riscv-openocd/src/target/mips32_pracc.c

1018 lines
34 KiB
C
Raw Normal View History

/***************************************************************************
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2008 by David T.L. Wong *
* *
* Copyright (C) 2009 by David N. Claffey <dnclaffey@gmail.com> *
* *
* Copyright (C) 2011 by Drasko DRASKOVIC *
* drasko.draskovic@gmail.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
/*
* This version has optimized assembly routines for 32 bit operations:
* - read word
* - write word
* - write array of words
*
* One thing to be aware of is that the MIPS32 cpu will execute the
* instruction after a branch instruction (one delay slot).
*
* For example:
* LW $2, ($5 +10)
* B foo
* LW $1, ($2 +100)
*
* The LW $1, ($2 +100) instruction is also executed. If this is
* not wanted a NOP can be inserted:
*
* LW $2, ($5 +10)
* B foo
* NOP
* LW $1, ($2 +100)
*
* or the code can be changed to:
*
* B foo
* LW $2, ($5 +10)
* LW $1, ($2 +100)
*
* The original code contained NOPs. I have removed these and moved
* the branches.
*
* These changes result in a 35% speed increase when programming an
* external flash.
*
* More improvement could be gained if the registers do no need
* to be preserved but in that case the routines should be aware
* OpenOCD is used as a flash programmer or as a debug tool.
*
* Nico Coesel
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <helper/time_support.h>
#include "mips32.h"
#include "mips32_pracc.h"
static int wait_for_pracc_rw(struct mips_ejtag *ejtag_info)
{
int64_t then = timeval_ms();
/* wait for the PrAcc to become "1" */
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
while (1) {
ejtag_info->pa_ctrl = ejtag_info->ejtag_ctrl;
int retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_info->pa_ctrl);
if (retval != ERROR_OK)
return retval;
if (ejtag_info->pa_ctrl & EJTAG_CTRL_PRACC)
break;
int64_t timeout = timeval_ms() - then;
if (timeout > 1000) {
LOG_DEBUG("DEBUGMODULE: No memory access in progress!");
return ERROR_JTAG_DEVICE_ERROR;
}
}
return ERROR_OK;
}
/* Shift in control and address for a new processor access, save them in ejtag_info */
static int mips32_pracc_read_ctrl_addr(struct mips_ejtag *ejtag_info)
{
int retval = wait_for_pracc_rw(ejtag_info);
if (retval != ERROR_OK)
return retval;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
mips32: cleanups in legacy pracc code This is the first patch intended to make a more precise pracc check when running in legacy mode (code executed by mips32_pracc_exec()). It only makes some cleanups, mostly due to unnecessary code. With the last cache optimizations for processor access (pa for short) all the pracc functions generate the code following some rules that make pa more easily to check: There are no load instructions from dmseg. All the read pas are instruction fetches. PARAM_IN related stuff is not needed. Registers are restored either from COP0 DeSave or from ejtag info fields. PRACC_STACK related stuff is not needed any more. The code starts execution at PRACC_TEXT and there are no branch or jump instruction in the code, apart from the last jump to PRACC_TEXT. The fetch address is ever known. For every store instruction to dmseg the function code sets the address of the write/store pa. The address of every store pa is known. Current code ends execution when reading a second pass through PRACC_TEXT. This approach has same inconveniences: If the code starts in the delay slot of a jump it makes a jump to PRACC_TEXT after executing the first instruction. A second pass through PRACC_TEXt is read and the function exits without any warning. This seems to occur sometimes when a 24kc core is halted in the delay slot of a branch. If a debug mode exception is triggered during the execution of a function the core restarts execution at PRACC_TEXT. Again the function exits without any warning. If for whatever reason the core starts fetching at an