go-opengl-pixel/text/atlas.go

250 lines
6.2 KiB
Go

package text
import (
"fmt"
"image"
"image/draw"
"sort"
"unicode"
"github.com/faiface/pixel"
"golang.org/x/image/font"
"golang.org/x/image/math/fixed"
)
// Glyph describes one glyph in an Atlas.
type Glyph struct {
Dot pixel.Vec
Frame pixel.Rect
Advance float64
}
// Atlas is a set of pre-drawn glyphs of a fixed set of runes. This allows for efficient text drawing.
type Atlas struct {
face font.Face
pic pixel.Picture
mapping map[rune]Glyph
ascent float64
descent float64
lineHeight float64
}
// NewAtlas creates a new Atlas containing glyphs of the union of the given sets of runes (plus
// unicode.ReplacementChar) from the given font face.
//
// Creating an Atlas is rather expensive, do not create a new Atlas each frame.
//
// Do not destroy or close the font.Face after creating the Atlas. Atlas still uses it.
func NewAtlas(face font.Face, runeSets ...[]rune) *Atlas {
seen := make(map[rune]bool)
runes := []rune{unicode.ReplacementChar}
for _, set := range runeSets {
for _, r := range set {
if !seen[r] {
runes = append(runes, r)
seen[r] = true
}
}
}
fixedMapping, fixedBounds := makeSquareMapping(face, runes, fixed.I(2))
atlasImg := image.NewRGBA(image.Rect(
fixedBounds.Min.X.Floor(),
fixedBounds.Min.Y.Floor(),
fixedBounds.Max.X.Ceil(),
fixedBounds.Max.Y.Ceil(),
))
for r, fg := range fixedMapping {
dr, mask, maskp, _, _ := face.Glyph(fg.dot, r)
draw.Draw(atlasImg, dr, mask, maskp, draw.Src)
}
bounds := pixel.R(
i2f(fixedBounds.Min.X),
i2f(fixedBounds.Min.Y),
i2f(fixedBounds.Max.X),
i2f(fixedBounds.Max.Y),
)
mapping := make(map[rune]Glyph)
for r, fg := range fixedMapping {
mapping[r] = Glyph{
Dot: pixel.V(
i2f(fg.dot.X),
bounds.Max.Y-(i2f(fg.dot.Y)-bounds.Min.Y),
),
Frame: pixel.R(
i2f(fg.frame.Min.X),
bounds.Max.Y-(i2f(fg.frame.Min.Y)-bounds.Min.Y),
i2f(fg.frame.Max.X),
bounds.Max.Y-(i2f(fg.frame.Max.Y)-bounds.Min.Y),
).Norm(),
Advance: i2f(fg.advance),
}
}
return &Atlas{
face: face,
pic: pixel.PictureDataFromImage(atlasImg),
mapping: mapping,
ascent: i2f(face.Metrics().Ascent),
descent: i2f(face.Metrics().Descent),
lineHeight: i2f(face.Metrics().Height),
}
}
// Picture returns the underlying Picture containing an arrangement of all the glyphs contained
// within the Atlas.
func (a *Atlas) Picture() pixel.Picture {
return a.pic
}
// Contains reports wheter r in contained within the Atlas.
func (a *Atlas) Contains(r rune) bool {
_, ok := a.mapping[r]
return ok
}
// Glyph returns the description of r within the Atlas.
func (a *Atlas) Glyph(r rune) Glyph {
return a.mapping[r]
}
// Kern returns the kerning distance between runes r0 and r1. Positive distance means that the
// glyphs should be further apart.
func (a *Atlas) Kern(r0, r1 rune) float64 {
return i2f(a.face.Kern(r0, r1))
}
// Ascent returns the distance from the top of the line to the baseline.
func (a *Atlas) Ascent() float64 {
return a.ascent
}
// Descent returns the distance from the baseline to the bottom of the line.
func (a *Atlas) Descent() float64 {
return a.descent
}
// LineHeight returns the recommended vertical distance between two lines of text.
func (a *Atlas) LineHeight() float64 {
return a.lineHeight
}
// DrawRune returns parameters necessary for drawing a rune glyph.
