2009-06-02 18:59:13 -05:00
|
|
|
/***************************************************************************
|
|
|
|
* Copyright (C) 2005 by Dominic Rath *
|
|
|
|
* Dominic.Rath@gmx.de *
|
|
|
|
* *
|
|
|
|
* Copyright (C) 2007,2008 Øyvind Harboe *
|
|
|
|
* oyvind.harboe@zylin.com *
|
|
|
|
* *
|
|
|
|
* Copyright (C) 2009 Zachary T Welch *
|
|
|
|
* zw@superlucidity.net *
|
|
|
|
* *
|
|
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
|
|
* it under the terms of the GNU General Public License as published by *
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
|
|
* (at your option) any later version. *
|
|
|
|
* *
|
|
|
|
* This program is distributed in the hope that it will be useful, *
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
|
|
* GNU General Public License for more details. *
|
|
|
|
* *
|
|
|
|
* You should have received a copy of the GNU General Public License *
|
|
|
|
* along with this program; if not, write to the *
|
|
|
|
* Free Software Foundation, Inc., *
|
|
|
|
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
|
|
|
|
***************************************************************************/
|
|
|
|
#ifndef OPENOCD_JTAG_INTERFACE_H
|
|
|
|
#define OPENOCD_JTAG_INTERFACE_H
|
|
|
|
|
|
|
|
/* @file
|
|
|
|
* The "Cable Helper API" is what the cable drivers can use to help
|
|
|
|
* implement their "Cable API". So a Cable Helper API is a set of
|
|
|
|
* helper functions used by cable drivers, and this is different from a
|
|
|
|
* Cable API. A "Cable API" is what higher level code used to talk to a
|
|
|
|
* cable.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/** implementation of wrapper function tap_set_state() */
|
|
|
|
void tap_set_state_impl(tap_state_t new_state);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This function sets the state of a "state follower" which tracks the
|
|
|
|
* state of the TAPs connected to the cable. The state follower is
|
|
|
|
* hopefully always in the same state as the actual TAPs in the jtag
|
|
|
|
* chain, and will be so if there are no bugs in the tracking logic
|
|
|
|
* within that cable driver.
|
|
|
|
*
|
|
|
|
* All the cable drivers call this function to indicate the state they
|
|
|
|
* think the TAPs attached to their cables are in. Because this
|
|
|
|
* function can also log transitions, it will be helpful to call this
|
|
|
|
* function with every transition that the TAPs being manipulated are
|
|
|
|
* expected to traverse, not just end points of a multi-step state path.
|
|
|
|
*
|
|
|
|
* @param new_state The state we think the TAPs are currently in (or
|
|
|
|
* are about to enter).
|
|
|
|
*/
|
|
|
|
#if defined(_DEBUG_JTAG_IO_)
|
|
|
|
#define tap_set_state(new_state) \
|
|
|
|
do { \
|
|
|
|
LOG_DEBUG( "tap_set_state(%s)", tap_state_name(new_state) ); \
|
|
|
|
tap_set_state_impl(new_state); \
|
|
|
|
} while (0)
|
|
|
|
#else
|
|
|
|
static inline void tap_set_state(tap_state_t new_state)
|
|
|
|
{
|
|
|
|
tap_set_state_impl(new_state);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This function gets the state of the "state follower" which tracks the
|
|
|
|
* state of the TAPs connected to the cable. @see tap_set_state @return
|
|
|
|
* tap_state_t The state the TAPs are in now.
|
|
|
|
*/
|
|
|
|
tap_state_t tap_get_state(void);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This function sets the state of an "end state follower" which tracks
|
|
|
|
* the state that any cable driver thinks will be the end (resultant)
|
|
|
|
* state of the current TAP SIR or SDR operation.
|
|
|
|
*
|
|
|
|
* At completion of that TAP operation this value is copied into the
|
|
|
|
* state follower via tap_set_state().
|
|
|
|
*
|
|
|
|
* @param new_end_state The state the TAPs should enter at completion of
|
|
|
|
* a pending TAP operation.