unexpected address the code now sends a jump instruction to PRACC_TEXT, but due to the delay slot the core continues fetching at whatever address + 4 and a second jump instruction will be send for execution. The result of a jump instruction in the delay slot of another jump is UNPREDICTABLE. It may work as expected (ar7241), or let the core in the delay slot of a jump to PRACC_TEXT for example. This means the function called next may also fail (pic32mx). Change-Id: I9516a5146ee9c8c694d741331edc7daec9bde4e3 Signed-off-by: Salvador Arroyo <sarroyofdez@yahoo.es> Reviewed-on: http://openocd.zylin.com/1825 Tested-by: jenkins Reviewed-by: Freddie Chopin <freddie.chopin@gmail.com>
2013-12-01 03:40:34 -06:00
ejtag_info->pa_addr = 0;
return mips_ejtag_drscan_32(ejtag_info, &ejtag_info->pa_addr);
}
/* Finish processor access */
static void mips32_pracc_finish(struct mips_ejtag *ejtag_info)
{
uint32_t ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
mips_ejtag_drscan_32_out(ejtag_info, ctrl);
}
int mips32_pracc_clean_text_jump(struct mips_ejtag *ejtag_info)
{
uint32_t jt_code = MIPS32_J((0x0FFFFFFF & MIPS32_PRACC_TEXT) >> 2);
/* do 3 0/nops to clean pipeline before a jump to pracc text, NOP in delay slot */
for (int i = 0; i != 5; i++) {
/* Wait for pracc */
int retval = wait_for_pracc_rw(ejtag_info);
if (retval != ERROR_OK)
return retval;
/* Data or instruction out */
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
uint32_t data = (i == 3) ? jt_code : MIPS32_NOP;
mips_ejtag_drscan_32_out(ejtag_info, data);
/* finish pa */
mips32_pracc_finish(ejtag_info);
}
if (ejtag_info->mode != 0) /* async mode support only for MIPS ... */
return ERROR_OK;
for (int i = 0; i != 2; i++) {
int retval = mips32_pracc_read_ctrl_addr(ejtag_info);
if (retval != ERROR_OK)
return retval;
if (ejtag_info->pa_addr != MIPS32_PRACC_TEXT) { /* LEXRA/BMIPS ?, shift out another NOP, max 2 */
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
mips_ejtag_drscan_32_out(ejtag_info, MIPS32_NOP);
mips32_pracc_finish(ejtag_info);
} else
break;
}
return ERROR_OK;
}
int mips32_pracc_exec(struct mips_ejtag *ejtag_info, struct pracc_queue_info *ctx, uint32_t *param_out)
{
int code_count = 0;
int store_pending = 0; /* increases with every store instruction at dmseg, decreases with every store pa */
uint32_t max_store_addr = 0; /* for store pa address testing */
bool restart = 0; /* restarting control */
int restart_count = 0;
uint32_t instr = 0;
bool final_check = 0; /* set to 1 if in final checks after function code shifted out */
bool pass = 0; /* to check the pass through pracc text after function code sent */
int retval;
while (1) {
if (restart) {
if (restart_count < 3) { /* max 3 restarts allowed */
retval = mips32_pracc_clean_text_jump(ejtag_info);
if (retval != ERROR_OK)
return retval;
} else
return ERROR_JTAG_DEVICE_ERROR;
restart_count++;
restart = 0;
code_count = 0;
LOG_DEBUG("restarting code");
}
retval = mips32_pracc_read_ctrl_addr(ejtag_info); /* update current pa info: control and address */
if (retval != ERROR_OK)
return retval;
/* Check for read or write access */
if (ejtag_info->pa_ctrl & EJTAG_CTRL_PRNW) { /* write/store access */
/* Check for pending store from a previous store instruction at dmseg */
if (store_pending == 0) {
LOG_DEBUG("unexpected write at address %" PRIx32, ejtag_info->pa_addr);
if (code_count < 2) { /* allow for restart */
restart = 1;
continue;
} else
return ERROR_JTAG_DEVICE_ERROR;
} else {
/* check address */
if (ejtag_info->pa_addr < MIPS32_PRACC_PARAM_OUT || ejtag_info->pa_addr > max_store_addr) {
LOG_DEBUG("writing at unexpected address %" PRIx32, ejtag_info->pa_addr);
return ERROR_JTAG_DEVICE_ERROR;
}
}
/* read data */
uint32_t data = 0;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
retval = mips_ejtag_drscan_32(ejtag_info, &data);
if (retval != ERROR_OK)
return retval;
/* store data at param out, address based offset */
param_out[(ejtag_info->pa_addr - MIPS32_PRACC_PARAM_OUT) / 4] = data;
