1110 lines
31 KiB
Go
1110 lines
31 KiB
Go
package pixel
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
)
|
|
|
|
// Clamp returns x clamped to the interval [min, max].
|
|
//
|
|
// If x is less than min, min is returned. If x is more than max, max is returned. Otherwise, x is
|
|
// returned.
|
|
func Clamp(x, min, max float64) float64 {
|
|
if x < min {
|
|
return min
|
|
}
|
|
if x > max {
|
|
return max
|
|
}
|
|
return x
|
|
}
|
|
|
|
// Vec is a 2D vector type with X and Y coordinates.
|
|
//
|
|
// Create vectors with the V constructor:
|
|
//
|
|
// u := pixel.V(1, 2)
|
|
// v := pixel.V(8, -3)
|
|
//
|
|
// Use various methods to manipulate them:
|
|
//
|
|
// w := u.Add(v)
|
|
// fmt.Println(w) // Vec(9, -1)
|
|
// fmt.Println(u.Sub(v)) // Vec(-7, 5)
|
|
// u = pixel.V(2, 3)
|
|
// v = pixel.V(8, 1)
|
|
// if u.X < 0 {
|
|
// fmt.Println("this won't happen")
|
|
// }
|
|
// x := u.Unit().Dot(v.Unit())
|
|
type Vec struct {
|
|
X, Y float64
|
|
}
|
|
|
|
// ZV is a zero vector.
|
|
var ZV = Vec{0, 0}
|
|
|
|
// V returns a new 2D vector with the given coordinates.
|
|
func V(x, y float64) Vec {
|
|
return Vec{x, y}
|
|
}
|
|
|
|
// nearlyEqual compares two float64s and returns whether they are equal, accounting for rounding errors.At worst, the
|
|
// result is correct to 7 significant digits.
|
|
func nearlyEqual(a, b float64) bool {
|
|
epsilon := 0.000001
|
|
|
|
if a == b {
|
|
return true
|
|
}
|
|
|
|
diff := math.Abs(a - b)
|
|
|
|
if a == 0.0 || b == 0.0 || diff < math.SmallestNonzeroFloat64 {
|
|
return diff < (epsilon * math.SmallestNonzeroFloat64)
|
|
}
|
|
|
|
absA := math.Abs(a)
|
|
absB := math.Abs(b)
|
|
|
|
return diff/math.Min(absA+absB, math.MaxFloat64) < epsilon
|
|
}
|
|
|
|
// Eq will compare two vectors and return whether they are equal accounting for rounding errors. At worst, the result
|
|
// is correct to 7 significant digits.
|
|
func (u Vec) Eq(v Vec) bool {
|
|
return nearlyEqual(u.X, v.X) && nearlyEqual(u.Y, v.Y)
|
|
}
|
|
|
|
// Unit returns a vector of length 1 facing the given angle.
|
|
func Unit(angle float64) Vec {
|
|
return Vec{1, 0}.Rotated(angle)
|
|
}
|
|
|
|
// String returns the string representation of the vector u.
|
|
//
|
|
// u := pixel.V(4.5, -1.3)
|
|
// u.String() // returns "Vec(4.5, -1.3)"
|
|
// fmt.Println(u) // Vec(4.5, -1.3)
|
|
func (u Vec) String() string {
|
|
return fmt.Sprintf("Vec(%v, %v)", u.X, u.Y)
|
|
}
|
|
|
|
// XY returns the components of the vector in two return values.
|
|
func (u Vec) XY() (x, y float64) {
|
|
return u.X, u.Y
|
|
}
|
|
|
|
// Add returns the sum of vectors u and v.
|
|
func (u Vec) Add(v Vec) Vec {
|
|
return Vec{
|
|
u.X + v.X,
|
|
u.Y + v.Y,
|
|
}
|
|
}
|
|
|
|
// Sub returns the difference betweeen vectors u and v.
|
|
func (u Vec) Sub(v Vec) Vec {
|
|
return Vec{
|
|
u.X - v.X,
|
|
u.Y - v.Y,
|
|
}
|
|
}
|
|
|
|
// Floor converts x and y to their integer equivalents.
|
|
func (u Vec) Floor() Vec {
|
|
return Vec{
|
|
math.Floor(u.X),
|
|
math.Floor(u.Y),
|
|
}
|
|
}
|
|
|
|
// To returns the vector from u to v. Equivalent to v.Sub(u).
|
|
func (u Vec) To(v Vec) Vec {
|
|
return Vec{
|
|
v.X - u.X,
|
|
v.Y - u.Y,
|
|
}
|
|
}
|
|
|
|
// Scaled returns the vector u multiplied by c.
|
|
func (u Vec) Scaled(c float64) Vec {
|
|
return Vec{u.X * c, u.Y * c}
|
|
}
|
|
|
|
// ScaledXY returns the vector u multiplied by the vector v component-wise.
|
|
func (u Vec) ScaledXY(v Vec) Vec {
|
|
return Vec{u.X * v.X, u.Y * v.Y}
|
|
}
|
|
|
|
// Len returns the length of the vector u.
|
|
func (u Vec) Len() float64 {
|
|
return math.Hypot(u.X, u.Y)
|
|
}
|
|
|
|
// Angle returns the angle between the vector u and the x-axis. The result is in range [-Pi, Pi].
|
|
func (u Vec) Angle() float64 {
|
|
return math.Atan2(u.Y, u.X)
|
|
}
|
|
|
|
// Unit returns a vector of length 1 facing the direction of u (has the same angle).
|
|
func (u Vec) Unit() Vec {
|
|
if u.X == 0 && u.Y == 0 {
|
|
return Vec{1, 0}
|
|
}
|
|
return u.Scaled(1 / u.Len())
|
|
}
|
|
|
|
// Rotated returns the vector u rotated by the given angle in radians.
