riscv-openocd/tcl/target/esp32c2.cfg

118 lines
3.7 KiB
INI
Raw Normal View History

# SPDX-License-Identifier: GPL-2.0-or-later
#
# Source the ESP common configuration file.
source [find target/esp_common.cfg]
# Target specific global variables
set _CHIPNAME "riscv"
set _CPUTAPID 0x0000cc25
set _ESP_ARCH "riscv"
set _ONLYCPU 1
set _ESP_SMP_TARGET 0
set _ESP_SMP_BREAK 0
set _ESP_EFUSE_MAC_ADDR_REG 0x60008840
# Target specific functions should be implemented for each riscv chips.
proc riscv_wdt_disable { } {
# Halt event can occur during config phase (before "init" is done).
# Ignore it since mww commands don't work at that time.
if { [string compare [command mode] config] == 0 } {
return
}
# Timer Group 0 WDT
mww 0x6001f064 0x50D83AA1
mww 0x6001F048 0
# RTC WDT
mww 0x6000809C 0x50D83AA1
mww 0x60008084 0
# SWD
mww 0x600080A4 0x8F1D312A
mww 0x600080A0 0x84B00000
}
proc riscv_soc_reset { } {
global _RISCV_DMCONTROL
# This procedure does "digital system reset", i.e. resets
# all the peripherals except for the RTC block.
# It is called from reset-assert-post target event callback,
# after assert_reset procedure was called.
# Since we need the hart to to execute a write to RTC_CNTL_SW_SYS_RST,
# temporarily take it out of reset. Save the dmcontrol state before
# doing so.
riscv dmi_write $_RISCV_DMCONTROL 0x80000001
# Trigger the reset
mww 0x60008000 0x9c00a000
# Workaround for stuck in cpu start during calibration.
# By writing zero to TIMG_RTCCALICFG_REG, we are disabling calibration
mww 0x6001F068 0
# Wait for the reset to happen
sleep 10
poll
# Disable the watchdogs again
riscv_wdt_disable
# Here debugger reads allresumeack and allhalted bits as set (0x330a2)
# We will clean allhalted state by resuming the core.
riscv dmi_write $_RISCV_DMCONTROL 0x40000001
# Put the hart back into reset state. Note that we need to keep haltreq set.
riscv dmi_write $_RISCV_DMCONTROL 0x80000003
}
proc riscv_memprot_is_enabled { } {
global _RISCV_ABS_CMD _RISCV_ABS_DATA0
# PMPADDR 0-1 covers entire valid IRAM range and PMPADDR 2-3 covers entire DRAM region
# pmpcfg0 holds the configuration for the PMP 0-3 address registers
# read pmpcfg0 and extract into 8-bit variables.
riscv dmi_write $_RISCV_ABS_CMD 0x2203a0
set pmpcfg0 [riscv dmi_read $_RISCV_ABS_DATA0]
set pmp0cfg [expr {($pmpcfg0 >> (8 * 0)) & 0xFF}]
set pmp1cfg [expr {($pmpcfg0 >> (8 * 1)) & 0xFF}]
set pmp2cfg [expr {($pmpcfg0 >> (8 * 2)) & 0xFF}]
set pmp3cfg [expr {($pmpcfg0 >> (8 * 3)) & 0xFF}]
# read PMPADDR 0-3
riscv dmi_write $_RISCV_ABS_CMD 0x2203b0
set pmpaddr0 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
riscv dmi_write $_RISCV_ABS_CMD 0x2203b1
set pmpaddr1 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
riscv dmi_write $_RISCV_ABS_CMD 0x2203b2
set pmpaddr2 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
riscv dmi_write $_RISCV_ABS_CMD 0x2203b3
set pmpaddr3 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
set IRAM_LOW 0x40380000
set IRAM_HIGH 0x403C0000
set DRAM_LOW 0x3FCA0000
set DRAM_HIGH 0x3FCE0000
set PMP_RWX 0x07
set PMP_RW 0x03
# The lock bit remains unset during the execution of the 2nd stage bootloader.
# Thus we do not perform a lock bit check for IRAM and DRAM regions.
# Check OpenOCD can write and execute from IRAM.
if {$pmpaddr0 >= $IRAM_LOW && $pmpaddr1 <= $IRAM_HIGH} {
if {($pmp0cfg & $PMP_RWX) != 0 || ($pmp1cfg & $PMP_RWX) != $PMP_RWX} {
return 1
}
}
# Check OpenOCD can read/write entire DRAM region.
if {$pmpaddr2 >= $DRAM_LOW && $pmpaddr3 <= $DRAM_HIGH} {
if {($pmp2cfg & $PMP_RW) != 0 && ($pmp3cfg & $PMP_RW) != $PMP_RW} {
return 1
}
}
return 0
}
create_esp_target $_ESP_ARCH