Added Windows uiGrid. Doesn't quite work yet.

This commit is contained in:
Pietro Gagliardi 2016-06-10 19:34:48 -04:00
parent 3a3b96a38e
commit 554221fd66
4 changed files with 583 additions and 469 deletions

View File

@ -7,6 +7,7 @@ cmake_minimum_required(VERSION 2.8.11)
# - Haiku for haiku
# - debian DESTDIR? https://github.com/andlabs/libui/pull/10
# - libui-combined* needs to be deleted so that custom command can run every time
# - add notelemetry.obj to *ALL TARGETS* on VS2015 and up - https://www.infoq.com/news/2016/06/visual-cpp-telemetry
# the docs say we need to set this up prior to project()
set(CMAKE_OSX_DEPLOYMENT_TARGET "10.8")

View File

@ -1,472 +1,4 @@
// 31 august 2014
package ui
import (
"fmt"
)
// Grid is a Control that arranges other Controls in a grid.
// Grid is a very powerful container: it can position and size each Control in several ways and can (and must) have Controls added to it at any time, in any direction.
// it can also have Controls spanning multiple rows and columns.
//
// Each Control in a Grid has associated "expansion" and "alignment" values in both the X and Y direction.
// Expansion determines whether all cells in the same row/column are given whatever space is left over after figuring out how big the rest of the Grid should be.
// Alignment determines the position of a Control relative to its cell after computing the above.
// The special alignment Fill can be used to grow a Control to fit its cell.
// Note that expansion and alignment are independent variables.
// For more information on expansion and alignment, read https://developer.gnome.org/gtk3/unstable/ch28s02.html.
type Grid interface {
Control
// Add adds a Control to the Grid.
// If this is the first Control in the Grid, it is merely added; nextTo should be nil.
// Otherwise, it is placed relative to nextTo.
// If nextTo is nil, it is placed next to the previously added Control.
// The effect of adding the same Control multiple times is undefined, as is the effect of adding a Control next to one not present in the Grid.
// The effect of overlapping spanning Controls is also undefined.
// Add panics if either xspan or yspan are zero or negative.
Add(control Control, nextTo Control, side Side, xexpand bool, xalign Align, yexpand bool, yalign Align, xspan int, yspan int)
// Padded and SetPadded get and set whether the controls of the Grid have padding between them.
// The size of the padding is platform-dependent.
Padded() bool
SetPadded(padded bool)
}
// Align represents the alignment of a Control in its cell of a Grid.
type Align uint
const (
LeftTop Align = iota
Center
RightBottom
Fill
)
// Side represents a side of a Control to add other Controls to a Grid to.
type Side uint
const (
West Side = iota
East
North
South
nSides
)
type grid struct {
controls []gridCell
indexof map[Control]int
prev int
parent *controlParent
padded bool
xmax int
ymax int
}
type gridCell struct {
control Control
xexpand bool
xalign Align
yexpand bool
yalign Align
xspan int
yspan int
x int
y int
finalx int
finaly int
finalwidth int
finalheight int
prefwidth int
prefheight int
}
// NewGrid creates a new Grid with no Controls.