store_pending--;
} else { /* read/fetch access */
if (!final_check) { /* executing function code */
/* check address */
if (ejtag_info->pa_addr != (MIPS32_PRACC_TEXT + code_count * 4)) {
LOG_DEBUG("reading at unexpected address %" PRIx32 ", expected %x",
ejtag_info->pa_addr, MIPS32_PRACC_TEXT + code_count * 4);
/* restart code execution only in some cases */
if (code_count == 1 && ejtag_info->pa_addr == MIPS32_PRACC_TEXT && restart_count == 0) {
LOG_DEBUG("restarting, without clean jump");
restart_count++;
code_count = 0;
continue;
} else if (code_count < 2) {
restart = 1;
continue;
}
return ERROR_JTAG_DEVICE_ERROR;
}
/* check for store instruction at dmseg */
uint32_t store_addr = ctx->pracc_list[code_count].addr;
if (store_addr != 0) {
if (store_addr > max_store_addr)
max_store_addr = store_addr;
store_pending++;
}
instr = ctx->pracc_list[code_count++].instr;
if (code_count == ctx->code_count) /* last instruction, start final check */
final_check = 1;
} else { /* final check after function code shifted out */
/* check address */
if (ejtag_info->pa_addr == MIPS32_PRACC_TEXT) {
if (!pass) { /* first pass through pracc text */
if (store_pending == 0) /* done, normal exit */
return ERROR_OK;
pass = 1; /* pracc text passed */
code_count = 0; /* restart code count */
} else {
LOG_DEBUG("unexpected second pass through pracc text");
return ERROR_JTAG_DEVICE_ERROR;
}
} else {
if (ejtag_info->pa_addr != (MIPS32_PRACC_TEXT + code_count * 4)) {
LOG_DEBUG("unexpected read address in final check: %" PRIx32 ", expected: %x",
ejtag_info->pa_addr, MIPS32_PRACC_TEXT + code_count * 4);
return ERROR_JTAG_DEVICE_ERROR;
}
}
if (!pass) {
if ((code_count - ctx->code_count) > 1) { /* allow max 2 instruction delay slot */
LOG_DEBUG("failed to jump back to pracc text");
return ERROR_JTAG_DEVICE_ERROR;
}
} else
if (code_count > 10) { /* enough, abandone */
LOG_DEBUG("execution abandoned, store pending: %d", store_pending);
return ERROR_JTAG_DEVICE_ERROR;
}
instr = MIPS32_NOP; /* shift out NOPs instructions */
code_count++;
}
/* Send instruction out */
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
mips_ejtag_drscan_32_out(ejtag_info, instr);
}
/* finish processor access, let the processor eat! */
mips32_pracc_finish(ejtag_info);
if (instr == MIPS32_DRET) /* after leaving debug mode nothing to do */
return jtag_execute_queue();
if (store_pending == 0 && pass) { /* store access done, but after passing pracc text */
LOG_DEBUG("warning: store access pass pracc text");
return ERROR_OK;
}
}
}
inline void pracc_queue_init(struct pracc_queue_info *ctx)
{
ctx->retval = ERROR_OK;
ctx->code_count = 0;
ctx->store_count = 0;
ctx->max_code = 0;
ctx->pracc_list = NULL;
}
void pracc_add(struct pracc_queue_info *ctx, uint32_t addr, uint32_t instr)
{
if (ctx->retval != ERROR_OK) /* On previous out of memory, return */
return;
if (ctx->code_count == ctx->max_code) {
void *p = realloc(ctx->pracc_list, sizeof(pa_list) * (ctx->max_code + PRACC_BLOCK));
if (p) {
ctx->max_code += PRACC_BLOCK;
ctx->pracc_list = p;
} else {
ctx->retval = ERROR_FAIL; /* Out of memory */
return;
}
}
ctx->pracc_list[ctx->code_count].instr = instr;
ctx->pracc_list[ctx->code_count++].addr = addr;
if (addr)
ctx->store_count++;
}
void pracc_add_li32(struct pracc_queue_info *ctx, uint32_t reg_num, uint32_t data, bool optimize)
{
if (LOWER16(data) == 0 && optimize)
pracc_add(ctx, 0, MIPS32_LUI(reg_num, UPPER16(data))); /* load only upper value */
else if (UPPER16(data) == 0 && optimize)
pracc_add(ctx, 0, MIPS32_ORI(reg_num, 0, LOWER16(data))); /* load only lower */
else {
pracc_add(ctx, 0, MIPS32_LUI(reg_num, UPPER16(data))); /* load upper and lower */
pracc_add(ctx, 0, MIPS32_ORI(reg_num, reg_num, LOWER16(data)));
}
}
inline void pracc_queue_free(struct pracc_queue_info *ctx)
{
if (ctx->pracc_list != NULL)
free(ctx->pracc_list);
}
int mips32_pracc_queue_exec(struct mips_ejtag *ejtag_info, struct pracc_queue_info *ctx, uint32_t *buf)