|
|
|
|
*/
|
|
|
|
void tap_set_end_state(tap_state_t new_end_state);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* For more information, @see tap_set_end_state
|
|
|
|
* @return tap_state_t - The state the TAPs should be in at completion of the current TAP operation.
|
|
|
|
*/
|
|
|
|
tap_state_t tap_get_end_state(void);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This function provides a "bit sequence" indicating what has to be
|
|
|
|
* done with TMS during a sequence of seven TAP clock cycles in order to
|
|
|
|
* get from state \a "from" to state \a "to".
|
|
|
|
*
|
|
|
|
* The length of the sequence must be determined with a parallel call to
|
|
|
|
* tap_get_tms_path_len().
|
|
|
|
*
|
|
|
|
* @param from The starting state.
|
|
|
|
* @param to The desired final state.
|
|
|
|
* @return int The required TMS bit sequence, with the first bit in the
|
|
|
|
* sequence at bit 0.
|
|
|
|
*/
|
|
|
|
int tap_get_tms_path(tap_state_t from, tap_state_t to);
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Function int tap_get_tms_path_len
|
|
|
|
* returns the total number of bits that represents a TMS path
|
|
|
|
* transition as given by the function tap_get_tms_path().
|
|
|
|
*
|
|
|
|
* For at least one interface (JLink) it's not OK to simply "pad" TMS
|
|
|
|
* sequences to fit a whole byte. (I suspect this is a general TAP
|
|
|
|
* problem within OOCD.) Padding TMS causes all manner of instability
|
|
|
|
* that's not easily discovered. Using this routine we can apply
|
|
|
|
* EXACTLY the state transitions required to make something work - no
|
|
|
|
* more - no less.
|
|
|
|
*
|
|
|
|
* @param from is the starting state
|
|
|
|
* @param to is the resultant or final state
|
|
|
|
* @return int - the total number of bits in a transition.
|
|
|
|
*/
|
|
|
|
int tap_get_tms_path_len(tap_state_t from, tap_state_t to);
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Function tap_move_ndx
|
|
|
|
* when given a stable state, returns an index from 0-5. The index corresponds to a
|
|
|
|
* sequence of stable states which are given in this order: <p>
|
|
|
|
* { TAP_RESET, TAP_IDLE, TAP_DRSHIFT, TAP_DRPAUSE, TAP_IRSHIFT, TAP_IRPAUSE }
|
|
|
|
* <p>
|
|
|
|
* This sequence corresponds to look up tables which are used in some of the
|
|
|
|
* cable drivers.
|
|
|
|
* @param astate is the stable state to find in the sequence. If a non stable
|
|
|
|
* state is passed, this may cause the program to output an error message
|
|
|
|
* and terminate.
|
|
|
|
* @return int - the array (or sequence) index as described above
|
|
|
|
*/
|
|
|
|
int tap_move_ndx(tap_state_t astate);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Function tap_is_state_stable
|
|
|
|
* returns true if the \a astate is stable.
|
|
|
|
*/
|
|
|
|
bool tap_is_state_stable(tap_state_t astate);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Function tap_state_transition
|
|
|
|
* takes a current TAP state and returns the next state according to the tms value.
|
|
|
|
* @param current_state is the state of a TAP currently.
|
|
|
|
* @param tms is either zero or non-zero, just like a real TMS line in a jtag interface.
|
|
|
|
* @return tap_state_t - the next state a TAP would enter.
|
|
|
|
*/
|
|
|
|
tap_state_t tap_state_transition(tap_state_t current_state, bool tms);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Function tap_state_name
|
|
|
|
* Returns a string suitable for display representing the JTAG tap_state
|
|
|
|
*/
|
|
|
|
const char* tap_state_name(tap_state_t state);
|
|
|
|
|
2009-06-02 19:17:42 -05:00
|
|
|
/// Provides user-friendly name lookup of TAP states.