|
|
func (u Vec) Rotated(angle float64) Vec {
|
|
sin, cos := math.Sincos(angle)
|
|
return Vec{
|
|
u.X*cos - u.Y*sin,
|
|
u.X*sin + u.Y*cos,
|
|
}
|
|
}
|
|
|
|
// Normal returns a vector normal to u. Equivalent to u.Rotated(math.Pi / 2), but faster.
|
|
func (u Vec) Normal() Vec {
|
|
return Vec{-u.Y, u.X}
|
|
}
|
|
|
|
// Dot returns the dot product of vectors u and v.
|
|
func (u Vec) Dot(v Vec) float64 {
|
|
return u.X*v.X + u.Y*v.Y
|
|
}
|
|
|
|
// Cross return the cross product of vectors u and v.
|
|
func (u Vec) Cross(v Vec) float64 {
|
|
return u.X*v.Y - v.X*u.Y
|
|
}
|
|
|
|
// Project returns a projection (or component) of vector u in the direction of vector v.
|
|
//
|
|
// Behaviour is undefined if v is a zero vector.
|
|
func (u Vec) Project(v Vec) Vec {
|
|
len := u.Dot(v) / v.Len()
|
|
return v.Unit().Scaled(len)
|
|
}
|
|
|
|
// Map applies the function f to both x and y components of the vector u and returns the modified
|
|
// vector.
|
|
//
|
|
// u := pixel.V(10.5, -1.5)
|
|
// v := u.Map(math.Floor) // v is Vec(10, -2), both components of u floored
|
|
func (u Vec) Map(f func(float64) float64) Vec {
|
|
return Vec{
|
|
f(u.X),
|
|
f(u.Y),
|
|
}
|
|
}
|
|
|
|
// Lerp returns a linear interpolation between vectors a and b.
|
|
//
|
|
// This function basically returns a point along the line between a and b and t chooses which one.
|
|
// If t is 0, then a will be returned, if t is 1, b will be returned. Anything between 0 and 1 will
|
|
// return the appropriate point between a and b and so on.
|
|
func Lerp(a, b Vec, t float64) Vec {
|
|
return a.Scaled(1 - t).Add(b.Scaled(t))
|
|
}
|
|
|
|
// Line is a 2D line segment, between points A and B.
|
|
type Line struct {
|
|
A, B Vec
|
|
}
|
|
|
|
// L creates and returns a new Line.
|
|
func L(from, to Vec) Line {
|
|
return Line{
|
|
A: from,
|
|
B: to,
|
|
}
|
|
}
|
|
|
|
// Bounds returns the lines bounding box. This is in the form of a normalized Rect.
|
|
func (l Line) Bounds() Rect {
|
|
return R(l.A.X, l.A.Y, l.B.X, l.B.Y).Norm()
|
|
}
|
|
|
|
// Center will return the point at center of the line; that is, the point equidistant from either end.
|
|
func (l Line) Center() Vec {
|
|
return l.A.Add(l.A.To(l.B).Scaled(0.5))
|
|
}
|
|
|
|
// Closest will return the point on the line which is closest to the Vec provided.
|
|
func (l Line) Closest(v Vec) Vec {
|
|
// between is a helper function which determines whether x is greater than min(a, b) and less than max(a, b)
|
|
between := func(a, b, x float64) bool {
|
|
min := math.Min(a, b)
|
|
max := math.Max(a, b)
|
|
return min < x && x < max
|
|
}
|
|
|
|
// Closest point will be on a line which perpendicular to this line.
|
|
// If and only if the infinite perpendicular line intersects the segment.
|
|
m, b := l.Formula()
|
|
|
|
// Account for horizontal lines
|
|
if m == 0 {
|
|
x := v.X
|
|
y := l.A.Y
|
|
|
|
// check if the X coordinate of v is on the line
|
|
if between(l.A.X, l.B.X, v.X) {
|
|
return V(x, y)
|
|
}
|
|
|
|
// Otherwise get the closest endpoint
|
|
if l.A.To(v).Len() < l.B.To(v).Len() {
|
|
return l.A
|
|
}
|
|
return l.B
|
|
}
|
|
|
|
// Account for vertical lines
|
|
if math.IsInf(math.Abs(m), 1) {
|
|
x := l.A.X
|
|
y := v.Y
|
|
|
|
// check if the Y coordinate of v is on the line
|
|
if between(l.A.Y, l.B.Y, v.Y) {
|
|
return V(x, y)
|
|
}
|
|
|
|
// Otherwise get the closest endpoint
|
|
if l.A.To(v).Len() < l.B.To(v).Len() {
|
|
return l.A
|
|
}
|
|
return l.B
|
|
}
|
|
|
|
perpendicularM := -1 / m
|
|
perpendicularB := v.Y - (perpendicularM * v.X)
|
|
|
|
// Coordinates of intersect (of infinite lines)
|
|
x := (perpendicularB - b) / (m - perpendicularM)
|
|
y := m*x + b
|
|
|
|
// Check if the point lies between the x and y bounds of the segment
|
|
if !between(l.A.X, l.B.X, x) && !between(l.A.Y, l.B.Y, y) {
|
|
// Not within bounding box
|
|
toStart := v.To(l.A)
|
|
toEnd := v.To(l.B)
|
|
|
|
if toStart.Len() < toEnd.Len() {
|
|
return l.A
|
|
}
|
|
return l.B
|
|
}
|
|
|
|
return V(x, y)
|
|
}
|
|
|
|
// Contains returns whether the provided Vec lies on the line.
|
|
func (l Line) Contains(v Vec) bool {
|
|
return l.Closest(v).Eq(v)
|
|
}
|
|
|
|
// Formula will return the values that represent the line in the formula: y = mx + b
|
|
// This function will return math.Inf+, math.Inf- for a vertical line.
