369 lines
10 KiB
Go
369 lines
10 KiB
Go
package pixel
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"math/cmplx"
|
|
|
|
"github.com/go-gl/mathgl/mgl64"
|
|
)
|
|
|
|
// Vec is a 2D vector type. It is unusually implemented as complex128 for convenience. Since
|
|
// Go does not allow operator overloading, implementing vector as a struct leads to a bunch of
|
|
// methods for addition, subtraction and multiplication of vectors. With complex128, much of
|
|
// this functionality is given through operators.
|
|
//
|
|
// Create vectors with the V constructor:
|
|
//
|
|
// u := pixel.V(1, 2)
|
|
// v := pixel.V(8, -3)
|
|
//
|
|
// Add and subtract them using the standard + and - operators:
|
|
//
|
|
// w := u + v
|
|
// fmt.Println(w) // Vec(9, -1)
|
|
// fmt.Println(u - v) // Vec(-7, 5)
|
|
//
|
|
// Additional standard vector operations can be obtained with methods:
|
|
//
|
|
// u := pixel.V(2, 3)
|
|
// v := pixel.V(8, 1)
|
|
// if u.X() < 0 {
|
|
// fmt.Println("this won't happen")
|
|
// }
|
|
// x := u.Unit().Dot(v.Unit())
|
|
type Vec complex128
|
|
|
|
// V returns a new 2D vector with the given coordinates.
|
|
func V(x, y float64) Vec {
|
|
return Vec(complex(x, y))
|
|
}
|
|
|
|
// X returns a 2D vector with coordinates (x, 0).
|
|
func X(x float64) Vec {
|
|
return V(x, 0)
|
|
}
|
|
|
|
// Y returns a 2D vector with coordinates (0, y).
|
|
func Y(y float64) Vec {
|
|
return V(0, y)
|
|
}
|
|
|
|
// String returns the string representation of the vector u.
|
|
//
|
|
// u := pixel.V(4.5, -1.3)
|
|
// u.String() // returns "Vec(4.5, -1.3)"
|
|
// fmt.Println(u) // Vec(4.5, -1.3)
|
|
func (u Vec) String() string {
|
|
return fmt.Sprintf("Vec(%v, %v)", u.X(), u.Y())
|
|
}
|
|
|
|
// X returns the x coordinate of the vector u.
|
|
func (u Vec) X() float64 {
|
|
return real(u)
|
|
}
|
|
|
|
// Y returns the y coordinate of the vector u.
|
|
func (u Vec) Y() float64 {
|
|
return imag(u)
|
|
}
|
|
|
|
// XY returns the components of the vector in two return values.
|
|
func (u Vec) XY() (x, y float64) {
|
|
return real(u), imag(u)
|
|
}
|
|
|
|
// Len returns the length of the vector u.
|
|
func (u Vec) Len() float64 {
|
|
return cmplx.Abs(complex128(u))
|
|
}
|
|
|
|
// Angle returns the angle between the vector u and the x-axis. The result is in range [-Pi, Pi].
|
|
func (u Vec) Angle() float64 {
|
|
return cmplx.Phase(complex128(u))
|
|
}
|
|
|
|
// Unit returns a vector of length 1 facing the direction of u (has the same angle).
|
|
func (u Vec) Unit() Vec {
|
|
if u == 0 {
|
|
return 1
|
|
}
|
|
return u / V(u.Len(), 0)
|
|
}
|
|
|
|
// Scaled returns the vector u multiplied by c.
|
|
func (u Vec) Scaled(c float64) Vec {
|
|
return u * V(c, 0)
|
|
}
|
|
|
|
// ScaledXY returns the vector u multiplied by the vector v component-wise.
|
|
func (u Vec) ScaledXY(v Vec) Vec {
|
|
return V(u.X()*v.X(), u.Y()*v.Y())
|
|
}
|
|
|
|
// Rotated returns the vector u rotated by the given angle in radians.