func NewGrid() Grid {
return &grid{
indexof: map[Control]int{},
}
}
// ensures that all (x, y) pairs are 0-based
// also computes g.xmax/g.ymax
func (g *grid) reorigin() {
xmin := 0
ymin := 0
for i := range g.controls {
if g.controls[i].x < xmin {
xmin = g.controls[i].x
}
if g.controls[i].y < ymin {
ymin = g.controls[i].y
}
}
xmin = -xmin
ymin = -ymin
g.xmax = 0
g.ymax = 0
for i := range g.controls {
g.controls[i].x += xmin
g.controls[i].y += ymin
if g.xmax < g.controls[i].x+g.controls[i].xspan {
g.xmax = g.controls[i].x + g.controls[i].xspan
}
if g.ymax < g.controls[i].y+g.controls[i].yspan {
g.ymax = g.controls[i].y + g.controls[i].yspan
}
}
}
func (g *grid) Add(control Control, nextTo Control, side Side, xexpand bool, xalign Align, yexpand bool, yalign Align, xspan int, yspan int) {
if xspan <= 0 || yspan <= 0 {
panic(fmt.Errorf("invalid span %dx%d given to Grid.Add()", xspan, yspan))
}
cell := gridCell{
control: control,
xexpand: xexpand,
xalign: xalign,
yexpand: yexpand,
yalign: yalign,
xspan: xspan,
yspan: yspan,
}
if g.parent != nil {
control.setParent(g.parent)
}
// if this is the first control, just add it in directly
if len(g.controls) != 0 {
next := g.prev
if nextTo != nil {
next = g.indexof[nextTo]
}
switch side {
case West:
cell.x = g.controls[next].x - cell.xspan
cell.y = g.controls[next].y
case North:
cell.x = g.controls[next].x
cell.y = g.controls[next].y - cell.yspan
case East:
cell.x = g.controls[next].x + g.controls[next].xspan
cell.y = g.controls[next].y
case South:
cell.x = g.controls[next].x
cell.y = g.controls[next].y + g.controls[next].yspan
default:
panic(fmt.Errorf("invalid side %d in Grid.Add()", side))
}
}
g.controls = append(g.controls, cell)
g.prev = len(g.controls) - 1
g.indexof[control] = g.prev
g.reorigin()
}
func (g *grid) Padded() bool {
return g.padded
}
func (g *grid) SetPadded(padded bool) {
g.padded = padded
}
func (g *grid) setParent(p *controlParent) {
g.parent = p
for _, c := range g.controls {
c.control.setParent(g.parent)
}
}
func (g *grid) containerShow() {
for _, c := range g.controls {
c.control.containerShow()
}
}
func (g *grid) containerHide() {
for _, c := range g.controls {
c.control.containerHide()
}
}
// builds the topological cell grid; also makes colwidths and rowheights
func (g *grid) mkgrid() (gg [][]int, colwidths []int, rowheights []int) {
gg = make([][]int, g.ymax)
for y := 0; y < g.ymax; y++ {
gg[y] = make([]int, g.xmax)
for x := 0; x < g.xmax; x++ {
gg[y][x] = -1
}
}
for i := range g.controls {
for y := g.controls[i].y; y < g.controls[i].y+g.controls[i].yspan; y++ {
for x := g.controls[i].x; x < g.controls[i].x+g.controls[i].xspan; x++ {
gg[y][x] = i
}
}
}
return gg, make([]int, g.xmax), make([]int, g.ymax)
}
func (g *grid) resize(x int, y int, width int, height int, d *sizing) {
if len(g.controls) == 0 {
// nothing to do
return
}
// -2) get this Grid's padding
xpadding := d.xpadding
ypadding := d.ypadding
if !g.padded {
xpadding = 0
ypadding = 0
}
// -1) discount padding from width/height
width -= (g.xmax - 1) * xpadding
height -= (g.ymax - 1) * ypadding
// 0) build necessary data structures
gg, colwidths, rowheights := g.mkgrid()
xexpand := make([]bool, g.xmax)
yexpand := make([]bool, g.ymax)