|
|
func (l Line) Formula() (m, b float64) {
|
|
// Account for horizontal lines
|
|
if l.B.Y == l.A.Y {
|
|
return 0, l.A.Y
|
|
}
|
|
|
|
m = (l.B.Y - l.A.Y) / (l.B.X - l.A.X)
|
|
b = l.A.Y - (m * l.A.X)
|
|
|
|
return m, b
|
|
}
|
|
|
|
// Intersect will return the point of intersection for the two line segments. If the line segments do not intersect,
|
|
// this function will return the zero-vector and false.
|
|
func (l Line) Intersect(k Line) (Vec, bool) {
|
|
// Check if the lines are parallel
|
|
lDir := l.A.To(l.B)
|
|
kDir := k.A.To(k.B)
|
|
if lDir.X == kDir.X && lDir.Y == kDir.Y {
|
|
return ZV, false
|
|
}
|
|
|
|
// The lines intersect - but potentially not within the line segments.
|
|
// Get the intersection point for the lines if they were infinitely long, check if the point exists on both of the
|
|
// segments
|
|
lm, lb := l.Formula()
|
|
km, kb := k.Formula()
|
|
|
|
// Account for vertical lines
|
|
if math.IsInf(math.Abs(lm), 1) && math.IsInf(math.Abs(km), 1) {
|
|
// Both vertical, therefore parallel
|
|
return ZV, false
|
|
}
|
|
|
|
var x, y float64
|
|
|
|
if math.IsInf(math.Abs(lm), 1) || math.IsInf(math.Abs(km), 1) {
|
|
// One line is vertical
|
|
intersectM := lm
|
|
intersectB := lb
|
|
verticalLine := k
|
|
|
|
if math.IsInf(math.Abs(lm), 1) {
|
|
intersectM = km
|
|
intersectB = kb
|
|
verticalLine = l
|
|
}
|
|
|
|
y = intersectM*verticalLine.A.X + intersectB
|
|
x = verticalLine.A.X
|
|
} else {
|
|
// Coordinates of intersect
|
|
x = (kb - lb) / (lm - km)
|
|
y = lm*x + lb
|
|
}
|
|
|
|
if l.Contains(V(x, y)) && k.Contains(V(x, y)) {
|
|
// The intersect point is on both line segments, they intersect.
|
|
return V(x, y), true
|
|
}
|
|
|
|
return ZV, false
|
|
}
|
|
|
|
// IntersectCircle will return the shortest Vec such that moving the Line by that Vec will cause the Line and Circle
|
|
// to no longer intesect. If they do not intersect at all, this function will return a zero-vector.
|
|
func (l Line) IntersectCircle(c Circle) Vec {
|
|
// Get the point on the line closest to the center of the circle.
|
|
closest := l.Closest(c.Center)
|
|
cirToClosest := c.Center.To(closest)
|
|
|
|
if cirToClosest.Len() >= c.Radius {
|
|
return ZV
|
|
}
|
|
|
|
return cirToClosest.Scaled(cirToClosest.Len() - c.Radius)
|
|
}
|
|
|
|
// IntersectRect will return the shortest Vec such that moving the Line by that Vec will cause the Line and Rect to
|
|
// no longer intesect. If they do not intersect at all, this function will return a zero-vector.
|
|
func (l Line) IntersectRect(r Rect) Vec {
|
|
// Check if either end of the line segment are within the rectangle
|
|
if r.Contains(l.A) || r.Contains(l.B) {
|
|
// Use the Rect.Intersect to get minimal return value
|
|
rIntersect := l.Bounds().Intersect(r)
|
|
if rIntersect.H() > rIntersect.W() {
|
|
// Go vertical
|
|
return V(0, rIntersect.H())
|
|
}
|
|
return V(rIntersect.W(), 0)
|
|
}
|
|
|
|
// Check if any of the rectangles' edges intersect with this line.
|
|
for _, edge := range r.Edges() {
|
|
if _, ok := l.Intersect(edge); ok {
|
|
// Get the closest points on the line to each corner, where:
|
|
// - the point is contained by the rectangle
|
|
// - the point is not the corner itself
|
|
corners := r.Vertices()
|
|
closest := ZV
|
|
closestCorner := corners[0]
|
|
for _, c := range corners {
|
|
cc := l.Closest(c)
|
|
if closest == ZV || (closest.Len() > cc.Len() && r.Contains(cc)) {
|
|
closest = cc
|
|
closestCorner = c
|
|
}
|
|
}
|
|
|
|
return closest.To(closestCorner)
|
|
}
|
|
}
|
|
|
|
// No intersect
|
|
return ZV
|
|
}
|
|
|
|
// Len returns the length of the line segment.
|
|
func (l Line) Len() float64 {
|
|
return l.A.To(l.B).Len()
|
|
}
|
|
|
|
// Moved will return a line moved by the delta Vec provided.
|
|
func (l Line) Moved(delta Vec) Line {
|
|
return Line{
|
|
A: l.A.Add(delta),
|
|
B: l.B.Add(delta),
|
|
}
|
|
}
|
|
|
|
// Rotated will rotate the line around the provided Vec.
|
|
func (l Line) Rotated(around Vec, angle float64) Line {
|
|
// Move the line so we can use `Vec.Rotated`
|
|
lineShifted := l.Moved(around.Scaled(-1))
|
|
|
|
lineRotated := Line{
|
|
A: lineShifted.A.Rotated(angle),
|
|
B: lineShifted.B.Rotated(angle),
|
|
}
|
|
|
|
return lineRotated.Moved(around)
|
|
}
|
|
|
|
// Scaled will return the line scaled around the center point.
|
|
func (l Line) Scaled(scale float64) Line {
|
|
return l.ScaledXY(l.Center(), scale)
|
|
}
|
|
|
|
// ScaledXY will return the line scaled around the Vec provided.