{
if (ctx->retval != ERROR_OK) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
if (ejtag_info->mode == 0)
return mips32_pracc_exec(ejtag_info, ctx, buf);
union scan_in {
uint8_t scan_96[12];
struct {
uint8_t ctrl[4];
uint8_t data[4];
uint8_t addr[4];
} scan_32;
} *scan_in = malloc(sizeof(union scan_in) * (ctx->code_count + ctx->store_count));
if (scan_in == NULL) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
unsigned num_clocks =
((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000;
uint32_t ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ALL);
int scan_count = 0;
for (int i = 0; i != ctx->code_count; i++) {
jtag_add_clocks(num_clocks);
mips_ejtag_add_scan_96(ejtag_info, ejtag_ctrl, ctx->pracc_list[i].instr,
scan_in[scan_count++].scan_96);
/* Check store address from previous instruction, if not the first */
if (i > 0 && ctx->pracc_list[i - 1].addr) {
jtag_add_clocks(num_clocks);
mips_ejtag_add_scan_96(ejtag_info, ejtag_ctrl, 0, scan_in[scan_count++].scan_96);
}
}
int retval = jtag_execute_queue(); /* execute queued scans */
if (retval != ERROR_OK)
goto exit;
uint32_t fetch_addr = MIPS32_PRACC_TEXT; /* start address */
scan_count = 0;
for (int i = 0; i != ctx->code_count; i++) { /* verify every pracc access */
/* check pracc bit */
ejtag_ctrl = buf_get_u32(scan_in[scan_count].scan_32.ctrl, 0, 32);
uint32_t addr = buf_get_u32(scan_in[scan_count].scan_32.addr, 0, 32);
if (!(ejtag_ctrl & EJTAG_CTRL_PRACC)) {
LOG_ERROR("Error: access not pending count: %d", scan_count);
retval = ERROR_FAIL;
goto exit;
}
if (ejtag_ctrl & EJTAG_CTRL_PRNW) {
LOG_ERROR("Not a fetch/read access, count: %d", scan_count);
retval = ERROR_FAIL;
goto exit;
}
if (addr != fetch_addr) {
LOG_ERROR("Fetch addr mismatch, read: %" PRIx32 " expected: %" PRIx32 " count: %d",
addr, fetch_addr, scan_count);
retval = ERROR_FAIL;
goto exit;
}
fetch_addr += 4;
scan_count++;
/* check if previous intrucction is a store instruction at dmesg */
if (i > 0 && ctx->pracc_list[i - 1].addr) {
uint32_t store_addr = ctx->pracc_list[i - 1].addr;
ejtag_ctrl = buf_get_u32(scan_in[scan_count].scan_32.ctrl, 0, 32);
addr = buf_get_u32(scan_in[scan_count].scan_32.addr, 0, 32);
if (!(ejtag_ctrl & EJTAG_CTRL_PRNW)) {
LOG_ERROR("Not a store/write access, count: %d", scan_count);
retval = ERROR_FAIL;
goto exit;
}
if (addr != store_addr) {
LOG_ERROR("Store address mismatch, read: %" PRIx32 " expected: %" PRIx32 " count: %d",
addr, store_addr, scan_count);
retval = ERROR_FAIL;
goto exit;
}
int buf_index = (addr - MIPS32_PRACC_PARAM_OUT) / 4;
buf[buf_index] = buf_get_u32(scan_in[scan_count].scan_32.data, 0, 32);
scan_count++;
}
}
exit:
free(scan_in);
return retval;
}
int mips32_pracc_read_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf)
{
struct pracc_queue_info ctx;
pracc_queue_init(&ctx);
pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16((addr + 0x8000)))); /* load $8 with modified upper address */
pracc_add(&ctx, 0, MIPS32_LW(8, LOWER16(addr), 8)); /* lw $8, LOWER16(addr)($8) */
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
MIPS32_SW(8, PRACC_OUT_OFFSET, 15)); /* sw $8,PRACC_OUT_OFFSET($15) */
pracc_add_li32(&ctx, 8, ejtag_info->reg8, 0); /* restore $8 */
pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf);
pracc_queue_free(&ctx);
return ctx.retval;
}
int mips32_pracc_read_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
{
if (count == 1 && size == 4)
return mips32_pracc_read_u32(ejtag_info, addr, (uint32_t *)buf);
uint32_t *data = NULL;
struct pracc_queue_info ctx;
pracc_queue_init(&ctx);
if (size != 4) {
data = malloc(256 * sizeof(uint32_t));
if (data == NULL) {
LOG_ERROR("Out of memory");
goto exit;
}
}
uint32_t *buf32 = buf;
uint16_t *buf16 = buf;
uint8_t *buf8 = buf;
while (count) {
ctx.code_count = 0;
ctx.store_count = 0;
int this_round_count = (count > 256) ? 256 : count;
uint32_t last_upper_base_addr = UPPER16((addr + 0x8000));
pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