// 1) compute colwidths and rowheights before handling expansion
// we only count non-spanning controls to avoid weirdness
for y := 0; y < len(gg); y++ {
for x := 0; x < len(gg[y]); x++ {
i := gg[y][x]
if i == -1 {
continue
}
w, h := g.controls[i].control.preferredSize(d)
if g.controls[i].xspan == 1 {
if colwidths[x] < w {
colwidths[x] = w
}
}
if g.controls[i].yspan == 1 {
if rowheights[y] < h {
rowheights[y] = h
}
}
// save these for step 6
g.controls[i].prefwidth = w
g.controls[i].prefheight = h
}
}
// 2) figure out which rows/columns expand but not span
// we need to know which expanding rows/columns don't span before we can handle the ones that do
for i := range g.controls {
if g.controls[i].xexpand && g.controls[i].xspan == 1 {
xexpand[g.controls[i].x] = true
}
if g.controls[i].yexpand && g.controls[i].yspan == 1 {
yexpand[g.controls[i].y] = true
}
}
// 2) figure out which rows/columns expand that do span
// the way we handle this is simple: if none of the spanned rows/columns expand, make all rows/columns expand
for i := range g.controls {
if g.controls[i].xexpand && g.controls[i].xspan != 1 {
do := true
for x := g.controls[i].x; x < g.controls[i].x+g.controls[i].xspan; x++ {
if xexpand[x] {
do = false
break
}
}
if do {
for x := g.controls[i].x; x < g.controls[i].x+g.controls[i].xspan; x++ {
xexpand[x] = true
}
}
}
if g.controls[i].yexpand && g.controls[i].yspan != 1 {
do := true
for y := g.controls[i].y; y < g.controls[i].y+g.controls[i].yspan; y++ {
if yexpand[y] {
do = false
break
}
}
if do {
for y := g.controls[i].y; y < g.controls[i].y+g.controls[i].yspan; y++ {
yexpand[y] = true
}
}
}
}
// 4) compute and assign expanded widths/heights
nxexpand := 0
nyexpand := 0
for x, expand := range xexpand {
if expand {
nxexpand++
} else {
width -= colwidths[x]
}
}
for y, expand := range yexpand {
if expand {
nyexpand++
} else {
height -= rowheights[y]
}
}
for x, expand := range xexpand {
if expand {
colwidths[x] = width / nxexpand
}
}
for y, expand := range yexpand {
if expand {
rowheights[y] = height / nyexpand
}
}
// 5) reset the final coordinates for the next step
for i := range g.controls {
g.controls[i].finalx = 0
g.controls[i].finaly = 0
g.controls[i].finalwidth = 0
g.controls[i].finalheight = 0
}
// 6) compute cell positions and sizes
for y := 0; y < g.ymax; y++ {
curx := 0
prev := -1
for x := 0; x < g.xmax; x++ {
i := gg[y][x]
if i != -1 && y == g.controls[i].y { // don't repeat this step if the control spans vertically
if i != prev {
g.controls[i].finalx = curx
} else {
g.controls[i].finalwidth += xpadding
}
g.controls[i].finalwidth += colwidths[x]
}
curx += colwidths[x] + xpadding
prev = i
}
}
for x := 0; x < g.xmax; x++ {
cury := 0
prev := -1
for y := 0; y < g.ymax; y++ {
i := gg[y][x]
if i != -1 && x == g.controls[i].x { // don't repeat this step if the control spans horizontally
if i != prev {
g.controls[i].finaly = cury
} else {
g.controls[i].finalheight += ypadding
}
g.controls[i].finalheight += rowheights[y]
}
cury += rowheights[y] + ypadding
prev = i
}
}
// 7) everything as it stands now is set for xalign == Fill yalign == Fill; set the correct alignments
// this is why we saved prefwidth/prefheight above
for i := range g.controls {
if g.controls[i].xalign != Fill {