|
|
func (u Vec) Rotated(angle float64) Vec {
|
|
sin, cos := math.Sincos(angle)
|
|
return u * V(cos, sin)
|
|
}
|
|
|
|
// WithX return the vector u with the x coordinate changed to the given value.
|
|
func (u Vec) WithX(x float64) Vec {
|
|
return V(x, u.Y())
|
|
}
|
|
|
|
// WithY returns the vector u with the y coordinate changed to the given value.
|
|
func (u Vec) WithY(y float64) Vec {
|
|
return V(u.X(), y)
|
|
}
|
|
|
|
// Dot returns the dot product of vectors u and v.
|
|
func (u Vec) Dot(v Vec) float64 {
|
|
return u.X()*v.X() + u.Y()*v.Y()
|
|
}
|
|
|
|
// Cross return the cross product of vectors u and v.
|
|
func (u Vec) Cross(v Vec) float64 {
|
|
return u.X()*v.Y() - v.X()*u.Y()
|
|
}
|
|
|
|
// Map applies the function f to both x and y components of the vector u and returns the modified
|
|
// vector.
|
|
//
|
|
// u := pixel.V(10.5, -1.5)
|
|
// v := u.Map(math.Floor) // v is Vec(10, -2), both components of u floored
|
|
func (u Vec) Map(f func(float64) float64) Vec {
|
|
return V(
|
|
f(u.X()),
|
|
f(u.Y()),
|
|
)
|
|
}
|
|
|
|
// Lerp returns a linear interpolation between vectors a and b.
|
|
//
|
|
// This function basically returns a point along the line between a and b and t chooses which one.
|
|
// If t is 0, then a will be returned, if t is 1, b will be returned. Anything between 0 and 1 will
|
|
// return the appropriate point between a and b and so on.
|
|
func Lerp(a, b Vec, t float64) Vec {
|
|
return a.Scaled(1-t) + b.Scaled(t)
|
|
}
|
|
|
|
// Rect is a 2D rectangle aligned with the axes of the coordinate system. It is defined by two
|
|
// points, Min and Max.
|
|
//
|
|
// The invariant should hold, that Max's components are greater or equal than Min's components
|
|
// respectively.
|
|
type Rect struct {
|
|
Min, Max Vec
|
|
}
|
|
|
|
// R returns a new Rect with given the Min and Max coordinates.
|
|
func R(minX, minY, maxX, maxY float64) Rect {
|
|
return Rect{
|
|
Min: V(minX, minY),
|
|
Max: V(maxX, maxY),
|
|
}
|
|
}
|
|
|
|
// String returns the string representation of the Rect.
|
|
//
|
|
// r := pixel.R(100, 50, 200, 300)
|
|
// r.String() // returns "Rect(100, 50, 200, 300)"
|
|
// fmt.Println(r) // Rect(100, 50, 200, 300)
|
|
func (r Rect) String() string {
|
|
return fmt.Sprintf("Rect(%v, %v, %v, %v)", r.Min.X(), r.Min.Y(), r.Max.X(), r.Max.Y())
|
|
}
|
|
|
|
// Norm returns the Rect in normal form, such that Max is component-wise greater or equal than Min.
|
|
func (r Rect) Norm() Rect {
|
|
return Rect{
|
|
Min: V(
|
|
math.Min(r.Min.X(), r.Max.X()),
|
|
math.Min(r.Min.Y(), r.Max.Y()),
|
|
),
|
|
Max: V(
|
|
math.Max(r.Min.X(), r.Max.X()),
|
|
math.Max(r.Min.Y(), r.Max.Y()),
|
|
),
|
|
}
|
|
}
|
|
|
|
// W returns the width of the Rect.
|
|
func (r Rect) W() float64 {
|
|
return r.Max.X() - r.Min.X()
|
|
}
|
|
|
|
// H returns the height of the Rect.
