go-opengl-pixel/text/text.go

336 lines
8.8 KiB
Go

package text
import (
"image/color"
"math"
"unicode"
"unicode/utf8"
"github.com/faiface/pixel"
)
// ASCII is a set of all ASCII runes. These runes are codepoints from 32 to 127 inclusive.
var ASCII []rune
func init() {
ASCII = make([]rune, unicode.MaxASCII-32)
for i := range ASCII {
ASCII[i] = rune(32 + i)
}
}
// RangeTable takes a *unicode.RangeTable and generates a set of runes contained within that
// RangeTable.
func RangeTable(table *unicode.RangeTable) []rune {
var runes []rune
for _, rng := range table.R16 {
for r := rng.Lo; r <= rng.Hi; r += rng.Stride {
runes = append(runes, rune(r))
}
}
for _, rng := range table.R32 {
for r := rng.Lo; r <= rng.Hi; r += rng.Stride {
runes = append(runes, rune(r))
}
}
return runes
}
// Text allows for effiecient and convenient text drawing.
//
// To create a Text object, use the New constructor:
// txt := text.New(pixel.V(0, 0), text.NewAtlas(face, text.ASCII))
//
// As suggested by the constructor, a Text object is always associated with one font face and a
// fixed set of runes. For example, the Text we created above can draw text using the font face
// contained in the face variable and is capable of drawing ASCII characters.
//
// Here we create a Text object which can draw ASCII and Katakana characters:
// txt := text.New(0, text.NewAtlas(face, text.ASCII, text.RangeTable(unicode.Katakana)))
//
// Similarly to IMDraw, Text functions as a buffer. It implements io.Writer interface, so writing
// text to it is really simple:
// fmt.Print(txt, "Hello, world!")
//
// Newlines, tabs and carriage returns are supported.
//
// Finally, if we want the written text to show up on some other Target, we can draw it:
// txt.Draw(target)
//
// Text exports two important fields: Orig and Dot. Dot is the position where the next character
// will be written. Dot is automatically moved when writing to a Text object, but you can also
// manipulate it manually. Orig specifies the text origin, usually the top-left dot position. Dot is
// always aligned to Orig when writing newlines.
//
// To reset the Dot to the Orig, just assign it:
// txt.Dot = txt.Orig
type Text struct {
// Orig specifies the text origin, usually the top-left dot position. Dot is always aligned
// to Orig when writing newlines.
Orig pixel.Vec
// Dot is the position where the next character will be written. Dot is automatically moved
// when writing to a Text object, but you can also manipulate it manually
Dot pixel.Vec
// Color is the color of the text that is to be written. Defaults to white.
Color color.Color
// LineHeight is the vertical distance between two lines of text.
//
// Example:
// txt.LineHeight = 1.5 * txt.Atlas().LineHeight()
LineHeight float64
// TabWidth is the horizontal tab width. Tab characters will align to the multiples of this
// width.
//
// Example:
// txt.TabWidth = 8 * txt.Atlas().Glyph(' ').Advance
TabWidth float64
atlas *Atlas
buf []byte
prevR rune
bounds pixel.Rect
glyph pixel.TrianglesData
tris pixel.TrianglesData
mat pixel.Matrix
col pixel.RGBA
trans pixel.TrianglesData
transD pixel.Drawer
dirty bool
}
// New creates a new Text capable of drawing runes contained in the provided Atlas. Orig and Dot
// will be initially set to orig.
//
// Here we create a Text capable of drawing ASCII characters using the Go Regular font.
// ttf, err := truetype.Parse(goregular.TTF)
// if err != nil {
// panic(err)
// }
// face := truetype.NewFace(ttf, &truetype.Options{
// Size: 14,
// })
// txt := text.New(orig, text.NewAtlas(face, text.ASCII))
func New(orig pixel.Vec, atlas *Atlas) *Text {
txt := &Text{
Orig: orig,
Dot: orig,
Color: pixel.Alpha(1),
LineHeight: atlas.LineHeight(),
TabWidth: atlas.Glyph(' ').Advance * 4,
atlas: atlas,
mat: pixel.IM,
col: pixel.Alpha(1),
}
txt.glyph.SetLen(6)
for i := range txt.glyph {
txt.glyph[i].Color = pixel.Alpha(1)
txt.glyph[i].Intensity = 1
}
txt.transD.Picture = txt.atlas.pic
txt.transD.Triangles = &txt.trans
txt.Clear()
return txt
}
// Atlas returns the underlying Text's Atlas containing all of the pre-drawn glyphs. The Atlas is
// also useful for getting values such as the recommended line height.
func (txt *Text) Atlas() *Atlas {
return txt.atlas
}
// SetMatrix sets a Matrix by which the text will be transformed before drawing to another Target.
func (txt *Text) SetMatrix(m pixel.Matrix) {
if txt.mat != m {
txt.mat = m
txt.dirty = true
}
}
// SetColorMask sets a color by which the text will be masked before drawingto another Target.
func (txt *Text) SetColorMask(c color.Color) {
rgba := pixel.ToRGBA(c)
if txt.col != rgba {
txt.col = rgba
txt.dirty = true
}
}
// Bounds returns the bounding box of the text currently written to the Text excluding whitespace.