switch g.controls[i].xalign {
case RightBottom:
g.controls[i].finalx += g.controls[i].finalwidth - g.controls[i].prefwidth
case Center:
g.controls[i].finalx += (g.controls[i].finalwidth - g.controls[i].prefwidth) / 2
}
g.controls[i].finalwidth = g.controls[i].prefwidth // for all three
}
if g.controls[i].yalign != Fill {
switch g.controls[i].yalign {
case RightBottom:
g.controls[i].finaly += g.controls[i].finalheight - g.controls[i].prefheight
case Center:
g.controls[i].finaly += (g.controls[i].finalheight - g.controls[i].prefheight) / 2
}
g.controls[i].finalheight = g.controls[i].prefheight // for all three
}
}
// 8) and FINALLY we draw
for _, ycol := range gg {
for _, i := range ycol {
if i != -1 { // treat empty cells like spaces
g.controls[i].control.resize(
g.controls[i].finalx+x, g.controls[i].finaly+y,
g.controls[i].finalwidth, g.controls[i].finalheight, d)
}
}
}
return
}
func (g *grid) preferredSize(d *sizing) (width, height int) {
if len(g.controls) == 0 {
// nothing to do
return 0, 0
}
// -1) get this Grid's padding
xpadding := d.xpadding
ypadding := d.ypadding
if !g.padded {
xpadding = 0
ypadding = 0
}
// 0) build necessary data structures
gg, colwidths, rowheights := g.mkgrid()
// 1) compute colwidths and rowheights before handling expansion
// TODO put this in its own function (but careful about the spanning calculation in allocate())
for y := 0; y < len(gg); y++ {
for x := 0; x < len(gg[y]); x++ {
i := gg[y][x]
if i == -1 {
continue
}
w, h := g.controls[i].control.preferredSize(d)
// allot equal space in the presence of spanning to keep things sane
if colwidths[x] < w/g.controls[i].xspan {
colwidths[x] = w / g.controls[i].xspan
}
if rowheights[y] < h/g.controls[i].yspan {
rowheights[y] = h / g.controls[i].yspan
}
// save these for step 6
g.controls[i].prefwidth = w
g.controls[i].prefheight = h
}
}
// 2) compute total column width/row height
colwidth := 0
rowheight := 0
for _, w := range colwidths {
colwidth += w
}
for _, h := range rowheights {
rowheight += h
}
// and that's it; just account for padding
return colwidth + (g.xmax-1) * xpadding,
rowheight + (g.ymax-1) * ypadding
}
func (g *grid) preferredSize(d *sizing) (width, height int) {}
func (g *grid) nTabStops() int {
n := 0

View File

@ -30,6 +30,7 @@ list(APPEND _LIBUI_SOURCES
windows/fontdialog.cpp
windows/form.cpp
windows/graphemes.cpp
windows/grid.cpp
windows/group.cpp
windows/init.cpp
windows/label.cpp

580
windows/grid.cpp Normal file
View File

@ -0,0 +1,580 @@
// 10 june 2016
#include "uipriv_windows.hpp"
// TODO compare with GTK+:
// - what happens if you call InsertAt() twice?
// - what happens if you call Append() twice?
// TODOs
// - make ALL the controls handle hidden children right
struct gridChild {
uiControl *c;
intmax_t left;
intmax_t top;
intmax_t xspan;
intmax_t yspan;
int hexpand;
uiAlign halign;
int vexpand;
uiAlign valign;
// have these here so they don't need to be reallocated each relayout
intmax_t finalx, finaly;
intmax_t finalwidth, finalheight;
intmax_t minwidth, minheight;
};
struct uiGrid {
uiWindowsControl c;
HWND hwnd;
std::vector<struct gridChild *> *children;
std::map<uiControl *, size_t> *indexof;
int padded;
intmax_t xmin, ymin;
intmax_t xmax, ymax;
