package pixel import ( "fmt" "math" ) // Clamp returns x clamped to the interval [min, max]. // // If x is less than min, min is returned. If x is more than max, max is returned. Otherwise, x is // returned. func Clamp(x, min, max float64) float64 { if x < min { return min } if x > max { return max } return x } // Vec is a 2D vector type with X and Y coordinates. // // Create vectors with the V constructor: // // u := pixel.V(1, 2) // v := pixel.V(8, -3) // // Use various methods to manipulate them: // // w := u.Add(v) // fmt.Println(w) // Vec(9, -1) // fmt.Println(u.Sub(v)) // Vec(-7, 5) // u = pixel.V(2, 3) // v = pixel.V(8, 1) // if u.X < 0 { // fmt.Println("this won't happen") // } // x := u.Unit().Dot(v.Unit()) type Vec struct { X, Y float64 } // ZV is a zero vector. var ZV = Vec{0, 0} // V returns a new 2D vector with the given coordinates. func V(x, y float64) Vec { return Vec{x, y} } // Unit returns a vector of length 1 facing the given angle. func Unit(angle float64) Vec { return Vec{1, 0}.Rotated(angle) } // String returns the string representation of the vector u. // // u := pixel.V(4.5, -1.3) // u.String() // returns "Vec(4.5, -1.3)" // fmt.Println(u) // Vec(4.5, -1.3) func (u Vec) String() string { return fmt.Sprintf("Vec(%v, %v)", u.X, u.Y) } // XY returns the components of the vector in two return values. func (u Vec) XY() (x, y float64) { return u.X, u.Y } // Add returns the sum of vectors u and v. func (u Vec) Add(v Vec) Vec { return Vec{ u.X + v.X, u.Y + v.Y, } } // Sub returns the difference betweeen vectors u and v. func (u Vec) Sub(v Vec) Vec { return Vec{ u.X - v.X, u.Y - v.Y, } } // Floor converts x and y to their integer equivalents. func (u Vec) Floor() Vec { return Vec{ math.Floor(u.X), math.Floor(u.Y), } } // To returns the vector from u to v. Equivalent to v.Sub(u). func (u Vec) To(v Vec) Vec { return Vec{ v.X - u.X, v.Y - u.Y, } } // Scaled returns the vector u multiplied by c. func (u Vec) Scaled(c float64) Vec { return Vec{u.X * c, u.Y * c} } // ScaledXY returns the vector u multiplied by the vector v component-wise. func (u Vec) ScaledXY(v Vec) Vec { return Vec{u.X * v.X, u.Y * v.Y} } // Len returns the length of the vector u. func (u Vec) Len() float64 { return math.Hypot(u.X, u.Y) } // Angle returns the angle between the vector u and the x-axis. The result is in range [-Pi, Pi]. func (u Vec) Angle() float64 { return math.Atan2(u.Y, u.X) } // Unit returns a vector of length 1 facing the direction of u (has the same angle). func (u Vec) Unit() Vec { if u.X == 0 && u.Y == 0 { return Vec{1, 0} } return u.Scaled(1 / u.Len()) } // Rotated returns the vector u rotated by the given angle in radians. func (u Vec) Rotated(angle float64) Vec { sin, cos := math.Sincos(angle) return Vec{ u.X*cos - u.Y*sin, u.X*sin + u.Y*cos, } } // Normal returns a vector normal to u. Equivalent to u.Rotated(math.Pi / 2), but faster. func (u Vec) Normal() Vec { return Vec{-u.Y, u.X} } // Dot returns the dot product of vectors u and v. func (u Vec) Dot(v Vec) float64 { return u.X*v.X + u.Y*v.Y } // Cross return the cross product of vectors u and v. func (u Vec) Cross(v Vec) float64 { return u.X*v.Y - v.X*u.Y } // Project returns a projection (or component) of vector u in the direction of vector v. // // Behaviour is undefined if v is a zero vector. func (u Vec) Project(v Vec) Vec { len := u.Dot(v) / v.Len() return v.Unit().Scaled(len) } // Map applies the function f to both x and y components of the vector u and returns the modified // vector. // // u := pixel.V(10.5, -1.5) // v := u.Map(math.Floor) // v is Vec(10, -2), both components of u floored func (u Vec) Map(f func(float64) float64) Vec { return Vec{ f(u.X), f(u.Y), } } // Lerp returns a linear interpolation between vectors a and b. // // This function basically returns a point along the line between a and b and t chooses which one. // If t is 0, then a will be returned, if t is 1, b will be returned. Anything between 0 and 1 will // return the appropriate point between a and b and so on. func Lerp(a, b Vec, t