go-opengl-pixel/circle.go

335 lines
10 KiB
Go

package pixel
import (
"fmt"
"math"
)
// Circle is a 2D circle. It is defined by two properties:
// - Center vector
// - Radius float64
type Circle struct {
Center Vec
Radius float64
}
// C returns a new Circle with the given radius and center coordinates.
//
// Note that a negative radius is valid.
func C(center Vec, radius float64) Circle {
return Circle{
Center: center,
Radius: radius,
}
}
// String returns the string representation of the Circle.
//
// c := pixel.C(10.1234, pixel.ZV)
// c.String() // returns "Circle(10.12, Vec(0, 0))"
// fmt.Println(c) // Circle(10.12, Vec(0, 0))
func (c Circle) String() string {
return fmt.Sprintf("Circle(%s, %.2f)", c.Center, c.Radius)
}
// Norm returns the Circle in normalized form - this sets the radius to its absolute value.
//
// c := pixel.C(-10, pixel.ZV)
// c.Norm() // returns pixel.Circle{pixel.Vec{0, 0}, 10}
func (c Circle) Norm() Circle {
return Circle{
Center: c.Center,
Radius: math.Abs(c.Radius),
}
}
// Area returns the area of the Circle.
func (c Circle) Area() float64 {
return math.Pi * math.Pow(c.Radius, 2)
}
// Moved returns the Circle moved by the given vector delta.
func (c Circle) Moved(delta Vec) Circle {
return Circle{
Center: c.Center.Add(delta),
Radius: c.Radius,
}
}
// Resized returns the Circle resized by the given delta. The Circles center is use as the anchor.
//
// c := pixel.C(pixel.ZV, 10)
// c.Resized(-5) // returns pixel.Circle{pixel.Vec{0, 0}, 5}
// c.Resized(25) // returns pixel.Circle{pixel.Vec{0, 0}, 35}
func (c Circle) Resized(radiusDelta float64) Circle {
return Circle{
Center: c.Center,
Radius: c.Radius + radiusDelta,
}
}
// Contains checks whether a vector `u` is contained within this Circle (including it's perimeter).
func (c Circle) Contains(u Vec) bool {
toCenter := c.Center.To(u)
return c.Radius >= toCenter.Len()
}
// Formula returns the values of h and k, for the equation of the circle: (x-h)^2 + (y-k)^2 = r^2
// where r is the radius of the circle.
func (c Circle) Formula() (h, k float64) {
return c.Center.X, c.Center.Y
}
// maxCircle will return the larger circle based on the radius.
func maxCircle(c, d Circle) Circle {
if c.Radius < d.Radius {
return d
}
return c
}
// minCircle will return the smaller circle based on the radius.
func minCircle(c, d Circle) Circle {
if c.Radius < d.Radius {
return c
}
return d
}
// Union returns the minimal Circle which covers both `c` and `d`.
func (c Circle) Union(d Circle) Circle {
biggerC := maxCircle(c.Norm(), d.Norm())
smallerC := minCircle(c.Norm(), d.Norm())
// Get distance between centers
dist := c.Center.To(d.Center).Len()
// If the bigger Circle encompasses the smaller one, we have the result
if dist+smallerC.Radius <= biggerC.Radius {
return biggerC
}
// Calculate radius for encompassing Circle
r := (dist + biggerC.Radius + smallerC.Radius) / 2
// Calculate center for encompassing Circle
theta := .5 + (biggerC.Radius-smallerC.Radius)/(2*dist)
center := Lerp(smallerC.Center, biggerC.Center, theta)
return Circle{
Center: center,
Radius: r,
}
}
// Intersect returns the maximal Circle which is covered by both `c` and `d`.
//
// If `c` and `d` don't overlap, this function returns a zero-sized circle at the centerpoint between the two Circle's
// centers.
func (c Circle) Intersect(d Circle) Circle {
// Check if one of the circles encompasses the other; if so, return that one
biggerC := maxCircle(c.Norm(), d.Norm())
smallerC := minCircle(c.Norm(), d.Norm())
if biggerC.Radius >= biggerC.Center.To(smallerC.Center).Len()+smallerC.Radius {
return biggerC
}
// Calculate the midpoint between the two radii
// Distance between centers
dist := c.Center.To(d.Center).Len()
// Difference between radii
diff := dist - (c.Radius + d.Radius)
// Distance from c.Center to the weighted midpoint
distToMidpoint := c.Radius + 0.5*diff
// Weighted midpoint
center := Lerp(c.Center, d.Center, distToMidpoint/dist)
// No need to calculate radius if the circles do not overlap
if c.Center.To(d.Center).Len() >= c.Radius+d.Radius {
return C(center, 0)
}
radius := c.Center.To(d.Center).Len() - (c.Radius + d.Radius)
return Circle{
Center: center,
Radius: math.Abs(radius),
}
}
// IntersectLine will return the shortest Vec such that if the Circle is moved by the Vec returned, the Line and Rect no
// longer intersect.
func (c Circle) IntersectLine(l Line) Vec {
return l.IntersectCircle(c).Scaled(-1)
}
// IntersectRect returns a minimal required Vector, such that moving the circle by that vector would stop the Circle
// and the Rect intersecting. This function returns a zero-vector if the Circle and Rect do not overlap, and if only
// the perimeters touch.