};
#define xcount(g) ((g)->xmax - (g)->xmin)
#define ycount(g) ((g)->ymax - (g)->ymin)
#define toxindex(g, x) ((x) - (g)->xmin)
#define toyindex(g, y) ((y) - (g)->ymin)
class gridLayoutData {
size_t ycount;
public:
intmax_t **gg; // topological map gg[y][x] = control index
intmax_t *colwidths;
intmax_t *rowheights;
bool *hexpand;
bool *vexpand;
gridLayoutData(uiGrid *g)
{
size_t i;
intmax_t x, y;
this->gg = new intmax_t *[ycount(g)];
for (y = 0; y < ycount(g); y++) {
this->gg[y] = new intmax_t[xcount(g)];
for (x = 0; x < xcount(g); x++)
this->gg[y][x] = -1;
}
for (i = 0; i < g->children->size(); i++) {
struct gridChild *gc;
gc = (*(g->children))[i];
for (y = gc->top; y < gc->top + gc->yspan; y++)
for (x = gc->left; x < gc->left + gc->xspan; x++)
this->gg[toyindex(g, y)][toxindex(g, x)] = i;
}
this->colwidths = new intmax_t[xcount(g)];
ZeroMemory(this->colwidths, xcount(g) * sizeof (intmax_t));
this->rowheights = new intmax_t[ycount(g)];
ZeroMemory(this->rowheights, ycount(g) * sizeof (intmax_t));
this->hexpand = new bool[xcount(g)];
ZeroMemory(this->hexpand, xcount(g) * sizeof (bool));
this->vexpand = new bool[ycount(g)];
ZeroMemory(this->vexpand, ycount(g) * sizeof (bool));
this->ycount = ycount(g);
}
~gridLayoutData()
{
size_t y;
delete[] this->hexpand;
delete[] this->vexpand;
delete[] this->colwidths;
delete[] this->rowheights;
for (y = 0; y < this->ycount; y++)
delete[] this->gg[y];
delete[] this->gg;
}
};
static void gridPadding(uiGrid *g, int *xpadding, int *ypadding)
{
uiWindowsSizing sizing;
*xpadding = 0;
*ypadding = 0;
if (g->padded) {
uiWindowsGetSizing(g->hwnd, &sizing);
uiWindowsSizingStandardPadding(&sizing, xpadding, ypadding);
}
}
static void gridRelayout(uiGrid *g)
{
RECT r;
intmax_t x, y, width, height;
gridLayoutData *ld;
int xpadding, ypadding;
intmax_t ix, iy;
intmax_t iwidth, iheight;
int i;
struct gridChild *gc;
intmax_t nhexpand, nvexpand;
if (g->children->size() == 0)
return; // nothing to do
uiWindowsEnsureGetClientRect(g->hwnd, &r);
x = r.left;
y = r.top;
width = r.right - r.left;
height = r.bottom - r.top;
gridPadding(g, &xpadding, &ypadding);
ld = new gridLayoutData(g);
// 0) discount padding from width/height
width -= (xcount(g) - 1) * xpadding;
height -= (ycount(g) - 1) * ypadding;
// 1) compute colwidths and rowheights before handling expansion
// we only count non-spanning controls to avoid weirdness
for (iy = 0; iy < ycount(g); iy++)
for (ix = 0; ix < xcount(g); ix++) {
i = ld->gg[iy][ix];
if (i == -1)
continue;
gc = (*(g->children))[i];
uiWindowsControlMinimumSize(uiWindowsControl(gc->c), &iwidth, &iheight);
if (gc->xspan == 1)
if (ld->colwidths[ix] < iwidth)
ld->colwidths[ix] = iwidth;
if (gc->yspan == 1)
if (ld->rowheights[iy] < iheight)
ld->rowheights[iy] = iheight;
// save these for step 6
gc->minwidth = iwidth;
gc->minheight = iheight;
}
// 2) figure out which rows/columns expand but not span
// we need to know which expanding rows/columns don't span before we can handle the ones that do
for (i = 0; i < g->children->size(); i++) {
gc = (*(g->children))[i];
if (gc->hexpand && gc->xspan == 1)
ld->hexpand[gc->left] = true;
if (gc->vexpand && gc->yspan == 1)
ld->vexpand[gc->top] = true;
}
// 3) figure out which rows/columns expand that do span