float64) Vec { return a.Scaled(1 - t).Add(b.Scaled(t)) } // Line is a 2D line segment, between points `A` and `B`. type Line struct { A, B Vec } // L creates and returns a new Line. func L(from, to Vec) Line { return Line{ A: from, B: to, } } // Bounds returns the lines bounding box. This is in the form of a normalized Rect. func (l Line) Bounds() Rect { return R(l.A.X, l.A.Y, l.B.X, l.B.Y).Norm() } // Center will return the point at center of the line; that is, the point equidistant from either end. func (l Line) Center() Vec { return l.A.Add(l.A.To(l.B).Scaled(0.5)) } // Closest will return the point on the line which is closest to the Vec provided. func (l Line) Closest(v Vec) Vec { // between is a helper function which determines whether x is greater than min(a, b) and less than max(a, b) between := func(a, b, x float64) bool { min := math.Min(a, b) max := math.Max(a, b) return min < x && x < max } // Closest point will be on a line which perpendicular to this line. // If and only if the infinite perpendicular line intersects the segment. m, b := l.Formula() // Account for horizontal lines if m == 0 { x := v.X y := l.A.Y // check if the X coordinate of v is on the line if between(l.A.X, l.B.X, v.X) { return V(x, y) } // Otherwise get the closest endpoint if l.A.To(v).Len() < l.B.To(v).Len() { return l.A } return l.B } // Account for vertical lines if math.IsInf(math.Abs(m), 1) { x := l.A.X y := v.Y // check if the Y coordinate of v is on the line if between(l.A.Y, l.B.Y, v.Y) { return V(x, y) } // Otherwise get the closest endpoint if l.A.To(v).Len() < l.B.To(v).Len() { return l.A } return l.B } perpendicularM := -1 / m perpendicularB := v.Y - (perpendicularM * v.X) // Coordinates of intersect (of infinite lines) x := (perpendicularB - b) / (m - perpendicularM) y := m*x + b // Check if the point lies between the x and y bounds of the segment if !between(l.A.X, l.B.X, x) && !between(l.A.Y, l.B.Y, y) { // Not within bounding box toStart := v.To(l.A) toEnd := v.To(l.B) if toStart.Len() < toEnd.Len() { return l.A } return l.B } return V(x, y) } // Contains returns whether the provided Vec lies on the line func (l Line) Contains(v Vec) bool { return l.Closest(v) == v } // Formula will return the values that represent the line in the formula: y = mx + b // This function will return math.Inf+, math.Inf- for a vertical line. func (l Line) Formula() (m, b float64) { // Account for horizontal lines if l.B.Y == l.A.Y { return 0, l.A.Y } m = (l.B.Y - l.A.Y) / (l.B.X - l.A.X) b = l.A.Y - (m * l.A.X) return m, b } // Intersect will return the point of intersection for the two line segments. If the line segments do not intersect, // this function will return the zero-vector and false. func (l Line) Intersect(k Line) (Vec, bool) { // Check if the lines are parallel lDir := l.A.To(l.B) kDir := k.A.To(k.B) if lDir.X == kDir.X && lDir.Y == kDir.Y { return ZV, false } // The lines intersect - but potentially not within the line segments. // Get the intersection point for the lines if they were infinitely long, check if the point exists on both of the // segments lm, lb := l.Formula() km, kb := k.Formula() // Account for vertical lines if math.IsInf(math.Abs(lm), 1) && math.IsInf(math.Abs(km), 1) { // Both vertical, therefore parallel return ZV, false } var x, y float64 if math.IsInf(math.Abs(lm), 1) || math.IsInf(math.Abs(km), 1) { // One line is vertical intersectM := lm intersectB := lb verticalLine := k if math.IsInf(math.Abs(lm), 1) { intersectM = km intersectB = kb verticalLine = l } y = intersectM*verticalLine.A.X + intersectB x = verticalLine.A.X } else { // Coordinates of intersect x = (kb - lb) / (lm - km) y = lm*x + lb } if l.Contains(V(x, y)) && k.Contains(V(x, y)) { // The intersect point is on both line segments, they intersect. return V(x, y), true } return ZV, false } // IntersectCircle will return the shortest Vec such that moving the Line by that Vec will cause the Line and Circle // to no longer intesect. If they do not intersect at all, this function will return a zero-vector. func (l Line) IntersectCircle(c Circle) Vec { // Get the point on the line closest to the center of the circle. closest := l.Closest(c.Center) cirToClosest := c.Center.To(closest) if cirToClosest.Len() >= c.Radius { return ZV } return cirToClosest.Scaled(cirToClosest.Len() - c.Radius) } // IntersectRect will return the shortest Vec such that moving the Line by that Vec will cause the Line and Rect to // no longer intesect. If they do not intersect at all, this function will return a zero-vector. func (l Line) IntersectRect(r Rect) Vec { // Check if either end of the line segment are within the rectangle if r.Contains(l.A) || r.Contains(l.B) { // Use the Rect.Intersect to get minimal return value rIntersect := l.Bounds().Intersect(r) if rIntersect.H() > rIntersect.W() { // Go vertical return V(0, rIntersect.H()) } return V(rIntersect.W(), 0) } // Check if any of the rectangles' edges intersect with this line. for _, edge := range r.Edges() { if _, ok := l.Intersect(edge); ok { // Get the closest points on the line to each corner, where: // - the point is contained by the rectangle // - the point is not the corner itself corners := r.Vertices() closest := ZV closestCorner := corners[0] for _, c := range corners { cc := l.Closest(c) if closest == ZV || (closest.Len() > cc.Len() && r.Contains(cc)) { closest = cc closestCorner = c } } return closest.To(closestCorner) } } // No intersect return ZV } // Len returns the length of the line segment. func (l Line) Len() float64 { return l.A.To(l.B).Len() } // Moved will return a line moved by the delta Vec provided. func (l Line) Moved(delta Vec) Line { return Line{ A: l.A.Add(delta), B: l.B.Add(delta), } } // Rotated will rotate the line around the provided Vec. func (l Line) Rotated(around Vec, angle float64) Line { // Move the line so we can use `Vec.Rotated` lineShifted := l.Moved(around.Scaled(-1)) lineRotated := Line{ A: lineShifted.A.Rotated(angle), B: lineShifted.B.Rotated(angle), } return lineRotated.Moved(around) } // Scaled will return the line scaled around the center point. func (l Line) Scaled(scale float64) Line { return l.ScaledXY(l.Center(), scale) } // ScaledXY will return the line scaled around the Vec provided. func (l Line) ScaledXY(around Vec, scale float64) Line { toA := around.To(l.A).Scaled(scale) toB := around.To(l.B).Scaled(scale) return Line{ A: around.Add(toA), B: around.Add(toB), } } func (l Line) String() string { return fmt.Sprintf("Line(%v, %v)", l.A, l.B) } // Rect is a 2D rectangle aligned with the axes of the coordinate system. It is defined by two // points, Min and Max. // // The invariant should hold, that Max's components are greater or equal than Min's components // respectively. type Rect struct { Min, Max Vec } // R returns a new Rect with given the Min and Max coordinates. // // Note that the returned rectangle is not automatically normalized. func R(minX, minY, maxX, maxY float64) Rect { return Rect{ Min: Vec{minX, minY}, Max: Vec{maxX, maxY}, } } // String returns the string representation of the Rect. // // r := pixel.R(100, 50, 200, 300) // r.String() // returns "Rect(100, 50, 200, 300)" // fmt.Println(r) // Rect(100, 50, 200, 300) func (r Rect) String() string { return fmt.Sprintf("Rect(%v, %v, %v, %v)", r.Min.X, r.Min.Y, r.Max.X, r.Max.Y) } // Norm returns the Rect in normal form, such that Max is component-wise greater or equal than Min. func (r Rect) Norm() Rect { return Rect{ Min: Vec{ math.Min(r.Min.X, r.Max.X), math.Min(r.Min.Y, r.Max.Y), }, Max: Vec{ math.Max(r.Min.X, r.Max.X), math.Max(r.Min.Y, r.Max.Y), }, } } // W returns the width of the Rect. func (r Rect) W() float64 { return r.Max.X - r.Min.X } // H returns the height of the Rect. func (r Rect) H() float64 { return r.Max.Y - r.Min.Y } // Size returns the vector of width and height of the Rect. func (r Rect) Size() Vec { return V(r.W(), r.H()) } // Area returns the area of r. If r is not normalized, area may be negative. func (r Rect) Area() float64 { return r.W() * r.H() } // Edges will return the four lines which make up the