:43:59 -06:00
|
|
|
|
} else {
|
|
|
|
|
LOG_WARNING("Cannot identify target as a STM32 family.");
|
2011-01-31 05:32:07 -06:00
|
|
|
|
return ERROR_FAIL;
|
|
|
|
|
}
|
|
|
|
|
|
2012-01-04 16:43:59 -06:00
|
|
|
|
LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
|
2011-01-31 05:32:07 -06:00
|
|
|
|
|
2012-01-04 16:43:59 -06:00
|
|
|
|
/* did we assign flash size? */
|
|
|
|
|
assert(flash_size_in_kb != 0xffff);
|
2011-01-31 05:32:07 -06:00
|
|
|
|
|
2012-01-04 16:43:59 -06:00
|
|
|
|
/* calculate numbers of pages */
|
|
|
|
|
int num_pages = (flash_size_in_kb / 128) + 4;
|
|
|
|
|
|
|
|
|
|
/* check that calculation result makes sense */
|
|
|
|
|
assert(num_pages > 0);
|
|
|
|
|
|
|
|
|
|
if (bank->sectors) {
|
2011-01-31 05:32:07 -06:00
|
|
|
|
free(bank->sectors);
|
|
|
|
|
bank->sectors = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bank->base = base_address;
|
|
|
|
|
bank->num_sectors = num_pages;
|
|
|
|
|
bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
|
|
|
|
|
bank->size = 0;
|
2012-01-04 16:43:59 -06:00
|
|
|
|
|
|
|
|
|
/* fixed memory */
|
2011-01-31 05:32:07 -06:00
|
|
|
|
setup_sector(bank, 0, 4, 16 * 1024);
|
|
|
|
|
setup_sector(bank, 4, 1, 64 * 1024);
|
|
|
|
|
|
2012-01-04 16:43:59 -06:00
|
|
|
|
/* dynamic memory */
|
|
|
|
|
setup_sector(bank, 4 + 1, num_pages - 5, 128 * 1024);
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < num_pages; i++) {
|
2011-01-31 05:32:07 -06:00
|
|
|
|
bank->sectors[i].is_erased = -1;
|
|
|
|
|
bank->sectors[i].is_protected = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
stm32x_info->probed = 1;
|
|
|
|
|
|
|
|
|
|
return ERROR_OK;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int stm32x_auto_probe(struct flash_bank *bank)
|
|
|
|
|
{
|
|
|
|
|
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
|
|
|
|
|
if (stm32x_info->probed)
|
|
|
|
|
return ERROR_OK;
|
|
|
|
|
return stm32x_probe(bank);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
|
|
|
|
|
{
|
|
|
|
|
uint32_t device_id;
|
|
|
|
|
int printed;
|
|
|
|
|
|
|
|
|
|
/* read stm32 device id register */
|
2012-01-09 07:00:22 -06:00
|
|
|
|
int retval = stm32x_get_device_id(bank, &device_id);
|
2011-01-31 05:32:07 -06:00
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
|
2012-01-09 06:42:31 -06:00
|
|
|
|
if ((device_id & 0xfff) == 0x411) {
|
2012-01-04 16:55:49 -06:00
|
|
|
|
printed = snprintf(buf, buf_size, "stm32f2x - Rev: ");
|
2011-01-31 05:32:07 -06:00
|
|
|
|
buf += printed;
|
|
|
|
|
buf_size -= printed;
|
|
|
|
|
|
2012-01-04 16:55:49 -06:00
|
|
|
|
switch (device_id >> 16) {
|
2011-01-31 05:32:07 -06:00
|
|
|
|
case 0x1000:
|
|
|
|
|
snprintf(buf, buf_size, "A");
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 0x2000:
|
|
|
|
|
snprintf(buf, buf_size, "B");
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 0x1001:
|
|
|
|
|
snprintf(buf, buf_size, "Z");
|
|
|
|
|
break;
|
|
|
|
|
|
2011-04-24 10:35:27 -05:00
|
|
|
|
case 0x2001:
|
|
|
|
|
snprintf(buf, buf_size, "Y");
|
|
|
|
|
break;
|
|
|
|
|
|
2011-01-31 05:32:07 -06:00
|
|
|
|
default:
|
|
|
|
|
snprintf(buf, buf_size, "unknown");
|
|
|
|
|
break;
|
|
|
|
|
}
|
2012-01-09 06:42:31 -06:00
|
|
|
|
} else if ((device_id & 0xfff) == 0x413) {
|
2012-01-04 16:55:49 -06:00
|
|
|
|
printed = snprintf(buf, buf_size, "stm32f4x - Rev: ");
|
|
|
|
|
buf += printed;
|
|
|
|
|
buf_size -= printed;
|
|
|
|
|
|
|
|
|
|
switch (device_id >> 16) {
|
|
|
|
|
case 0x1000:
|
|
|
|
|
snprintf(buf, buf_size, "A");
|
|
|
|
|
break;
|
|
|
|
|
|
2012-01-09 06:44:48 -06:00
|
|
|
|
case 0x1001:
|
|
|
|
|
snprintf(buf, buf_size, "Z");
|
|
|
|
|
break;
|
|
|
|
|
|
2012-01-04 16:55:49 -06:00
|
|
|
|
default:
|
|
|
|
|