//
// Rect is a rectangle where the glyph should be positioned. Frame is the glyph frame inside the
// Atlas's Picture. NewDot is the new position of the dot.
func (a *Atlas) DrawRune(prevR, r rune, dot pixel.Vec) (rect, frame, bounds pixel.Rect, newDot pixel.Vec) {
if !a.Contains(r) {
r = unicode.ReplacementChar
}
if !a.Contains(unicode.ReplacementChar) {
return pixel.Rect{}, pixel.Rect{}, pixel.Rect{}, dot
}
if !a.Contains(prevR) {
prevR = unicode.ReplacementChar
}
if prevR >= 0 {
dot.X += a.Kern(prevR, r)
}
glyph := a.Glyph(r)
rect = glyph.Frame.Moved(dot.Sub(glyph.Dot))
bounds = rect
if bounds.W()*bounds.H() != 0 {
bounds = pixel.R(
bounds.Min.X,
dot.Y-a.Descent(),
bounds.Max.X,
dot.Y+a.Ascent(),
)
}
dot.X += glyph.Advance
return rect, glyph.Frame, bounds, dot
}
type fixedGlyph struct {
dot fixed.Point26_6
frame fixed.Rectangle26_6
advance fixed.Int26_6
}
// makeSquareMapping finds an optimal glyph arrangement of the given runes, so that their common
// bounding box is as square as possible.
func makeSquareMapping(face font.Face, runes []rune, padding fixed.Int26_6) (map[rune]fixedGlyph, fixed.Rectangle26_6) {
width := sort.Search(int(fixed.I(1024*1024)), func(i int) bool {
width := fixed.Int26_6(i)
_, bounds := makeMapping(face, runes, padding, width)
return bounds.Max.X-bounds.Min.X >= bounds.Max.Y-bounds.Min.Y
})
return makeMapping(face, runes, padding, fixed.Int26_6(width))
}
// makeMapping arranges glyphs of the given runes into rows in such a way, that no glyph is located
// fully to the right of the specified width. Specifically, it places glyphs in a row one by one and
// once it reaches the specified width, it starts a new row.
func makeMapping(face font.Face, runes []rune, padding, width fixed.Int26_6) (map[rune]fixedGlyph, fixed.Rectangle26_6) {
mapping := make(map[rune]fixedGlyph)
bounds := fixed.Rectangle26_6{}
dot := fixed.P(0, 0)
for _, r := range runes {
b, advance, ok := face.GlyphBounds(r)
if !ok {
fmt.Println(r)
continue
}
// this is important for drawing, artifacts arise otherwise
frame := fixed.Rectangle26_6{
Min: fixed.P(b.Min.X.Floor(), b.Min.Y.Floor()),
Max: fixed.P(b.Max.X.Ceil(), b.Max.Y.Ceil()),
}
dot.X -= frame.Min.X
frame = frame.Add(dot)
mapping[r] = fixedGlyph{
dot: dot,
frame: frame,
advance: advance,
}
bounds = bounds.Union(frame)
dot.X = frame.Max.X
// padding + align to integer
dot.X += padding
dot.X = fixed.I(dot.X.Ceil())
// width exceeded, new row
if frame.Max.X >= width {
dot.X = 0
dot.Y += face.Metrics().Ascent + face.Metrics().Descent
// padding + align to integer
dot.Y += padding
dot.Y = fixed.I(dot.Y.Ceil())
}
}
return mapping, bounds
}
func i2f(i fixed.Int26_6) float64 {
return float64(i) / (1 << 6)
}
func f2i(f float64) fixed.Int26_6 {
return fixed.Int26_6(f * (1 << 6))
}