pracc_add(&ctx, 0, MIPS32_LUI(9, last_upper_base_addr)); /* load the upper memory address in $9 */
for (int i = 0; i != this_round_count; i++) { /* Main code loop */
uint32_t upper_base_addr = UPPER16((addr + 0x8000));
if (last_upper_base_addr != upper_base_addr) { /* if needed, change upper address in $9 */
pracc_add(&ctx, 0, MIPS32_LUI(9, upper_base_addr));
last_upper_base_addr = upper_base_addr;
}
if (size == 4)
pracc_add(&ctx, 0, MIPS32_LW(8, LOWER16(addr), 9)); /* load from memory to $8 */
else if (size == 2)
pracc_add(&ctx, 0, MIPS32_LHU(8, LOWER16(addr), 9));
else
pracc_add(&ctx, 0, MIPS32_LBU(8, LOWER16(addr), 9));
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + i * 4,
MIPS32_SW(8, PRACC_OUT_OFFSET + i * 4, 15)); /* store $8 at param out */
addr += size;
}
pracc_add_li32(&ctx, 8, ejtag_info->reg8, 0); /* restore $8 */
pracc_add_li32(&ctx, 9, ejtag_info->reg9, 0); /* restore $9 */
pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* restore $15 from DeSave */
if (size == 4) {
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf32);
if (ctx.retval != ERROR_OK)
goto exit;
buf32 += this_round_count;
} else {
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, data);
if (ctx.retval != ERROR_OK)
goto exit;
uint32_t *data_p = data;
for (int i = 0; i != this_round_count; i++) {
if (size == 2)
*buf16++ = *data_p++;
else
*buf8++ = *data_p++;
}
}
count -= this_round_count;
}
exit:
pracc_queue_free(&ctx);
if (data != NULL)
free(data);
return ctx.retval;
}
int mips32_cp0_read(struct mips_ejtag *ejtag_info, uint32_t *val, uint32_t cp0_reg, uint32_t cp0_sel)
{
struct pracc_queue_info ctx;
pracc_queue_init(&ctx);
pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
pracc_add(&ctx, 0, MIPS32_MFC0(8, cp0_reg, cp0_sel)); /* move cp0 reg / sel to $8 */
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
MIPS32_SW(8, PRACC_OUT_OFFSET, 15)); /* store $8 to pracc_out */
pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* restore $15 from DeSave */
pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of $8 */
pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of $8 */
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, val);
pracc_queue_free(&ctx);
return ctx.retval;
}
int mips32_cp0_write(struct mips_ejtag *ejtag_info, uint32_t val, uint32_t cp0_reg, uint32_t cp0_sel)
{
struct pracc_queue_info ctx;
pracc_queue_init(&ctx);
pracc_add_li32(&ctx, 15, val, 0); /* Load val to $15 */
pracc_add(&ctx, 0, MIPS32_MTC0(15, cp0_reg, cp0_sel)); /* write $15 to cp0 reg / sel */
pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* restore $15 from DeSave */
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
pracc_queue_free(&ctx);
return ctx.retval;
}
/**
* \b mips32_pracc_sync_cache
*
* Synchronize Caches to Make Instruction Writes Effective
* (ref. doc. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set,
* Document Number: MD00086, Revision 2.00, June 9, 2003)
*
* When the instruction stream is written, the SYNCI instruction should be used
* in conjunction with other instructions to make the newly-written instructions effective.
*
* Explanation :
* A program that loads another program into memory is actually writing the D- side cache.
* The instructions it has loaded can't be executed until they reach the I-cache.
*
* After the instructions have been written, the loader should arrange
* to write back any containing D-cache line and invalidate any locations
* already in the I-cache.
*
* If the cache coherency attribute (CCA) is set to zero, it's a write through cache, there is no need
* to write back.
*
* In the latest MIPS32/64 CPUs, MIPS provides the synci instruction,
* which does the whole job for a cache-line-sized chunk of the memory you just loaded:
* That is, it arranges a D-cache write-back (if CCA = 3) and an I-cache invalidate.
*
* The line size is obtained with the rdhwr SYNCI_Step in release 2 or from cp0 config 1 register in release 1.