//
// If the Text is empty, a zero rectangle is returned.
func (txt *Text) Bounds() pixel.Rect {
return txt.bounds
}
// BoundsOf returns the bounding box of s if it was to be written to the Text right now.
func (txt *Text) BoundsOf(s string) pixel.Rect {
dot := txt.Dot
prevR := txt.prevR
bounds := pixel.Rect{}
for _, r := range s {
var control bool
dot, control = txt.controlRune(r, dot)
if control {
continue
}
var b pixel.Rect
_, _, b, dot = txt.Atlas().DrawRune(prevR, r, dot)
if bounds.W()*bounds.H() == 0 {
bounds = b
} else {
bounds = bounds.Union(b)
}
prevR = r
}
return bounds
}
// Clear removes all written text from the Text.
func (txt *Text) Clear() {
txt.prevR = -1
txt.bounds = pixel.Rect{}
txt.tris.SetLen(0)
txt.dirty = true
}
// Write writes a slice of bytes to the Text. This method never fails, always returns len(p), nil.
func (txt *Text) Write(p []byte) (n int, err error) {
txt.buf = append(txt.buf, p...)
txt.drawBuf()
return len(p), nil
}
// WriteString writes a string to the Text. This method never fails, always returns len(s), nil.
func (txt *Text) WriteString(s string) (n int, err error) {
txt.buf = append(txt.buf, s...)
txt.drawBuf()
return len(s), nil
}
// WriteByte writes a byte to the Text. This method never fails, always returns nil.
//
// Writing a multi-byte rune byte-by-byte is perfectly supported.
func (txt *Text) WriteByte(c byte) error {
txt.buf = append(txt.buf, c)
txt.drawBuf()
return nil
}
// WriteRune writes a rune to the Text. This method never fails, always returns utf8.RuneLen(r), nil.
func (txt *Text) WriteRune(r rune) (n int, err error) {
var b [4]byte
n = utf8.EncodeRune(b[:], r)
txt.buf = append(txt.buf, b[:n]...)
txt.drawBuf()
return n, nil
}
// Draw draws all text written to the Text to the provided Target. The text is transformed by the
// Text's matrix and color mask.
func (txt *Text) Draw(t pixel.Target) {
if txt.dirty {
txt.trans.SetLen(txt.tris.Len())
txt.trans.Update(&txt.tris)
for i := range txt.trans {
txt.trans[i].Position = txt.mat.Project(txt.trans[i].Position)
txt.trans[i].Color = txt.trans[i].Color.Mul(txt.col)
}
txt.transD.Dirty()
txt.dirty = false
}
txt.transD.Draw(t)
}
// controlRune checks if r is a control rune (newline, tab, ...). If it is, a new dot position and
// true is returned. If r is not a control rune, the original dot and false is returned.
func (txt *Text) controlRune(r rune, dot pixel.Vec) (newDot pixel.Vec, control bool) {
switch r {
case '\n':
dot -= pixel.Y(txt.LineHeight)
dot = dot.WithX(txt.Orig.X())
case '\r':
dot = dot.WithX(txt.Orig.X())
case '\t':
rem := math.Mod(dot.X()-txt.Orig.X(), txt.TabWidth)
rem = math.Mod(rem, rem+txt.TabWidth)
if rem == 0 {
rem = txt.TabWidth
}
dot += pixel.X(rem)
default:
return dot, false
}
return dot, true
}
func (txt *Text) drawBuf() {
if !utf8.FullRune(txt.buf) {
return
}
rgba := pixel.ToRGBA(txt.Color)
for i := range txt.glyph {
txt.glyph[i].Color = rgba
}
for utf8.FullRune(txt.buf) {
r, size := utf8.DecodeRune(txt.buf)
txt.buf = txt.buf[size:]
var control bool
txt.Dot, control = txt.controlRune(r, txt.Dot)
if control {
continue
}
var rect, frame, bounds pixel.Rect
rect, frame, bounds, txt.Dot = txt.Atlas().DrawRune(txt.prevR, r, txt.Dot)
txt.prevR = r
rv := [...]pixel.Vec{pixel.V(rect.Min.X(), rect.Min.Y()),
pixel.V(rect.Max.X(), rect.Min.Y()),
pixel.V(rect.Max.X(), rect.Max.Y()),
pixel.V(rect.Min.X(), rect.Max.Y()),
}
fv := [...]pixel.Vec{pixel.V(frame.Min.X(), frame.Min.Y()),
pixel.V(frame.Max.X(), frame.Min.Y()),
pixel.V(frame.Max.X(), frame.Max.Y()),
pixel.V(frame.Min.X(), frame.Max.Y()),
}
for i, j := range [...]int{0, 1, 2, 0, 2, 3} {
txt.glyph[i].Position = rv[j]
txt.glyph[i].Picture = fv[j]
}
txt.tris = append(txt.tris, txt.glyph...)
txt.dirty = true
if txt.bounds.W()*txt.bounds.H() == 0 {
txt.bounds = bounds
} else {
txt.bounds = txt.bounds.Union(bounds)
}
}
}