// the way we handle this is simple: if none of the spanned rows/columns expand, make all rows/columns expand
for (i = 0; i < g->children->size(); i++) {
gc = (*(g->children))[i];
if (gc->hexpand && gc->xspan != 1) {
bool doit = true;
for (ix = gc->left; ix < gc->left + gc->xspan; ix++)
if (ld->hexpand[ix]) {
doit = false;
break;
}
if (doit)
for (ix = gc->left; ix < gc->left + gc->xspan; ix++)
ld->hexpand[ix] = true;
}
if (gc->vexpand && gc->yspan != 1) {
bool doit = true;
for (iy = gc->top; iy < gc->top + gc->yspan; iy++)
if (ld->vexpand[iy]) {
doit = false;
break;
}
if (doit)
for (iy = gc->top; iy < gc->top + gc->yspan; iy++)
ld->vexpand[iy] = true;
}
}
// 4) compute and assign expanded widths/heights
nhexpand = 0;
nvexpand = 0;
for (i = 0; i < xcount(g); i++)
if (ld->hexpand[i])
nhexpand++;
else
width -= ld->colwidths[i];
for (i = 0; i < ycount(g); i++)
if (ld->vexpand[i])
nvexpand++;
else
height -= ld->rowheights[i];
for (i = 0; i < xcount(g); i++)
if (ld->hexpand[i])
ld->colwidths[i] = width / nhexpand;
for (i = 0; i < ycount(g); i++)
if (ld->vexpand[i])
ld->rowheights[i] = height / nvexpand;
// 5) reset the final coordinates for the next step
for (i = 0; i < g->children->size(); i++) {
gc = (*(g->children))[i];
gc->finalx = 0;
gc->finaly = 0;
gc->finalwidth = 0;
gc->finalheight = 0;
}
// 6) compute cell positions and sizes
for (iy = 0; iy < ycount(g); y++) {
intmax_t curx;
int prev;
curx = 0;
prev = -1;
for (ix = 0; ix < xcount(g); ix++) {
i = ld->gg[iy][ix];
if (i != -1) {
gc = (*(g->children))[i];
if (iy == gc->top) { // don't repeat this step if the control spans vertically
if (i != prev)
gc->finalx = curx;
else
gc->finalwidth += xpadding;
gc->finalwidth += ld->colwidths[ix];
}
}
curx += ld->colwidths[ix] + xpadding;
prev = i;
}
}
for (ix = 0; ix < xcount(g); ix++) {
intmax_t cury;
int prev;
cury = 0;
prev = -1;
for (iy = 0; iy < ycount(g); iy++) {
i = ld->gg[iy][ix];
if (i != -1) {
gc = (*(g->children))[i];
if (x == gc->top) { // don't repeat this step if the control spans horizontally
if (i != prev)
gc->finaly = cury;
else
gc->finalheight += ypadding;
gc->finalheight += ld->rowheights[iy];
}
}
cury += ld->rowheights[iy] + ypadding;
prev = i;
}
}
// 7) everything as it stands now is set for xalign == Fill yalign == Fill; set the correct alignments
// this is why we saved minwidth/minheight above
for (i = 0; i < g->children->size(); i++) {
gc = (*(g->children))[i];
if (gc->halign != uiAlignFill) {
switch (gc->halign) {
case uiAlignEnd:
gc->finalx += gc->finalwidth - gc->minwidth;
break;
case uiAlignCenter:
gc->finalx += (gc->finalwidth - gc->minwidth) / 2;
break;
}
gc->finalwidth = gc->minwidth; // for all three
}
if (gc->valign != uiAlignFill) {
switch (gc->valign) {
case uiAlignEnd:
gc->finaly += gc->finalheight - gc->minheight;
break;
case uiAlignCenter:
gc->finaly += (gc->finalheight - gc->minheight) / 2;
break;
}
gc->finalheight = gc->minheight; // for all three
}
}
// 8) and FINALLY we resize
for (iy = 0; iy < ycount(g); iy++)
for (ix = 0; ix < xcount(g); ix++) {
i = ld->gg[iy][ix];
if (i != -1) { // treat empty cells like spaces
gc = (*(g->children))[i];
uiWindowsEnsureMoveWindowDuringResize(
(HWND) uiControlHandle(gc->c),
gc->finalx,//TODO + x,