*/
static int mips32_pracc_synchronize_cache(struct mips_ejtag *ejtag_info,
uint32_t start_addr, uint32_t end_addr, int cached, int rel)
{
struct pracc_queue_info ctx;
pracc_queue_init(&ctx);
/** Find cache line size in bytes */
uint32_t clsiz;
if (rel) { /* Release 2 (rel = 1) */
pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
pracc_add(&ctx, 0, MIPS32_RDHWR(8, MIPS32_SYNCI_STEP)); /* load synci_step value to $8 */
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
MIPS32_SW(8, PRACC_OUT_OFFSET, 15)); /* store $8 to pracc_out */
pracc_add_li32(&ctx, 8, ejtag_info->reg8, 0); /* restore $8 */
pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, &clsiz);
if (ctx.retval != ERROR_OK)
goto exit;
} else { /* Release 1 (rel = 0) */
uint32_t conf;
ctx.retval = mips32_cp0_read(ejtag_info, &conf, 16, 1);
if (ctx.retval != ERROR_OK)
goto exit;
uint32_t dl = (conf & MIPS32_CONFIG1_DL_MASK) >> MIPS32_CONFIG1_DL_SHIFT;
/* dl encoding : dl=1 => 4 bytes, dl=2 => 8 bytes, etc... max dl=6 => 128 bytes cache line size */
clsiz = 0x2 << dl;
if (dl == 0)
clsiz = 0;
}
if (clsiz == 0)
goto exit; /* Nothing to do */
/* make sure clsiz is power of 2 */
if (clsiz & (clsiz - 1)) {
LOG_DEBUG("clsiz must be power of 2");
ctx.retval = ERROR_FAIL;
goto exit;
}
/* make sure start_addr and end_addr have the same offset inside de cache line */
start_addr |= clsiz - 1;
end_addr |= clsiz - 1;
ctx.code_count = 0;
int count = 0;
uint32_t last_upper_base_addr = UPPER16((start_addr + 0x8000));
pracc_add(&ctx, 0, MIPS32_LUI(15, last_upper_base_addr)); /* load upper memory base address to $15 */
while (start_addr <= end_addr) { /* main loop */
uint32_t upper_base_addr = UPPER16((start_addr + 0x8000));
if (last_upper_base_addr != upper_base_addr) { /* if needed, change upper address in $15 */
pracc_add(&ctx, 0, MIPS32_LUI(15, upper_base_addr));
last_upper_base_addr = upper_base_addr;
}
if (rel)
pracc_add(&ctx, 0, MIPS32_SYNCI(LOWER16(start_addr), 15)); /* synci instruction, offset($15) */
else {
if (cached == 3)
pracc_add(&ctx, 0, MIPS32_CACHE(MIPS32_CACHE_D_HIT_WRITEBACK,
LOWER16(start_addr), 15)); /* cache Hit_Writeback_D, offset($15) */
pracc_add(&ctx, 0, MIPS32_CACHE(MIPS32_CACHE_I_HIT_INVALIDATE,
LOWER16(start_addr), 15)); /* cache Hit_Invalidate_I, offset($15) */
}
start_addr += clsiz;
count++;
if (count == 256 && start_addr <= end_addr) { /* more ?, then execute code list */
pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_NOP); /* nop in delay slot */
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
if (ctx.retval != ERROR_OK)
goto exit;
ctx.code_count = 0;
count = 0;
}
}
pracc_add(&ctx, 0, MIPS32_SYNC);
pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* restore $15 from DeSave*/
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
exit:
pracc_queue_free(&ctx);
return ctx.retval;
}
static int mips32_pracc_write_mem_generic(struct mips_ejtag *ejtag_info,
uint32_t addr, int size, int count, const void *buf)
{
struct pracc_queue_info ctx;
pracc_queue_init(&ctx);
const uint32_t *buf32 = buf;
const uint16_t *buf16 = buf;
const uint8_t *buf8 = buf;
while (count) {
ctx.code_count = 0;
ctx.store_count = 0;
int this_round_count = (count > 128) ? 128 : count;
uint32_t last_upper_base_addr = UPPER16((addr + 0x8000));
pracc_add(&ctx, 0, MIPS32_LUI(15, last_upper_base_addr)); /* load $15 with memory base address */
for (int i = 0; i != this_round_count; i++) {
uint32_t upper_base_addr = UPPER16((addr + 0x8000));
if (last_upper_base_addr != upper_base_addr) {
pracc_add(&ctx, 0, MIPS32_LUI(15, upper_base_addr)); /* if needed, change upper address in $15*/
last_upper_base_addr = upper_base_addr;
}
if (size == 4) {
pracc_add_li32(&ctx, 8, *buf32, 1); /* load with li32, optimize */
pracc_add(&ctx, 0, MIPS32_SW(8, LOWER16(addr), 15)); /* store word to memory */
buf32++;
} else if (size == 2) {
pracc_add(&ctx, 0, MIPS32_ORI(8, 0, *buf16)); /* load lower value */
pracc_add(&ctx, 0, MIPS32_SH(8, LOWER16(addr), 15)); /* store half word to memory */
buf16++;
} else {
pracc_add(&ctx, 0, MIPS32_ORI(8, 0, *buf8)); /* load lower value */
pracc_add(&ctx, 0, MIPS32_SB(8, LOWER16(addr), 15)); /* store byte to memory */
buf8++;
}
addr += size;
}
pracc_add_li32(&ctx, 8, ejtag_info->reg8, 0); /* restore $8 */
pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* restore $15 from DeSave */
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
if (ctx.retval != ERROR_OK)
goto exit;
count -= this_round_count;
}
exit:
pracc_queue_free(&ctx);
return ctx.retval;
}
int mips32_pracc_write_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, const void *buf)
{
int retval = mips32_pracc_write_mem_generic(ejtag_info, addr, size, count, buf);
if (retval != ERROR_OK)
return retval;
/**
* If we are in the cacheable region and cache is activated,
* we must clean D$ (if Cache Coherency Attribute is set to 3) + invalidate I$ after we did the write,
* so that changes do not continue to live only in D$ (if CCA = 3), but to be
* replicated in I$ also (maybe we wrote the istructions)
*/
uint32_t conf = 0;
int cached = 0;
if ((KSEGX(addr) == KSEG1) || ((addr >= 0xff200000) && (addr <= 0xff3fffff)))
return retval; /*Nothing to do*/
mips32_cp0_read(ejtag_info, &conf, 16, 0);
switch (KSEGX(addr)) {
case KUSEG:
cached = (conf & MIPS32_CONFIG0_KU_MASK) >> MIPS32_CONFIG0_KU_SHIFT;
break;
case KSEG0:
cached = (conf & MIPS32_CONFIG0_K0_MASK) >> MIPS32_CONFIG0_K0_SHIFT;
break;
case KSEG2:
case KSEG3:
cached = (conf & MIPS32_CONFIG0_K23_MASK) >> MIPS32_CONFIG0_K23_SHIFT;
break;
default:
/* what ? */
break;
}
/**
* Check cachablitiy bits coherency algorithm
* is the region cacheable or uncached.