|
|
func (l Line) ScaledXY(around Vec, scale float64) Line {
|
|
toA := around.To(l.A).Scaled(scale)
|
|
toB := around.To(l.B).Scaled(scale)
|
|
|
|
return Line{
|
|
A: around.Add(toA),
|
|
B: around.Add(toB),
|
|
}
|
|
}
|
|
|
|
func (l Line) String() string {
|
|
return fmt.Sprintf("Line(%v, %v)", l.A, l.B)
|
|
}
|
|
|
|
// Rect is a 2D rectangle aligned with the axes of the coordinate system. It is defined by two
|
|
// points, Min and Max.
|
|
//
|
|
// The invariant should hold, that Max's components are greater or equal than Min's components
|
|
// respectively.
|
|
type Rect struct {
|
|
Min, Max Vec
|
|
}
|
|
|
|
// ZR is a zero rectangle.
|
|
var ZR = Rect{Min: ZV, Max: ZV}
|
|
|
|
// R returns a new Rect with given the Min and Max coordinates.
|
|
//
|
|
// Note that the returned rectangle is not automatically normalized.
|
|
func R(minX, minY, maxX, maxY float64) Rect {
|
|
return Rect{
|
|
Min: Vec{minX, minY},
|
|
Max: Vec{maxX, maxY},
|
|
}
|
|
}
|
|
|
|
// String returns the string representation of the Rect.
|
|
//
|
|
// r := pixel.R(100, 50, 200, 300)
|
|
// r.String() // returns "Rect(100, 50, 200, 300)"
|
|
// fmt.Println(r) // Rect(100, 50, 200, 300)
|
|
func (r Rect) String() string {
|
|
return fmt.Sprintf("Rect(%v, %v, %v, %v)", r.Min.X, r.Min.Y, r.Max.X, r.Max.Y)
|
|
}
|
|
|
|
// Norm returns the Rect in normal form, such that Max is component-wise greater or equal than Min.
|
|
func (r Rect) Norm() Rect {
|
|
return Rect{
|
|
Min: Vec{
|
|
math.Min(r.Min.X, r.Max.X),
|
|
math.Min(r.Min.Y, r.Max.Y),
|
|
},
|
|
Max: Vec{
|
|
math.Max(r.Min.X, r.Max.X),
|
|
math.Max(r.Min.Y, r.Max.Y),
|
|
},
|
|
}
|
|
}
|
|
|
|
// W returns the width of the Rect.
|
|
func (r Rect) W() float64 {
|
|
return r.Max.X - r.Min.X
|
|
}
|
|
|
|
// H returns the height of the Rect.
|
|
func (r Rect) H() float64 {
|
|
return r.Max.Y - r.Min.Y
|
|
}
|
|
|
|
// Size returns the vector of width and height of the Rect.
|
|
func (r Rect) Size() Vec {
|
|
return V(r.W(), r.H())
|
|
}
|
|
|
|
// Area returns the area of r. If r is not normalized, area may be negative.
|
|
func (r Rect) Area() float64 {
|
|
return r.W() * r.H()
|
|
}
|
|
|
|
// Edges will return the four lines which make up the edges of the rectangle.
|
|
func (r Rect) Edges() [4]Line {
|
|
corners := r.Vertices()
|
|
|
|
return [4]Line{
|
|
{A: corners[0], B: corners[1]},
|
|
{A: corners[1], B: corners[2]},
|
|
{A: corners[2], B: corners[3]},
|
|
{A: corners[3], B: corners[0]},
|
|
}
|
|
}
|
|
|
|
// Center returns the position of the center of the Rect.
|
|
func (r Rect) Center() Vec {
|
|
return Lerp(r.Min, r.Max, 0.5)
|
|
}
|
|
|
|
// Moved returns the Rect moved (both Min and Max) by the given vector delta.
|
|
func (r Rect) Moved(delta Vec) Rect {
|
|
return Rect{
|
|
Min: r.Min.Add(delta),
|
|
Max: r.Max.Add(delta),
|
|
}
|
|
}
|
|
|
|
// Resized returns the Rect resized to the given size while keeping the position of the given
|
|
// anchor.
|
|
//
|
|
// r.Resized(r.Min, size) // resizes while keeping the position of the lower-left corner
|
|
// r.Resized(r.Max, size) // same with the top-right corner
|
|
// r.Resized(r.Center(), size) // resizes around the center
|
|
//
|
|
// This function does not make sense for resizing a rectangle of zero area and will panic. Use
|
|
// ResizedMin in the case of zero area.
|
|
func (r Rect) Resized(anchor, size Vec) Rect {
|
|
if r.W()*r.H() == 0 {
|
|
panic(fmt.Errorf("(%T).Resize: zero area", r))
|
|
}
|
|
fraction := Vec{size.X / r.W(), size.Y / r.H()}
|
|
return Rect{
|
|
Min: anchor.Add(r.Min.Sub(anchor).ScaledXY(fraction)),
|
|
Max: anchor.Add(r.Max.Sub(anchor).ScaledXY(fraction)),
|
|
}
|
|
}
|
|
|
|
// ResizedMin returns the Rect resized to the given size while keeping the position of the Rect's
|
|
// Min.
|
|
//
|
|
// Sizes of zero area are safe here.
|
|
func (r Rect) ResizedMin(size Vec) Rect {
|
|
return Rect{
|
|
Min: r.Min,
|
|
Max: r.Min.Add(size),
|
|
}
|
|
}
|
|
|
|
// Contains checks whether a vector u is contained within this Rect (including it's borders).
|
|
func (r Rect) Contains(u Vec) bool {
|
|
return r.Min.X <= u.X && u.X <= r.Max.X && r.Min.Y <= u.Y && u.Y <= r.Max.Y
|
|
}
|
|
|
|
// Union returns the minimal Rect which covers both r and s. Rects r and s must be normalized.