edges of the rectangle. func (r Rect) Edges() [4]Line { corners := r.Vertices() return [4]Line{ {A: corners[0], B: corners[1]}, {A: corners[1], B: corners[2]}, {A: corners[2], B: corners[3]}, {A: corners[3], B: corners[0]}, } } // Center returns the position of the center of the Rect. func (r Rect) Center() Vec { return Lerp(r.Min, r.Max, 0.5) } // Moved returns the Rect moved (both Min and Max) by the given vector delta. func (r Rect) Moved(delta Vec) Rect { return Rect{ Min: r.Min.Add(delta), Max: r.Max.Add(delta), } } // Resized returns the Rect resized to the given size while keeping the position of the given // anchor. // // r.Resized(r.Min, size) // resizes while keeping the position of the lower-left corner // r.Resized(r.Max, size) // same with the top-right corner // r.Resized(r.Center(), size) // resizes around the center // // This function does not make sense for resizing a rectangle of zero area and will panic. Use // ResizedMin in the case of zero area. func (r Rect) Resized(anchor, size Vec) Rect { if r.W()*r.H() == 0 { panic(fmt.Errorf("(%T).Resize: zero area", r)) } fraction := Vec{size.X / r.W(), size.Y / r.H()} return Rect{ Min: anchor.Add(r.Min.Sub(anchor).ScaledXY(fraction)), Max: anchor.Add(r.Max.Sub(anchor).ScaledXY(fraction)), } } // ResizedMin returns the Rect resized to the given size while keeping the position of the Rect's // Min. // // Sizes of zero area are safe here. func (r Rect) ResizedMin(size Vec) Rect { return Rect{ Min: r.Min, Max: r.Min.Add(size), } } // Contains checks whether a vector u is contained within this Rect (including it's borders). func (r Rect) Contains(u Vec) bool { return r.Min.X <= u.X && u.X <= r.Max.X && r.Min.Y <= u.Y && u.Y <= r.Max.Y } // Union returns the minimal Rect which covers both r and s. Rects r and s must be normalized. func (r Rect) Union(s Rect) Rect { return R( math.Min(r.Min.X, s.Min.X), math.Min(r.Min.Y, s.Min.Y), math.Max(r.Max.X, s.Max.X), math.Max(r.Max.Y, s.Max.Y), ) } // Intersect returns the maximal Rect which is covered by both r and s. Rects r and s must be normalized. // // If r and s don't overlap, this function returns R(0, 0, 0, 0). func (r Rect) Intersect(s Rect) Rect { t := R( math.Max(r.Min.X, s.Min.X), math.Max(r.Min.Y, s.Min.Y), math.Min(r.Max.X, s.Max.X), math.Min(r.Max.Y, s.Max.Y), ) if t.Min.X >= t.Max.X || t.Min.Y >= t.Max.Y { return Rect{} } return t } // IntersectCircle returns a minimal required Vector, such that moving the circle by that vector would stop the Circle // and the Rect intersecting. This function returns a zero-vector if the Circle and Rect do not overlap, and if only // the perimeters touch. // // This function will return a non-zero vector if: // - The Rect contains the Circle, partially or fully // - The Circle contains the Rect, partially of fully func (r Rect) IntersectCircle(c Circle) Vec { return c.IntersectRect(r).Scaled(-1) } // IntersectLine will return the shortest Vec such that if the Rect is moved by the Vec returned, the Line and Rect no // longer intersect. func (r Rect) IntersectLine(l Line) Vec { return l.IntersectRect(r).Scaled(-1) } // IntersectionPoints returns all the points where the Rect intersects with the line provided. This can be zero, one or // two points, depending on the location of the shapes. func (r Rect) IntersectionPoints(l Line) []Vec { // Use map keys to ensure unique points pointMap := make(map[Vec]struct{}) for _, edge := range r.Edges() { if intersect, ok := l.Intersect(edge); ok { pointMap[intersect] = struct{}{} } } points := make([]Vec, 0, len(pointMap)) for point := range pointMap { points = append(points, point) } return points } // Vertices returns a slice of the four corners which make up the rectangle. func (r Rect) Vertices() [4]Vec { return [4]Vec{ r.Min, V(r.Min.X, r.Max.Y), r.Max, V(r.Max.X, r.Min.Y), } } // Circle is a 2D circle. It is defined by two properties: // - Center vector // - Radius float64 type Circle struct { Center Vec Radius float64 } // C returns a new Circle with the given radius and center