* If cacheable we have to synchronize the cache
*/
if (cached == 3 || cached == 0) { /* Write back cache or write through cache */
uint32_t start_addr = addr;
uint32_t end_addr = addr + count * size;
uint32_t rel = (conf & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
if (rel > 1) {
LOG_DEBUG("Unknown release in cache code");
return ERROR_FAIL;
}
retval = mips32_pracc_synchronize_cache(ejtag_info, start_addr, end_addr, cached, rel);
}
return retval;
}
int mips32_pracc_write_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
{
static const uint32_t cp0_write_code[] = {
MIPS32_MTC0(1, 12, 0), /* move $1 to status */
MIPS32_MTLO(1), /* move $1 to lo */
MIPS32_MTHI(1), /* move $1 to hi */
MIPS32_MTC0(1, 8, 0), /* move $1 to badvaddr */
MIPS32_MTC0(1, 13, 0), /* move $1 to cause*/
MIPS32_MTC0(1, 24, 0), /* move $1 to depc (pc) */
};
struct pracc_queue_info ctx;
pracc_queue_init(&ctx);
/* load registers 2 to 31 with li32, optimize */
for (int i = 2; i < 32; i++)
pracc_add_li32(&ctx, i, regs[i], 1);
for (int i = 0; i != 6; i++) {
pracc_add_li32(&ctx, 1, regs[i + 32], 0); /* load CPO value in $1 */
pracc_add(&ctx, 0, cp0_write_code[i]); /* write value from $1 to CPO register */
}
pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* load $15 in DeSave */
pracc_add(&ctx, 0, MIPS32_LUI(1, UPPER16((regs[1])))); /* load upper half word in $1 */
pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_ORI(1, 1, LOWER16((regs[1])))); /* load lower half word in $1 */
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
2013-02-24 10:05:28 -06:00
ejtag_info->reg8 = regs[8];
ejtag_info->reg9 = regs[9];
pracc_queue_free(&ctx);
return ctx.retval;
}
int mips32_pracc_read_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
{
static int cp0_read_code[] = {
MIPS32_MFC0(8, 12, 0), /* move status to $8 */
MIPS32_MFLO(8), /* move lo to $8 */
MIPS32_MFHI(8), /* move hi to $8 */
MIPS32_MFC0(8, 8, 0), /* move badvaddr to $8 */
MIPS32_MFC0(8, 13, 0), /* move cause to $8 */
MIPS32_MFC0(8, 24, 0), /* move depc (pc) to $8 */
};
struct pracc_queue_info ctx;
pracc_queue_init(&ctx);
pracc_add(&ctx, 0, MIPS32_MTC0(1, 31, 0)); /* move $1 to COP0 DeSave */
pracc_add(&ctx, 0, MIPS32_LUI(1, PRACC_UPPER_BASE_ADDR)); /* $1 = MIP32_PRACC_BASE_ADDR */
for (int i = 2; i != 32; i++) /* store GPR's 2 to 31 */
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + (i * 4),
MIPS32_SW(i, PRACC_OUT_OFFSET + (i * 4), 1));
for (int i = 0; i != 6; i++) {
pracc_add(&ctx, 0, cp0_read_code[i]); /* load COP0 needed registers to $8 */
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + (i + 32) * 4, /* store $8 at PARAM OUT */
MIPS32_SW(8, PRACC_OUT_OFFSET + (i + 32) * 4, 1));
}
pracc_add(&ctx, 0, MIPS32_MFC0(8, 31, 0)); /* move DeSave to $8, reg1 value */
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + 4, /* store reg1 value from $8 to param out */
MIPS32_SW(8, PRACC_OUT_OFFSET + 4, 1));
pracc_add(&ctx, 0, MIPS32_MFC0(1, 31, 0)); /* move COP0 DeSave to $1, restore reg1 */
pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* load $15 in DeSave */
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, regs);
2013-02-24 10:05:28 -06:00
ejtag_info->reg8 = regs[8]; /* reg8 is saved but not restored, next called function should restore it */
2013-02-24 10:05:28 -06:00
ejtag_info->reg9 = regs[9];
pracc_queue_free(&ctx);
return ctx.retval;
}
/* fastdata upload/download requires an initialized working area
* to load the download code; it should not be called otherwise
* fetch order from the fastdata area
* 1. start addr
* 2. end addr
* 3. data ...