snprintf(buf, buf_size, "unknown");
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
} else {
|
2011-01-31 05:32:07 -06:00
|
|
|
|
snprintf(buf, buf_size, "Cannot identify target as a stm32x\n");
|
|
|
|
|
return ERROR_FAIL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return ERROR_OK;
|
|
|
|
|
}
|
|
|
|
|
|
2011-12-16 00:51:17 -06:00
|
|
|
|
static int stm32x_mass_erase(struct flash_bank *bank)
|
|
|
|
|
{
|
|
|
|
|
int retval;
|
|
|
|
|
struct target *target = bank->target;
|
|
|
|
|
|
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
|
|
|
LOG_ERROR("Target not halted");
|
|
|
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
retval = stm32x_unlock_reg(target);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
|
|
/* mass erase flash memory */
|
|
|
|
|
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
|
|
|
|
|
FLASH_MER | FLASH_STRT);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
|
|
retval = stm32x_wait_status_busy(bank, 30000);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
|
|
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
|
|
|
|
|
if (retval != ERROR_OK)
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
|
|
return ERROR_OK;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
COMMAND_HANDLER(stm32x_handle_mass_erase_command)
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
if (CMD_ARGC < 1) {
|
|
|
|
|
command_print(CMD_CTX, "stm32x mass_erase <bank>");
|
|
|
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
struct flash_bank *bank;
|
|
|
|
|
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
|
|
|
|
|
if (ERROR_OK != retval)
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
|
|
retval = stm32x_mass_erase(bank);
|
|
|
|
|
if (retval == ERROR_OK) {
|
|
|
|
|
/* set all sectors as erased */
|
|
|
|
|
for (i = 0; i < bank->num_sectors; i++)
|
|
|
|
|
bank->sectors[i].is_erased = 1;
|
|
|
|
|
|
|
|
|
|
command_print(CMD_CTX, "stm32x mass erase complete");
|
|
|
|
|
} else {
|
|
|
|
|
command_print(CMD_CTX, "stm32x mass erase failed");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return retval;
|
|
|
|
|
}
|
|
|
|
|
|
2011-01-31 05:32:07 -06:00
|
|
|
|
static const struct command_registration stm32x_exec_command_handlers[] = {
|
2011-12-16 00:51:17 -06:00
|
|
|
|
{
|
|
|
|
|
.name = "mass_erase",
|
|
|
|
|
.handler = stm32x_handle_mass_erase_command,
|
|
|
|
|
.mode = COMMAND_EXEC,
|
|
|
|
|
.usage = "bank_id",
|
|
|
|
|
.help = "Erase entire flash device.",
|
|
|
|
|
},
|
2011-01-31 05:32:07 -06:00
|
|
|
|
COMMAND_REGISTRATION_DONE
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
static const struct command_registration stm32x_command_handlers[] = {
|
|
|
|
|
{
|
2011-07-28 05:42:27 -05:00
|
|
|
|
.name = "stm32f2x",
|
2011-01-31 05:32:07 -06:00
|
|
|
|
.mode = COMMAND_ANY,
|
2011-07-28 05:42:27 -05:00
|
|
|
|
.help = "stm32f2x flash command group",
|
2012-01-09 10:14:18 -06:00
|
|
|
|
.usage = "",
|
2011-01-31 05:32:07 -06:00
|
|
|
|
.chain = stm32x_exec_command_handlers,
|
|
|
|
|
},
|
|
|
|
|
COMMAND_REGISTRATION_DONE
|
|
|
|
|
};
|
|
|
|
|
|
2011-07-28 05:42:27 -05:00
|
|
|
|
struct flash_driver stm32f2x_flash = {
|
|
|
|
|
.name = "stm32f2x",
|
2011-01-31 05:32:07 -06:00
|
|
|
|
.commands = stm32x_command_handlers,
|
|
|
|
|
.flash_bank_command = stm32x_flash_bank_command,
|
|
|
|
|
.erase = stm32x_erase,
|
|
|
|
|
.protect = stm32x_protect,
|
|
|
|
|
.write = stm32x_write,
|
|
|
|
|
.read = default_flash_read,
|
|
|
|
|
.probe = stm32x_probe,
|
|
|
|
|
.auto_probe = stm32x_auto_probe,
|
|
|
|
|
.erase_check = default_flash_mem_blank_check,
|
|
|
|
|
.protect_check = stm32x_protect_check,
|
|
|
|
|
.info = get_stm32x_info,
|
|
|
|
|
};
|