|
|
func (r Rect) Union(s Rect) Rect {
|
|
return R(
|
|
math.Min(r.Min.X, s.Min.X),
|
|
math.Min(r.Min.Y, s.Min.Y),
|
|
math.Max(r.Max.X, s.Max.X),
|
|
math.Max(r.Max.Y, s.Max.Y),
|
|
)
|
|
}
|
|
|
|
// Intersect returns the maximal Rect which is covered by both r and s. Rects r and s must be normalized.
|
|
//
|
|
// If r and s don't overlap, this function returns a zero-rectangle.
|
|
func (r Rect) Intersect(s Rect) Rect {
|
|
t := R(
|
|
math.Max(r.Min.X, s.Min.X),
|
|
math.Max(r.Min.Y, s.Min.Y),
|
|
math.Min(r.Max.X, s.Max.X),
|
|
math.Min(r.Max.Y, s.Max.Y),
|
|
)
|
|
if t.Min.X >= t.Max.X || t.Min.Y >= t.Max.Y {
|
|
return ZR
|
|
}
|
|
return t
|
|
}
|
|
|
|
// Intersects returns whether or not the given Rect intersects at any point with this Rect.
|
|
//
|
|
// This function is overall about 5x faster than Intersect, so it is better
|
|
// to use if you have no need for the returned Rect from Intersect.
|
|
func (r Rect) Intersects(s Rect) bool {
|
|
return !(s.Max.X < r.Min.X ||
|
|
s.Min.X > r.Max.X ||
|
|
s.Max.Y < r.Min.Y ||
|
|
s.Min.Y > r.Max.Y)
|
|
}
|
|
|
|
// IntersectCircle returns a minimal required Vector, such that moving the rect by that vector would stop the Circle
|
|
// and the Rect intersecting. This function returns a zero-vector if the Circle and Rect do not overlap, and if only
|
|
// the perimeters touch.
|
|
//
|
|
// This function will return a non-zero vector if:
|
|
// - The Rect contains the Circle, partially or fully
|
|
// - The Circle contains the Rect, partially of fully
|
|
func (r Rect) IntersectCircle(c Circle) Vec {
|
|
return c.IntersectRect(r).Scaled(-1)
|
|
}
|
|
|
|
// IntersectLine will return the shortest Vec such that if the Rect is moved by the Vec returned, the Line and Rect no
|
|
// longer intersect.
|
|
func (r Rect) IntersectLine(l Line) Vec {
|
|
return l.IntersectRect(r).Scaled(-1)
|
|
}
|
|
|
|
// IntersectionPoints returns all the points where the Rect intersects with the line provided. This can be zero, one or
|
|
// two points, depending on the location of the shapes. The points of intersection will be returned in order of
|
|
// closest-to-l.A to closest-to-l.B.
|
|
func (r Rect) IntersectionPoints(l Line) []Vec {
|
|
// Use map keys to ensure unique points
|
|
pointMap := make(map[Vec]struct{})
|
|
|
|
for _, edge := range r.Edges() {
|
|
if intersect, ok := l.Intersect(edge); ok {
|
|
pointMap[intersect] = struct{}{}
|
|
}
|
|
}
|
|
|
|
points := make([]Vec, 0, len(pointMap))
|
|
for point := range pointMap {
|
|
points = append(points, point)
|
|
}
|
|
|
|
// Order the points
|
|
if len(points) == 2 {
|
|
if points[1].To(l.A).Len() < points[0].To(l.A).Len() {
|
|
return []Vec{points[1], points[0]}
|
|
}
|
|
}
|
|
|
|
return points
|
|
}
|
|
|
|
// Vertices returns a slice of the four corners which make up the rectangle.
|
|
func (r Rect) Vertices() [4]Vec {
|
|
return [4]Vec{
|
|
r.Min,
|
|
V(r.Min.X, r.Max.Y),
|
|
r.Max,
|
|
V(r.Max.X, r.Min.Y),
|
|
}
|
|
}
|
|
|
|
// Circle is a 2D circle. It is defined by two properties:
|
|
// - Center vector
|
|
// - Radius float64
|
|
type Circle struct {
|
|
Center Vec
|
|
Radius float64
|
|
}
|
|
|
|
// C returns a new Circle with the given radius and center coordinates.
|
|
//
|
|
// Note that a negative radius is valid.
|
|
func C(center Vec, radius float64) Circle {
|
|
return Circle{
|
|
Center: center,
|
|
Radius: radius,
|
|
}
|
|
}
|
|
|
|
// String returns the string representation of the Circle.
|
|
//
|
|
// c := pixel.C(10.1234, pixel.ZV)
|
|
// c.String() // returns "Circle(10.12, Vec(0, 0))"
|
|
// fmt.Println(c) // Circle(10.12, Vec(0, 0))
|
|
func (c Circle) String() string {
|
|
return fmt.Sprintf("Circle(%s, %.2f)", c.Center, c.Radius)
|
|
}
|
|
|
|
// Norm returns the Circle in normalized form - this sets the radius to its absolute value.
|
|
//
|
|
// c := pixel.C(-10, pixel.ZV)
|
|
// c.Norm() // returns pixel.Circle{pixel.Vec{0, 0}, 10}
|
|
func (c Circle) Norm() Circle {
|
|
return Circle{
|
|
Center: c.Center,
|
|
Radius: math.Abs(c.Radius),
|
|
}
|
|
}
|
|
|
|
// Area returns the area of the Circle.
|
|
func (c Circle) Area() float64 {
|
|
return math.Pi * math.Pow(c.Radius, 2)
|
|
}
|
|
|
|
// Moved returns the Circle moved by the given vector delta.