coordinates. // // Note that a negative radius is valid. func C(center Vec, radius float64) Circle { return Circle{ Center: center, Radius: radius, } } // String returns the string representation of the Circle. // // c := pixel.C(10.1234, pixel.ZV) // c.String() // returns "Circle(10.12, Vec(0, 0))" // fmt.Println(c) // Circle(10.12, Vec(0, 0)) func (c Circle) String() string { return fmt.Sprintf("Circle(%s, %.2f)", c.Center, c.Radius) } // Norm returns the Circle in normalized form - this sets the radius to its absolute value. // // c := pixel.C(-10, pixel.ZV) // c.Norm() // returns pixel.Circle{pixel.Vec{0, 0}, 10} func (c Circle) Norm() Circle { return Circle{ Center: c.Center, Radius: math.Abs(c.Radius), } } // Area returns the area of the Circle. func (c Circle) Area() float64 { return math.Pi * math.Pow(c.Radius, 2) } // Moved returns the Circle moved by the given vector delta. func (c Circle) Moved(delta Vec) Circle { return Circle{ Center: c.Center.Add(delta), Radius: c.Radius, } } // Resized returns the Circle resized by the given delta. The Circles center is use as the anchor. // // c := pixel.C(pixel.ZV, 10) // c.Resized(-5) // returns pixel.Circle{pixel.Vec{0, 0}, 5} // c.Resized(25) // returns pixel.Circle{pixel.Vec{0, 0}, 35} func (c Circle) Resized(radiusDelta float64) Circle { return Circle{ Center: c.Center, Radius: c.Radius + radiusDelta, } } // Contains checks whether a vector `u` is contained within this Circle (including it's perimeter). func (c Circle) Contains(u Vec) bool { toCenter := c.Center.To(u) return c.Radius >= toCenter.Len() } // Formula returns the values of h and k, for the equation of the circle: (x-h)^2 + (y-k)^2 = r^2 // where r is the radius of the circle. func (c Circle) Formula() (h, k float64) { return c.Center.X, c.Center.Y } // maxCircle will return the larger circle based on the radius. func maxCircle(c, d Circle) Circle { if c.Radius < d.Radius { return d } return c } // minCircle will return the smaller circle based on the radius. func minCircle(c, d Circle) Circle { if c.Radius < d.Radius { return c } return d } // Union returns the minimal Circle which covers both `c` and `d`. func (c Circle) Union(d Circle) Circle { biggerC := maxCircle(c.Norm(), d.Norm()) smallerC := minCircle(c.Norm(), d.Norm()) // Get distance between centers dist := c.Center.To(d.Center).Len() // If the bigger Circle encompasses the smaller one, we have the result if dist+smallerC.Radius <= biggerC.Radius { return biggerC } // Calculate radius for encompassing Circle r := (dist + biggerC.Radius + smallerC.Radius) / 2 // Calculate center for encompassing Circle theta := .5 + (biggerC.Radius-smallerC.Radius)/(2*dist) center := Lerp(smallerC.Center, biggerC.Center, theta) return Circle{ Center: center, Radius: r, } } // Intersect returns the maximal Circle which is covered by both `c` and `d`. // // If `c` and `d` don't overlap, this function returns a zero-sized circle at the centerpoint between the two Circle's // centers. func (c Circle) Intersect(d Circle) Circle { // Check if one of the circles encompasses the other; if so, return that one biggerC := maxCircle(c.Norm(), d.Norm()) smallerC := minCircle(c.Norm(), d.Norm()) if biggerC.Radius >= biggerC.Center.To(smallerC.Center).Len()+smallerC.Radius { return biggerC } // Calculate the midpoint between the two radii // Distance between centers dist := c.Center.To(d.Center).Len() // Difference between radii diff := dist - (c.Radius + d.Radius) // Distance from c.Center to the weighted midpoint distToMidpoint := c.Radius + 0.5*diff // Weighted midpoint center := Lerp(c.Center, d.Center, distToMidpoint/dist) // No need to calculate radius if the circles do not overlap if c.Center.To(d.Center).Len() >= c.Radius+d.Radius { return C(center, 0) } radius := c.Center.To(d.Center).Len() - (c.Radius + d.Radius) return Circle{ Center: center, Radius: math.Abs(radius), } } // IntersectLine will return the shortest Vec such that if the Rect is moved by the Vec returned, the Line and Rect no // longer intersect. func (c