|
|
|
|
tap_state_t tap_state_by_name(const char *name);
|
|
|
|
|
2009-06-02 19:24:21 -05:00
|
|
|
/// Allow switching between old and new TMS tables. @see tap_get_tms_path
|
|
|
|
void tap_use_new_tms_table(bool use_new);
|
|
|
|
|
2009-06-02 18:59:13 -05:00
|
|
|
#ifdef _DEBUG_JTAG_IO_
|
|
|
|
/**
|
|
|
|
* @brief Prints verbose TAP state transitions for the given TMS/TDI buffers.
|
|
|
|
* @param tms_buf must points to a buffer containing the TMS bitstream.
|
|
|
|
* @param tdi_buf must points to a buffer containing the TDI bitstream.
|
|
|
|
* @param tap_len must specify the length of the TMS/TDI bitstreams.
|
|
|
|
* @param start_tap_state must specify the current TAP state.
|
|
|
|
* @returns the final TAP state; pass as @a start_tap_state in following call.
|
|
|
|
*/
|
|
|
|
tap_state_t jtag_debug_state_machine(const void *tms_buf, const void *tdi_buf,
|
|
|
|
unsigned tap_len, tap_state_t start_tap_state);
|
|
|
|
#else
|
|
|
|
static inline tap_state_t jtag_debug_state_machine(const void *tms_buf,
|
|
|
|
const void *tdi_buf, unsigned tap_len, tap_state_t start_tap_state)
|
|
|
|
{
|
|
|
|
return start_tap_state;
|
|
|
|
}
|
|
|
|
#endif // _DEBUG_JTAG_IO_
|
|
|
|
|
|
|
|
typedef struct jtag_interface_s
|
|
|
|
{
|
|
|
|
char* name;
|
|
|
|
|
|
|
|
/* queued command execution
|
|
|
|
*/
|
|
|
|
int (*execute_queue)(void);
|
|
|
|
|
|
|
|
/* interface initalization
|
|
|
|
*/
|
|
|
|
int (*speed)(int speed);
|
|
|
|
int (*register_commands)(struct command_context_s* cmd_ctx);
|
|
|
|
int (*init)(void);
|
|
|
|
int (*quit)(void);
|
|
|
|
|
|
|
|
/* returns JTAG maxium speed for KHz. 0=RTCK. The function returns
|
|
|
|
* a failure if it can't support the KHz/RTCK.
|
|
|
|
*
|
|
|
|
* WARNING!!!! if RTCK is *slow* then think carefully about
|
|
|
|
* whether you actually want to support this in the driver.
|
|
|
|
* Many target scripts are written to handle the absence of RTCK
|
|
|
|
* and use a fallback kHz TCK.
|
|
|
|
*/
|
|
|
|
int (*khz)(int khz, int* jtag_speed);
|
|
|
|
|
|
|
|
/* returns the KHz for the provided JTAG speed. 0=RTCK. The function returns
|
|
|
|
* a failure if it can't support the KHz/RTCK. */
|
|
|
|
int (*speed_div)(int speed, int* khz);
|
|
|
|
|
|
|
|
/* Read and clear the power dropout flag. Note that a power dropout
|
|
|
|
* can be transitionary, easily much less than a ms.
|
|
|
|
*
|
|
|
|
* So to find out if the power is *currently* on, you must invoke
|
|
|
|
* this method twice. Once to clear the power dropout flag and a
|
|
|
|
* second time to read the current state.
|
|
|
|
*
|
|
|
|
* Currently the default implementation is never to detect power dropout.
|
|
|
|
*/
|
|
|
|
int (*power_dropout)(int* power_dropout);
|
|
|
|
|
|
|
|
/* Read and clear the srst asserted detection flag.
|
|
|
|
*
|
|
|
|
* NB!!!! like power_dropout this does *not* read the current
|
|
|
|
* state. srst assertion is transitionary and *can* be much
|
|
|
|
* less than 1ms.
|
|
|
|
*/
|
|
|
|
int (*srst_asserted)(int* srst_asserted);
|
|
|
|
} jtag_interface_t;
|
|
|
|
|
|
|
|
|
|
|
|
#endif // OPENOCD_JTAG_INTERFACE_H
|