|
|
func (r Rect) H() float64 {
|
|
return r.Max.Y() - r.Min.Y()
|
|
}
|
|
|
|
// Size returns the vector of width and height of the Rect.
|
|
func (r Rect) Size() Vec {
|
|
return V(r.W(), r.H())
|
|
}
|
|
|
|
// Center returns the position of the center of the Rect.
|
|
func (r Rect) Center() Vec {
|
|
return (r.Min + r.Max) / 2
|
|
}
|
|
|
|
// Moved returns the Rect moved (both Min and Max) by the given vector delta.
|
|
func (r Rect) Moved(delta Vec) Rect {
|
|
return Rect{
|
|
Min: r.Min + delta,
|
|
Max: r.Max + delta,
|
|
}
|
|
}
|
|
|
|
// WithMin returns the Rect with it's Min changed to the given position.
|
|
//
|
|
// Note, that the Rect is not automatically normalized.
|
|
func (r Rect) WithMin(min Vec) Rect {
|
|
return Rect{
|
|
Min: min,
|
|
Max: r.Max,
|
|
}
|
|
}
|
|
|
|
// WithMax returns the Rect with it's Max changed to the given position.
|
|
//
|
|
// Note, that the Rect is not automatically normalized.
|
|
func (r Rect) WithMax(max Vec) Rect {
|
|
return Rect{
|
|
Min: r.Min,
|
|
Max: max,
|
|
}
|
|
}
|
|
|
|
// Resized returns the Rect resized to the given size while keeping the position of the given
|
|
// anchor.
|
|
//
|
|
// r.Resized(r.Min, size) // resizes while keeping the position of the lower-left corner
|
|
// r.Resized(r.Max, size) // same with the top-right corner
|
|
// r.Resized(r.Center(), size) // resizes around the center
|
|
//
|
|
// This function does not make sense for sizes of zero area and will panic. Use ResizedMin in the
|
|
// case of zero area.
|
|
func (r Rect) Resized(anchor, size Vec) Rect {
|
|
if r.W()*r.H() == 0 || size.X()*size.Y() == 0 {
|
|
panic(fmt.Errorf("(%T).Resize: zero area", r))
|
|
}
|
|
fraction := V(size.X()/r.W(), size.Y()/r.H())
|
|
return Rect{
|
|
Min: anchor + (r.Min - anchor).ScaledXY(fraction),
|
|
Max: anchor + (r.Max - anchor).ScaledXY(fraction),
|
|
}
|
|
}
|
|
|
|
// ResizedMin returns the Rect resized to the given size while keeping the position of the Rect's
|
|
// Min.
|
|
//
|
|
// Sizes of zero area are safe here.
|
|
func (r Rect) ResizedMin(size Vec) Rect {
|
|
return Rect{
|
|
Min: r.Min,
|
|
Max: r.Min + size,
|
|
}
|
|
}
|
|
|
|
// Contains checks whether a vector u is contained within this Rect (including it's borders).
|
|
func (r Rect) Contains(u Vec) bool {
|
|
return r.Min.X() <= u.X() && u.X() <= r.Max.X() && r.Min.Y() <= u.Y() && u.Y() <= r.Max.Y()
|
|
}
|
|
|
|
// Union returns a minimal Rect which covers both r and s. Rects r and s should be normalized.
|
|
func (r Rect) Union(s Rect) Rect {
|
|
return R(
|
|
math.Min(r.Min.X(), s.Min.X()),
|
|
math.Min(r.Min.Y(), s.Min.Y()),
|
|
math.Max(r.Max.X(), s.Max.X()),
|
|
math.Max(r.Max.Y(), s.Max.Y()),
|
|
)
|
|
}
|
|
|
|
// Matrix is a 3x3 transformation matrix that can be used for all kinds of spacial transforms, such
|
|
// as movement, scaling and rotations.