|
|
func (c Circle) Moved(delta Vec) Circle {
|
|
return Circle{
|
|
Center: c.Center.Add(delta),
|
|
Radius: c.Radius,
|
|
}
|
|
}
|
|
|
|
// Resized returns the Circle resized by the given delta. The Circles center is use as the anchor.
|
|
//
|
|
// c := pixel.C(pixel.ZV, 10)
|
|
// c.Resized(-5) // returns pixel.Circle{pixel.Vec{0, 0}, 5}
|
|
// c.Resized(25) // returns pixel.Circle{pixel.Vec{0, 0}, 35}
|
|
func (c Circle) Resized(radiusDelta float64) Circle {
|
|
return Circle{
|
|
Center: c.Center,
|
|
Radius: c.Radius + radiusDelta,
|
|
}
|
|
}
|
|
|
|
// Contains checks whether a vector `u` is contained within this Circle (including it's perimeter).
|
|
func (c Circle) Contains(u Vec) bool {
|
|
toCenter := c.Center.To(u)
|
|
return c.Radius >= toCenter.Len()
|
|
}
|
|
|
|
// Formula returns the values of h and k, for the equation of the circle: (x-h)^2 + (y-k)^2 = r^2
|
|
// where r is the radius of the circle.
|
|
func (c Circle) Formula() (h, k float64) {
|
|
return c.Center.X, c.Center.Y
|
|
}
|
|
|
|
// maxCircle will return the larger circle based on the radius.
|
|
func maxCircle(c, d Circle) Circle {
|
|
if c.Radius < d.Radius {
|
|
return d
|
|
}
|
|
return c
|
|
}
|
|
|
|
// minCircle will return the smaller circle based on the radius.
|
|
func minCircle(c, d Circle) Circle {
|
|
if c.Radius < d.Radius {
|
|
return c
|
|
}
|
|
return d
|
|
}
|
|
|
|
// Union returns the minimal Circle which covers both `c` and `d`.
|
|
func (c Circle) Union(d Circle) Circle {
|
|
biggerC := maxCircle(c.Norm(), d.Norm())
|
|
smallerC := minCircle(c.Norm(), d.Norm())
|
|
|
|
// Get distance between centers
|
|
dist := c.Center.To(d.Center).Len()
|
|
|
|
// If the bigger Circle encompasses the smaller one, we have the result
|
|
if dist+smallerC.Radius <= biggerC.Radius {
|
|
return biggerC
|
|
}
|
|
|
|
// Calculate radius for encompassing Circle
|
|
r := (dist + biggerC.Radius + smallerC.Radius) / 2
|
|
|
|
// Calculate center for encompassing Circle
|
|
theta := .5 + (biggerC.Radius-smallerC.Radius)/(2*dist)
|
|
center := Lerp(smallerC.Center, biggerC.Center, theta)
|
|
|
|
return Circle{
|
|
Center: center,
|
|
Radius: r,
|
|
}
|
|
}
|
|
|
|
// Intersect returns the maximal Circle which is covered by both `c` and `d`.
|
|
//
|
|
// If `c` and `d` don't overlap, this function returns a zero-sized circle at the centerpoint between the two Circle's
|
|
// centers.
|
|
func (c Circle) Intersect(d Circle) Circle {
|
|
// Check if one of the circles encompasses the other; if so, return that one
|
|
biggerC := maxCircle(c.Norm(), d.Norm())
|
|
smallerC := minCircle(c.Norm(), d.Norm())
|
|
|
|
if biggerC.Radius >= biggerC.Center.To(smallerC.Center).Len()+smallerC.Radius {
|
|
return biggerC
|
|
}
|
|
|
|
// Calculate the midpoint between the two radii
|
|
// Distance between centers
|
|
dist := c.Center.To(d.Center).Len()
|
|
// Difference between radii
|
|
diff := dist - (c.Radius + d.Radius)
|
|
// Distance from c.Center to the weighted midpoint
|
|
distToMidpoint := c.Radius + 0.5*diff
|
|
// Weighted midpoint
|
|
center := Lerp(c.Center, d.Center, distToMidpoint/dist)
|
|
|
|
// No need to calculate radius if the circles do not overlap
|
|
if c.Center.To(d.Center).Len() >= c.Radius+d.Radius {
|
|
return C(center, 0)
|
|
}
|
|
|
|
radius := c.Center.To(d.Center).Len() - (c.Radius + d.Radius)
|
|
|
|
return Circle{
|
|
Center: center,
|
|
Radius: math.Abs(radius),
|
|
}
|
|
}
|
|
|
|
// IntersectLine will return the shortest Vec such that if the Circle is moved by the Vec returned, the Line and Rect no
|
|
// longer intersect.
|
|
func (c Circle) IntersectLine(l Line) Vec {
|
|
return l.IntersectCircle(c).Scaled(-1)
|
|
}
|
|
|
|
// IntersectRect returns a minimal required Vector, such that moving the circle by that vector would stop the Circle
|
|
// and the Rect intersecting. This function returns a zero-vector if the Circle and Rect do not overlap, and if only
|
|
// the perimeters touch.