gc->finaly,//TODO + y,
gc->finalwidth,
gc->finalheight);
}
}
delete ld;
}
static void uiGridDestroy(uiControl *c)
{
uiGrid *g = uiGrid(c);
for (struct gridChild *gc : *(g->children)) {
uiControlSetParent(gc->c, NULL);
uiControlDestroy(gc->c);
uiFree(gc);
}
delete g->indexof;
delete g->children;
uiWindowsEnsureDestroyWindow(g->hwnd);
uiFreeControl(uiControl(g));
}
uiWindowsControlDefaultHandle(uiGrid)
uiWindowsControlDefaultParent(uiGrid)
uiWindowsControlDefaultSetParent(uiGrid)
uiWindowsControlDefaultToplevel(uiGrid)
uiWindowsControlDefaultVisible(uiGrid)
uiWindowsControlDefaultShow(uiGrid)
uiWindowsControlDefaultHide(uiGrid)
uiWindowsControlDefaultEnabled(uiGrid)
uiWindowsControlDefaultEnable(uiGrid)
uiWindowsControlDefaultDisable(uiGrid)
static void uiGridSyncEnableState(uiWindowsControl *c, int enabled)
{
uiGrid *g = uiGrid(c);
if (uiWindowsShouldStopSyncEnableState(uiWindowsControl(g), enabled))
return;
for (const struct gridChild *gc : *(g->children))
uiWindowsControlSyncEnableState(uiWindowsControl(gc->c), enabled);
}
uiWindowsControlDefaultSetParentHWND(uiGrid)
static void uiGridMinimumSize(uiWindowsControl *c, intmax_t *width, intmax_t *height)
{
uiGrid *g = uiGrid(c);
int xpadding, ypadding;
gridLayoutData *ld;
intmax_t x, y;
int i;
struct gridChild *gc;
intmax_t minwid, minht;
intmax_t colwidth, rowheight;
*width = 0;
*height = 0;
if (g->children->size() == 0)
return; // nothing to do
gridPadding(g, &xpadding, &ypadding);
ld = new gridLayoutData(g);
// 1) compute colwidths and rowheights before handling expansion
// TODO put this in its own function (but careful about the spanning calculation in gridRelayout())
for (y = 0; y < ycount(g); y++)
for (x = 0; x < xcount(g); x++) {
i = ld->gg[y][x];
if (i == -1)
continue;
gc = (*(g->children))[i];
uiWindowsControlMinimumSize(uiWindowsControl(gc->c), &minwid, &minht);
// allot equal space in the presence of spanning to keep things sane
if (ld->colwidths[x] < minwid / gc->xspan)
ld->colwidths[x] = minwid / gc->xspan;
if (ld->rowheights[y] < minht / gc->yspan)
ld->rowheights[y] = minht / gc->yspan;
// save these for step 6
gc->minwidth = minwid;
gc->minheight = minht;
}
// 2) compute total column width/row height
colwidth = 0;
rowheight = 0;
for (x = 0; x < xcount(g); x++)
colwidth += ld->colwidths[x];
for (y = 0; y < ycount(g); y++)
rowheight += ld->rowheights[y];
// and that's it; just account for padding
*width = colwidth + (g->xmax-1) * xpadding;
*height = rowheight + (g->ymax-1) * ypadding;
}
static void uiGridMinimumSizeChanged(uiWindowsControl *c)
{
uiGrid *g = uiGrid(c);
if (uiWindowsControlTooSmall(uiWindowsControl(g))) {
uiWindowsControlContinueMinimumSizeChanged(uiWindowsControl(g));
return;
}
gridRelayout(g);
}
uiWindowsControlDefaultLayoutRect(uiGrid)
uiWindowsControlDefaultAssignControlIDZOrder(uiGrid)
// must have called gridRecomputeMinMax() first
static void gridArrangeChildren(uiGrid *g)
{
LONG_PTR controlID;
HWND insertAfter;
gridLayoutData *ld;
bool *visited;
intmax_t x, y;
int i;
struct gridChild *gc;
if (g->children->size() == 0)
return; // nothing to do
ld = new gridLayoutData(g);
controlID = 100;
insertAfter = NULL;
visited = new bool[g->children->size()];