|
|
//
|
|
// Matrix has a handful of useful methods, each of which adds a transformation to the matrix. For
|
|
// example:
|
|
//
|
|
// pixel.IM.Moved(pixel.V(100, 200)).Rotated(0, math.Pi/2)
|
|
//
|
|
// This code creates a Matrix that first moves everything by 100 units horizontally and 200 units
|
|
// vertically and then rotates everything by 90 degrees around the origin.
|
|
type Matrix [9]float64
|
|
|
|
// IM stands for identity matrix. Does nothing, no transformation.
|
|
var IM = Matrix(mgl64.Ident3())
|
|
|
|
// String returns a string representation of the Matrix.
|
|
//
|
|
// m := pixel.IM
|
|
// fmt.Println(m) // Matrix(1 0 0 | 0 1 0 | 0 0 1)
|
|
func (m Matrix) String() string {
|
|
return fmt.Sprintf(
|
|
"Matrix(%v %v %v | %v %v %v | %v %v %v)",
|
|
m[0], m[3], m[6],
|
|
m[1], m[4], m[7],
|
|
m[2], m[5], m[8],
|
|
)
|
|
}
|
|
|
|
// Moved moves everything by the delta vector.
|
|
func (m Matrix) Moved(delta Vec) Matrix {
|
|
m3 := mgl64.Mat3(m)
|
|
m3 = mgl64.Translate2D(delta.XY()).Mul3(m3)
|
|
return Matrix(m3)
|
|
}
|
|
|
|
// ScaledXY scales everything around a given point by the scale factor in each axis respectively.
|
|
func (m Matrix) ScaledXY(around Vec, scale Vec) Matrix {
|
|
m3 := mgl64.Mat3(m)
|
|
m3 = mgl64.Translate2D((-around).XY()).Mul3(m3)
|
|
m3 = mgl64.Scale2D(scale.XY()).Mul3(m3)
|
|
m3 = mgl64.Translate2D(around.XY()).Mul3(m3)
|
|
return Matrix(m3)
|
|
}
|
|
|
|
// Scaled scales everything around a given point by the scale factor.
|
|
func (m Matrix) Scaled(around Vec, scale float64) Matrix {
|
|
return m.ScaledXY(around, V(scale, scale))
|
|
}
|
|
|
|
// Rotated rotates everything around a given point by the given angle in radians.
|
|
func (m Matrix) Rotated(around Vec, angle float64) Matrix {
|
|
m3 := mgl64.Mat3(m)
|
|
m3 = mgl64.Translate2D((-around).XY()).Mul3(m3)
|
|
m3 = mgl64.Rotate3DZ(angle).Mul3(m3)
|
|
m3 = mgl64.Translate2D(around.XY()).Mul3(m3)
|
|
return Matrix(m3)
|
|
}
|
|
|
|
// Chained adds another Matrix to this one. All tranformations by the next Matrix will be applied
|
|
// after the transformations of this Matrix.
|
|
func (m Matrix) Chained(next Matrix) Matrix {
|
|
m3 := mgl64.Mat3(m)
|
|
m3 = mgl64.Mat3(next).Mul3(m3)
|
|
return Matrix(m3)
|
|
}
|
|
|
|
// Project applies all transformations added to the Matrix to a vector u and returns the result.
|
|
//
|
|
// Time complexity is O(1).
|
|
func (m Matrix) Project(u Vec) Vec {
|
|
m3 := mgl64.Mat3(m)
|
|
proj := m3.Mul3x1(mgl64.Vec3{u.X(), u.Y(), 1})
|
|
return V(proj.X(), proj.Y())
|
|
}
|
|
|
|
// Unproject does the inverse operation to Project.
|
|
//
|
|
// Time complexity is O(1).
|
|
func (m Matrix) Unproject(u Vec) Vec {
|
|
m3 := mgl64.Mat3(m)
|
|
inv := m3.Inv()
|
|
unproj := inv.Mul3x1(mgl64.Vec3{u.X(), u.Y(), 1})
|
|
return V(unproj.X(), unproj.Y())
|
|
}
|