|
|
//
|
|
// This function will return a non-zero vector if:
|
|
// - The Rect contains the Circle, partially or fully
|
|
// - The Circle contains the Rect, partially of fully
|
|
func (c Circle) IntersectRect(r Rect) Vec {
|
|
// Checks if the c.Center is not in the diagonal quadrants of the rectangle
|
|
if (r.Min.X <= c.Center.X && c.Center.X <= r.Max.X) || (r.Min.Y <= c.Center.Y && c.Center.Y <= r.Max.Y) {
|
|
// 'grow' the Rect by c.Radius in each orthagonal
|
|
grown := Rect{Min: r.Min.Sub(V(c.Radius, c.Radius)), Max: r.Max.Add(V(c.Radius, c.Radius))}
|
|
if !grown.Contains(c.Center) {
|
|
// c.Center not close enough to overlap, return zero-vector
|
|
return ZV
|
|
}
|
|
|
|
// Get minimum distance to travel out of Rect
|
|
rToC := r.Center().To(c.Center)
|
|
h := c.Radius - math.Abs(rToC.X) + (r.W() / 2)
|
|
v := c.Radius - math.Abs(rToC.Y) + (r.H() / 2)
|
|
|
|
if rToC.X < 0 {
|
|
h = -h
|
|
}
|
|
if rToC.Y < 0 {
|
|
v = -v
|
|
}
|
|
|
|
// No intersect
|
|
if h == 0 && v == 0 {
|
|
return ZV
|
|
}
|
|
|
|
if math.Abs(h) > math.Abs(v) {
|
|
// Vertical distance shorter
|
|
return V(0, v)
|
|
}
|
|
return V(h, 0)
|
|
} else {
|
|
// The center is in the diagonal quadrants
|
|
|
|
// Helper points to make code below easy to read.
|
|
rectTopLeft := V(r.Min.X, r.Max.Y)
|
|
rectBottomRight := V(r.Max.X, r.Min.Y)
|
|
|
|
// Check for overlap.
|
|
if !(c.Contains(r.Min) || c.Contains(r.Max) || c.Contains(rectTopLeft) || c.Contains(rectBottomRight)) {
|
|
// No overlap.
|
|
return ZV
|
|
}
|
|
|
|
var centerToCorner Vec
|
|
if c.Center.To(r.Min).Len() <= c.Radius {
|
|
// Closest to bottom-left
|
|
centerToCorner = c.Center.To(r.Min)
|
|
}
|
|
if c.Center.To(r.Max).Len() <= c.Radius {
|
|
// Closest to top-right
|
|
centerToCorner = c.Center.To(r.Max)
|
|
}
|
|
if c.Center.To(rectTopLeft).Len() <= c.Radius {
|
|
// Closest to top-left
|
|
centerToCorner = c.Center.To(rectTopLeft)
|
|
}
|
|
if c.Center.To(rectBottomRight).Len() <= c.Radius {
|
|
// Closest to bottom-right
|
|
centerToCorner = c.Center.To(rectBottomRight)
|
|
}
|
|
|
|
cornerToCircumferenceLen := c.Radius - centerToCorner.Len()
|
|
|
|
return centerToCorner.Unit().Scaled(cornerToCircumferenceLen)
|
|
}
|
|
}
|
|
|
|
// IntersectionPoints returns all the points where the Circle intersects with the line provided. This can be zero, one or
|
|
// two points, depending on the location of the shapes. The points of intersection will be returned in order of
|
|
// closest-to-l.A to closest-to-l.B.
|
|
func (c Circle) IntersectionPoints(l Line) []Vec {
|
|
cContainsA := c.Contains(l.A)
|
|
cContainsB := c.Contains(l.B)
|
|
|
|
// Special case for both endpoint being contained within the circle
|
|
if cContainsA && cContainsB {
|
|
return []Vec{}
|
|
}
|
|
|
|
// Get closest point on the line to this circles' center
|
|
closestToCenter := l.Closest(c.Center)
|
|
|
|
// If the distance to the closest point is greater than the radius, there are no points of intersection
|
|
if closestToCenter.To(c.Center).Len() > c.Radius {
|
|
return []Vec{}
|
|
}
|
|
|
|
// If the distance to the closest point is equal to the radius, the line is tangent and the closest point is the
|
|
// point at which it touches the circle.
|
|
if closestToCenter.To(c.Center).Len() == c.Radius {
|
|
return []Vec{closestToCenter}
|
|
}
|
|
|
|
// Special case for endpoint being on the circles' center
|
|
if c.Center == l.A || c.Center == l.B {
|
|
otherEnd := l.B
|
|
if c.Center == l.B {
|
|
otherEnd = l.A
|
|
}
|
|
intersect := c.Center.Add(c.Center.To(otherEnd).Unit().Scaled(c.Radius))
|
|
return []Vec{intersect}
|
|
}
|
|
|
|
// This means the distance to the closest point is less than the radius, so there is at least one intersection,
|
|
// possibly two.
|
|
|
|
// If one of the end points exists within the circle, there is only one intersection
|
|
if cContainsA || cContainsB {
|
|
containedPoint := l.A
|
|
otherEnd := l.B
|
|
if cContainsB {
|
|
containedPoint = l.B
|
|
otherEnd = l.A
|
|
}
|
|
|
|
// Use trigonometry to get the length of the line between the contained point and the intersection point.
|
|
// The following is used to describe the triangle formed:
|
|
// - a is the side between contained point and circle center
|
|
// - b is the side between the center and the intersection point (radius)
|
|
// - c is the side between the contained point and the intersection point
|
|
// The captials of these letters are used as the angles opposite the respective sides.
|
|
// a and b are known
|
|
a := containedPoint.To(c.Center).Len()
|
|
b := c.Radius
|
|
// B can be calculated by subtracting the angle of b (to the x-axis) from the angle of c (to the x-axis)
|
|
B := containedPoint.To(c.Center).Angle() - containedPoint.To(otherEnd).Angle()
|
|
// Using the Sin rule we can get A
|
|
A := math.Asin((a * math.Sin(B)) / b)
|
|
// Using the rule that there are 180 degrees (or Pi radians) in a triangle, we can now get C
|
|
C := math.Pi - A + B
|
|
// If C is zero, the line segment is in-line with the center-intersect line.
|
|
var c float64
|
|
if C == 0 {
|
|
c = b - a
|
|
} else {
|
|
// Using the Sine rule again, we can now get c
|
|
c = (a * math.Sin(C)) / math.Sin(A)
|
|
}
|
|
// Travelling from the contained point to the other end by length of a will provide the intersection point.