Circle) IntersectLine(l Line) Vec { return l.IntersectCircle(c).Scaled(-1) } // IntersectRect returns a minimal required Vector, such that moving the circle by that vector would stop the Circle // and the Rect intersecting. This function returns a zero-vector if the Circle and Rect do not overlap, and if only // the perimeters touch. // // This function will return a non-zero vector if: // - The Rect contains the Circle, partially or fully // - The Circle contains the Rect, partially of fully func (c Circle) IntersectRect(r Rect) Vec { // Checks if the c.Center is not in the diagonal quadrants of the rectangle if (r.Min.X <= c.Center.X && c.Center.X <= r.Max.X) || (r.Min.Y <= c.Center.Y && c.Center.Y <= r.Max.Y) { // 'grow' the Rect by c.Radius in each orthagonal grown := Rect{Min: r.Min.Sub(V(c.Radius, c.Radius)), Max: r.Max.Add(V(c.Radius, c.Radius))} if !grown.Contains(c.Center) { // c.Center not close enough to overlap, return zero-vector return ZV } // Get minimum distance to travel out of Rect rToC := r.Center().To(c.Center) h := c.Radius - math.Abs(rToC.X) + (r.W() / 2) v := c.Radius - math.Abs(rToC.Y) + (r.H() / 2) if rToC.X < 0 { h = -h } if rToC.Y < 0 { v = -v } // No intersect if h == 0 && v == 0 { return ZV } if math.Abs(h) > math.Abs(v) { // Vertical distance shorter return V(0, v) } return V(h, 0) } else { // The center is in the diagonal quadrants // Helper points to make code below easy to read. rectTopLeft := V(r.Min.X, r.Max.Y) rectBottomRight := V(r.Max.X, r.Min.Y) // Check for overlap. if !(c.Contains(r.Min) || c.Contains(r.Max) || c.Contains(rectTopLeft) || c.Contains(rectBottomRight)) { // No overlap. return ZV } var centerToCorner Vec if c.Center.To(r.Min).Len() <= c.Radius { // Closest to bottom-left centerToCorner = c.Center.To(r.Min) } if c.Center.To(r.Max).Len() <= c.Radius { // Closest to top-right centerToCorner = c.Center.To(r.Max) } if c.Center.To(rectTopLeft).Len() <= c.Radius { // Closest to top-left centerToCorner = c.Center.To(rectTopLeft) } if c.Center.To(rectBottomRight).Len() <= c.Radius { // Closest to bottom-right centerToCorner = c.Center.To(rectBottomRight) } cornerToCircumferenceLen := c.Radius - centerToCorner.Len() return centerToCorner.Unit().Scaled(cornerToCircumferenceLen) } } // IntersectionPoints returns all the points where the Circle intersects with the line provided. This can be zero, one or // two points, depending on the location of the shapes. func (c Circle) IntersectionPoints(l Line) []Vec { cContainsA := c.Contains(l.A) cContainsB := c.Contains(l.B) // Special case for both endpoint being contained within the circle if cContainsA && cContainsB { return []Vec{} } // Get closest point on the line to this circles' center closestToCenter := l.Closest(c.Center) // If the distance to the closest point is greater than the radius, there are no points of intersection if closestToCenter.To(c.Center).Len() > c.Radius { return []Vec{} } // If the distance to the closest point is equal to the radius, the line is tangent and the closest point is the // point at which it touches the circle. if closestToCenter.To(c.Center).Len() == c.Radius { return []Vec{closestToCenter} } // Special case for endpoint being on the circles' center if c.Center == l.A || c.Center == l.B { otherEnd := l.B if c.Center == l.B { otherEnd = l.A } intersect := c.Center.Add(c.Center.To(otherEnd).Unit().Scaled(c.Radius)) return []Vec{intersect} } // This means the distance to the closest point is less than the radius, so there is at least one intersection, // possibly two. // If one of the end points exists within the circle, there is only one intersection if cContainsA || cContainsB { containedPoint := l.A otherEnd := l.B if cContainsB { containedPoint = l.B otherEnd = l.A } // Use trigonometry to get the length of the line between the contained point and the intersection point. // The following is used to describe the triangle formed: // - a is the side between contained point and circle center // - b is the side between the center and the intersection point (radius) // - c