ZeroMemory(visited, g->children->size() * sizeof (bool));
for (y = 0; y < ycount(g); y++)
for (x = 0; x < xcount(g); x++) {
i = ld->gg[y][x];
if (i == -1)
continue;
if (visited[i])
continue;
visited[i] = true;
gc = (*(g->children))[i];
uiWindowsControlAssignControlIDZOrder(uiWindowsControl(gc->c), &controlID, &insertAfter);
}
delete[] visited;
delete ld;
}
static void gridRecomputeMinMax(uiGrid *g)
{
bool first = true;
for (struct gridChild *gc : *(g->children)) {
if (first) {
g->xmin = gc->left;
g->ymin = gc->top;
g->xmax = gc->left + gc->xspan;
g->ymax = gc->top + gc->yspan;
first = false;
continue;
}
if (g->xmin > gc->left)
g->xmin = gc->left;
if (g->ymin > gc->top)
g->ymin = gc->top;
if (g->xmax < (gc->left + gc->xspan))
g->xmax = gc->left + gc->xspan;
if (g->ymax < (gc->top + gc->yspan))
g->ymax = gc->top + gc->yspan;
}
}
static struct gridChild *toChild(uiControl *c, intmax_t xspan, intmax_t yspan, int hexpand, uiAlign halign, int vexpand, uiAlign valign)
{
struct gridChild *gc;
if (xspan < 0)
userbug("You cannot have a negative xspan in a uiGrid cell.");
if (yspan < 0)
userbug("You cannot have a negative yspan in a uiGrid cell.");
gc = uiNew(struct gridChild);
gc->c = c;
gc->xspan = xspan;
gc->yspan = yspan;
gc->hexpand = hexpand;
gc->halign = halign;
gc->vexpand = vexpand;
gc->valign = valign;
return gc;
}
static void add(uiGrid *g, struct gridChild *gc)
{
uiControlSetParent(gc->c, uiControl(g));
uiWindowsControlSetParentHWND(uiWindowsControl(gc->c), g->hwnd);
g->children->push_back(gc);
(*(g->indexof))[gc->c] = g->children->size() - 1;
gridRecomputeMinMax(g);
gridArrangeChildren(g);
uiWindowsControlMinimumSizeChanged(uiWindowsControl(g));
}
void uiGridAppend(uiGrid *g, uiControl *c, intmax_t left, intmax_t top, intmax_t xspan, intmax_t yspan, int hexpand, uiAlign halign, int vexpand, uiAlign valign)
{
struct gridChild *gc;
gc = toChild(c, xspan, yspan, hexpand, halign, vexpand, valign);
gc->left = left;
gc->top = top;
add(g, gc);
}
// TODO decide what happens if existing is NULL
void uiGridInsertAt(uiGrid *g, uiControl *c, uiControl *existing, uiAt at, intmax_t xspan, intmax_t yspan, int hexpand, uiAlign halign, int vexpand, uiAlign valign)
{
struct gridChild *gc;
struct gridChild *other;
gc = toChild(c, xspan, yspan, hexpand, halign, vexpand, valign);
other = (*(g->children))[(*(g->indexof))[existing]];
switch (at) {
case uiAtLeading:
gc->left = other->left - gc->xspan;
gc->top = other->top;
break;
case uiAtTop:
gc->left = other->left;
gc->top = other->top - gc->yspan;
break;
case uiAtTrailing:
gc->left = other->left + other->xspan;
gc->top = other->top;
break;
case uiAtBottom:
gc->left = other->left;
gc->top = other->top + other->yspan;
break;
// TODO add error checks to ALL enums
}
add(g, gc);
}
int uiGridPadded(uiGrid *g)
{
return g->padded;
}
void uiGridSetPadded(uiGrid *g, int padded)
{
g->padded = padded;
uiWindowsControlMinimumSizeChanged(uiWindowsControl(g));
}
static void onResize(uiWindowsControl *c)
{
gridRelayout(uiGrid(c));
}
uiGrid *uiNewGrid(void)
{
uiGrid *g;
uiWindowsNewControl(uiGrid, g);
g->hwnd = uiWindowsMakeContainer(uiWindowsControl(g), onResize);
g->children = new std::vector<struct gridChild *>;
g->indexof = new std::map<uiControl *, size_t>;
return g;
}