|
|
return []Vec{
|
|
containedPoint.Add(containedPoint.To(otherEnd).Unit().Scaled(c)),
|
|
}
|
|
}
|
|
|
|
// Otherwise the endpoints exist outside of the circle, and the line segment intersects in two locations.
|
|
// The vector formed by going from the closest point to the center of the circle will be perpendicular to the line;
|
|
// this forms a right-angled triangle with the intersection points, with the radius as the hypotenuse.
|
|
// Calculate the other triangles' sides' length.
|
|
a := math.Sqrt(math.Pow(c.Radius, 2) - math.Pow(closestToCenter.To(c.Center).Len(), 2))
|
|
|
|
// Travelling in both directions from the closest point by length of a will provide the two intersection points.
|
|
first := closestToCenter.Add(closestToCenter.To(l.A).Unit().Scaled(a))
|
|
second := closestToCenter.Add(closestToCenter.To(l.B).Unit().Scaled(a))
|
|
|
|
if first.To(l.A).Len() < second.To(l.A).Len() {
|
|
return []Vec{first, second}
|
|
}
|
|
return []Vec{second, first}
|
|
}
|
|
|
|
// Matrix is a 2x3 affine matrix that can be used for all kinds of spatial transforms, such
|
|
// as movement, scaling and rotations.
|
|
//
|
|
// Matrix has a handful of useful methods, each of which adds a transformation to the matrix. For
|
|
// example:
|
|
//
|
|
// pixel.IM.Moved(pixel.V(100, 200)).Rotated(pixel.ZV, math.Pi/2)
|
|
//
|
|
// This code creates a Matrix that first moves everything by 100 units horizontally and 200 units
|
|
// vertically and then rotates everything by 90 degrees around the origin.
|
|
//
|
|
// Layout is:
|
|
// [0] [2] [4]
|
|
// [1] [3] [5]
|
|
// 0 0 1 (implicit row)
|
|
type Matrix [6]float64
|
|
|
|
// IM stands for identity matrix. Does nothing, no transformation.
|
|
var IM = Matrix{1, 0, 0, 1, 0, 0}
|
|
|
|
// String returns a string representation of the Matrix.
|
|
//
|
|
// m := pixel.IM
|
|
// fmt.Println(m) // Matrix(1 0 0 | 0 1 0)
|
|
func (m Matrix) String() string {
|
|
return fmt.Sprintf(
|
|
"Matrix(%v %v %v | %v %v %v)",
|
|
m[0], m[2], m[4],
|
|
m[1], m[3], m[5],
|
|
)
|
|
}
|
|
|
|
// Moved moves everything by the delta vector.
|
|
func (m Matrix) Moved(delta Vec) Matrix {
|
|
m[4], m[5] = m[4]+delta.X, m[5]+delta.Y
|
|
return m
|
|
}
|
|
|
|
// ScaledXY scales everything around a given point by the scale factor in each axis respectively.
|
|
func (m Matrix) ScaledXY(around Vec, scale Vec) Matrix {
|
|
m[4], m[5] = m[4]-around.X, m[5]-around.Y
|
|
m[0], m[2], m[4] = m[0]*scale.X, m[2]*scale.X, m[4]*scale.X
|
|
m[1], m[3], m[5] = m[1]*scale.Y, m[3]*scale.Y, m[5]*scale.Y
|
|
m[4], m[5] = m[4]+around.X, m[5]+around.Y
|
|
return m
|
|
}
|
|
|
|
// Scaled scales everything around a given point by the scale factor.
|
|
func (m Matrix) Scaled(around Vec, scale float64) Matrix {
|
|
return m.ScaledXY(around, V(scale, scale))
|
|
}
|
|
|
|
// Rotated rotates everything around a given point by the given angle in radians.
|
|
func (m Matrix) Rotated(around Vec, angle float64) Matrix {
|
|
sint, cost := math.Sincos(angle)
|
|
m[4], m[5] = m[4]-around.X, m[5]-around.Y
|
|
m = m.Chained(Matrix{cost, sint, -sint, cost, 0, 0})
|
|
m[4], m[5] = m[4]+around.X, m[5]+around.Y
|
|
return m
|
|
}
|
|
|
|
// Chained adds another Matrix to this one. All tranformations by the next Matrix will be applied
|
|
// after the transformations of this Matrix.
|
|
func (m Matrix) Chained(next Matrix) Matrix {
|
|
return Matrix{
|
|
next[0]*m[0] + next[2]*m[1],
|
|
next[1]*m[0] + next[3]*m[1],
|
|
next[0]*m[2] + next[2]*m[3],
|
|
next[1]*m[2] + next[3]*m[3],
|
|
next[0]*m[4] + next[2]*m[5] + next[4],
|
|
next[1]*m[4] + next[3]*m[5] + next[5],
|
|
}
|
|
}
|
|
|
|
// Project applies all transformations added to the Matrix to a vector u and returns the result.
|
|
//
|
|
// Time complexity is O(1).
|
|
func (m Matrix) Project(u Vec) Vec {
|
|
return Vec{m[0]*u.X + m[2]*u.Y + m[4], m[1]*u.X + m[3]*u.Y + m[5]}
|
|
}
|
|
|
|
// Unproject does the inverse operation to Project.
|
|
//
|
|
// Time complexity is O(1).
|
|
func (m Matrix) Unproject(u Vec) Vec {
|
|
det := m[0]*m[3] - m[2]*m[1]
|
|
return Vec{
|
|
(m[3]*(u.X-m[4]) - m[2]*(u.Y-m[5])) / det,
|
|
(-m[1]*(u.X-m[4]) + m[0]*(u.Y-m[5])) / det,
|
|
}
|
|
}
|