//
// This function will return a non-zero vector if:
// - The Rect contains the Circle, partially or fully
// - The Circle contains the Rect, partially of fully
func (c Circle) IntersectRect(r Rect) Vec {
// Checks if the c.Center is not in the diagonal quadrants of the rectangle
if (r.Min.X <= c.Center.X && c.Center.X <= r.Max.X) || (r.Min.Y <= c.Center.Y && c.Center.Y <= r.Max.Y) {
// 'grow' the Rect by c.Radius in each orthagonal
grown := Rect{Min: r.Min.Sub(V(c.Radius, c.Radius)), Max: r.Max.Add(V(c.Radius, c.Radius))}
if !grown.Contains(c.Center) {
// c.Center not close enough to overlap, return zero-vector
return ZV
}
// Get minimum distance to travel out of Rect
rToC := r.Center().To(c.Center)
h := c.Radius - math.Abs(rToC.X) + (r.W() / 2)
v := c.Radius - math.Abs(rToC.Y) + (r.H() / 2)
if rToC.X < 0 {
h = -h
}
if rToC.Y < 0 {
v = -v
}
// No intersect
if h == 0 && v == 0 {
return ZV
}
if math.Abs(h) > math.Abs(v) {
// Vertical distance shorter
return V(0, v)
}
return V(h, 0)
} else {
// The center is in the diagonal quadrants
// Helper points to make code below easy to read.
rectTopLeft := V(r.Min.X, r.Max.Y)
rectBottomRight := V(r.Max.X, r.Min.Y)
// Check for overlap.
if !(c.Contains(r.Min) || c.Contains(r.Max) || c.Contains(rectTopLeft) || c.Contains(rectBottomRight)) {
// No overlap.
return ZV
}
var centerToCorner Vec
if c.Center.To(r.Min).Len() <= c.Radius {
// Closest to bottom-left
centerToCorner = c.Center.To(r.Min)
}
if c.Center.To(r.Max).Len() <= c.Radius {
// Closest to top-right
centerToCorner = c.Center.To(r.Max)
}
if c.Center.To(rectTopLeft).Len() <= c.Radius {
// Closest to top-left
centerToCorner = c.Center.To(rectTopLeft)
}
if c.Center.To(rectBottomRight).Len() <= c.Radius {
// Closest to bottom-right
centerToCorner = c.Center.To(rectBottomRight)
}
cornerToCircumferenceLen := c.Radius - centerToCorner.Len()
return centerToCorner.Unit().Scaled(cornerToCircumferenceLen)
}
}
// IntersectionPoints returns all the points where the Circle intersects with the line provided. This can be zero, one or
// two points, depending on the location of the shapes. The points of intersection will be returned in order of
// closest-to-l.A to closest-to-l.B.
func (c Circle) IntersectionPoints(l Line) []Vec {
cContainsA := c.Contains(l.A)
cContainsB := c.Contains(l.B)
// Special case for both endpoint being contained within the circle
if cContainsA && cContainsB {
return []Vec{}
}
// Get closest point on the line to this circles' center
closestToCenter := l.Closest(c.Center)
// If the distance to the closest point is greater than the radius, there are no points of intersection
if closestToCenter.To(c.Center).Len() > c.Radius {
return []Vec{}
}
// If the distance to the closest point is equal to the radius, the line is tangent and the closest point is the
// point at which it touches the circle.
if closestToCenter.To(c.Center).Len() == c.Radius {
return []Vec{closestToCenter}
}
// Special case for endpoint being on the circles' center
if c.Center == l.A || c.Center == l.B {
otherEnd := l.B
if c.Center == l.B {
otherEnd = l.A
}
intersect := c.Center.Add(c.Center.To(otherEnd).Unit().Scaled(c.Radius))
return []Vec{intersect}
}
// This means the distance to the closest point is less than the radius, so there is at least one intersection,
// possibly two.
// If one of the end points exists within the circle, there is only one intersection
if cContainsA || cContainsB {
containedPoint := l.A
otherEnd := l.B
if cContainsB {
containedPoint = l.B
otherEnd = l.A
}
// Use trigonometry to get the length of the line between the contained point and the intersection point.
// The following is used to describe the triangle formed:
// - a is the side between contained point and circle center
// - b is the side between the center and the intersection point (radius)
// - c is the side between the contained point and the intersection point
// The captials of these letters are used as the angles opposite the respective sides.
// a and b are known
a := containedPoint.To(c.Center).Len()
b := c.Radius
// B can be calculated by subtracting the angle of b (to the x-axis) from the angle of c (to the x-axis)
B := containedPoint.To(c.Center).Angle() - containedPoint.To(otherEnd).Angle()
// Using the Sin rule we can get A
A := math.Asin((a * math.Sin(B)) / b)
// Using the rule that there are 180 degrees (or Pi radians) in a triangle, we can now get C
C := math.Pi - A + B
// If C is zero, the line segment is in-line with the center-intersect line.
var c float64
if C == 0 {
c = b - a
} else {
// Using the Sine rule again, we can now get c
c = (a * math.Sin(C)) / math.Sin(A)
}
// Travelling from the contained point to the other end by length of a will provide the intersection point.
return []Vec{
containedPoint.Add(containedPoint.To(otherEnd).Unit().Scaled(c)),
}
}
// Otherwise the endpoints exist outside of the circle, and the line segment intersects in two locations.
// The vector formed by going from the closest point to the center of the circle will be perpendicular to the line;
// this forms a right-angled triangle with the intersection points, with the radius as the hypotenuse.
// Calculate the other triangles' sides' length.
a := math.Sqrt(math.Pow(c.Radius, 2) - math.Pow(closestToCenter.To(c.Center).Len(), 2))
// Travelling in both directions from the closest point by length of a will provide the two intersection points.
first := closestToCenter.Add(closestToCenter.To(l.A).Unit().Scaled(a))
second := closestToCenter.Add(closestToCenter.To(l.B).Unit().Scaled(a))
if first.To(l.A).Len() < second.To(l.A).Len() {
return []Vec{first, second}
}
return []Vec{second, first}
}