*/
int mips32_pracc_fastdata_xfer(struct mips_ejtag *ejtag_info, struct working_area *source,
int write_t, uint32_t addr, int count, uint32_t *buf)
{
uint32_t handler_code[] = {
/* r15 points to the start of this code */
MIPS32_SW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
MIPS32_SW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
MIPS32_SW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
MIPS32_SW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
/* start of fastdata area in t0 */
MIPS32_LUI(8, UPPER16(MIPS32_PRACC_FASTDATA_AREA)),
MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_FASTDATA_AREA)),
MIPS32_LW(9, 0, 8), /* start addr in t1 */
MIPS32_LW(10, 0, 8), /* end addr to t2 */
/* loop: */
write_t ? MIPS32_LW(11, 0, 8) : MIPS32_LW(11, 0, 9), /* from xfer area : from memory */
write_t ? MIPS32_SW(11, 0, 9) : MIPS32_SW(11, 0, 8), /* to memory : to xfer area */
MIPS32_BNE(10, 9, NEG16(3)), /* bne $t2,t1,loop */
MIPS32_ADDI(9, 9, 4), /* addi t1,t1,4 */
MIPS32_LW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
MIPS32_LW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
MIPS32_LW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
MIPS32_LW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
MIPS32_LUI(15, UPPER16(MIPS32_PRACC_TEXT)),
MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_TEXT)),
MIPS32_JR(15), /* jr start */
MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
};
if (source->size < MIPS32_FASTDATA_HANDLER_SIZE)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
/* write program into RAM */
if (write_t != ejtag_info->fast_access_save) {
mips32_pracc_write_mem(ejtag_info, source->address, 4, ARRAY_SIZE(handler_code), handler_code);
/* save previous operation to speed to any consecutive read/writes */
ejtag_info->fast_access_save = write_t;
}
LOG_DEBUG("%s using 0x%.8" TARGET_PRIxADDR " for write handler", __func__, source->address);
uint32_t jmp_code[] = {
MIPS32_LUI(15, UPPER16(source->address)), /* load addr of jump in $15 */
MIPS32_ORI(15, 15, LOWER16(source->address)),
MIPS32_JR(15), /* jump to ram program */
MIPS32_NOP,
};
/* execute jump code, with no address check */
for (unsigned i = 0; i < ARRAY_SIZE(jmp_code); i++) {
int retval = wait_for_pracc_rw(ejtag_info);
if (retval != ERROR_OK)
return retval;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
mips_ejtag_drscan_32_out(ejtag_info, jmp_code[i]);
/* Clear the access pending bit (let the processor eat!) */
mips32_pracc_finish(ejtag_info);
}
/* wait PrAcc pending bit for FASTDATA write, read address */
int retval = mips32_pracc_read_ctrl_addr(ejtag_info);
if (retval != ERROR_OK)
return retval;
/* next fetch to dmseg should be in FASTDATA_AREA, check */
if (ejtag_info->pa_addr != MIPS32_PRACC_FASTDATA_AREA)
return ERROR_FAIL;
/* Send the load start address */
uint32_t val = addr;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
retval = wait_for_pracc_rw(ejtag_info);
if (retval != ERROR_OK)
return retval;
/* Send the load end address */
val = addr + (count - 1) * 4;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
unsigned num_clocks = 0; /* like in legacy code */
if (ejtag_info->mode != 0)
num_clocks = ((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000;
for (int i = 0; i < count; i++) {
jtag_add_clocks(num_clocks);
mips_ejtag_fastdata_scan(ejtag_info, write_t, buf++);
}
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("fastdata load failed");
return retval;
}
retval = mips32_pracc_read_ctrl_addr(ejtag_info);
if (retval != ERROR_OK)
return retval;
if (ejtag_info->pa_addr != MIPS32_PRACC_TEXT)
LOG_ERROR("mini program did not return to start");
return retval;
}