is the side between the contained point and the intersection point // The captials of these letters are used as the angles opposite the respective sides. // a and b are known a := containedPoint.To(c.Center).Len() b := c.Radius // B can be calculated by subtracting the angle of b (to the x-axis) from the angle of c (to the x-axis) B := containedPoint.To(c.Center).Angle() - containedPoint.To(otherEnd).Angle() // Using the Sin rule we can get A A := math.Asin((a * math.Sin(B)) / b) // Using the rule that there are 180 degrees (or Pi radians) in a triangle, we can now get C C := math.Pi - A + B // If C is zero, the line segment is in-line with the center-intersect line. var c float64 if C == 0 { c = b - a } else { // Using the Sine rule again, we can now get c c = (a * math.Sin(C)) / math.Sin(A) } // Travelling from the contained point to the other end by length of a will provide the intersection point. return []Vec{ containedPoint.Add(containedPoint.To(otherEnd).Unit().Scaled(c)), } } // Otherwise the endpoints exist outside of the circle, and the line segment intersects in two locations. // The vector formed by going from the closest point to the center of the circle will be perpendicular to the line; // this forms a right-angled triangle with the intersection points, with the radius as the hypotenuse. // Calculate the other triangles' sides' length. a := math.Sqrt(math.Pow(c.Radius, 2) - math.Pow(closestToCenter.To(c.Center).Len(), 2)) // Travelling in both directions from the closest point by length of a will provide the two intersection points. first := closestToCenter.Add(closestToCenter.To(l.A).Unit().Scaled(a)) second := closestToCenter.Add(closestToCenter.To(l.B).Unit().Scaled(a)) return []Vec{first, second} } // Matrix is a 2x3 affine matrix that can be used for all kinds of spatial transforms, such // as movement, scaling and rotations. // // Matrix has a handful of useful methods, each of which adds a transformation to the matrix. For // example: // // pixel.IM.Moved(pixel.V(100, 200)).Rotated(pixel.ZV, math.Pi/2) // // This code creates a Matrix that first moves everything by 100 units horizontally and 200 units // vertically and then rotates everything by 90 degrees around the origin. // // Layout is: // [0] [2] [4] // [1] [3] [5] // 0 0 1 (implicit row) type Matrix [6]float64 // IM stands for identity matrix. Does nothing, no transformation. var IM = Matrix{1, 0, 0, 1, 0, 0} // String returns a string representation of the Matrix. // // m := pixel.IM // fmt.Println(m) // Matrix(1 0 0 | 0 1 0) func (m Matrix) String() string { return fmt.Sprintf( "Matrix(%v %v %v | %v %v %v)", m[0], m[2], m[4], m[1], m[3], m[5], ) } // Moved moves everything by the delta vector. func (m Matrix) Moved(delta Vec) Matrix { m[4], m[5] = m[4]+delta.X, m[5]+delta.Y return m } // ScaledXY scales everything around a given point by the scale factor in each axis respectively. func (m Matrix) ScaledXY(around Vec, scale Vec) Matrix { m[4], m[5] = m[4]-around.X, m[5]-around.Y m[0], m[2], m[4] = m[0]*scale.X, m[2]*scale.X, m[4]*scale.X m[1], m[3], m[5] = m[1]*scale.Y, m[3]*scale.Y, m[5]*scale.Y m[4], m[5] = m[4]+around.X, m[5]+around.Y return m } // Scaled scales everything around a given point by the scale factor. func (m Matrix) Scaled(around Vec, scale float64) Matrix { return m.ScaledXY(around, V(scale, scale)) } // Rotated rotates everything around a given point by the given angle in radians. func (m Matrix) Rotated(around Vec, angle float64) Matrix { sint, cost := math.Sincos(angle) m[4], m[5] = m[4]-around.X, m[5]-around.Y m = m.Chained(Matrix{cost, sint, -sint, cost, 0, 0}) m[4], m[5] = m[4]+around.X, m[5]+around.Y return m } // Chained adds another Matrix to this one. All tranformations by the next Matrix will be applied // after the transformations of this Matrix. func (m Matrix) Chained(next Matrix) Matrix { return Matrix{ next[0]*m[0] + next[2]*m[1], next[1]*m[0] + next[3]*m[1], next[0]*m[2] + next[2]*m[3], next[1]*m[2] + next[3]*m[3], next[0]*m[4] + next[2]*m[5] + next[4], next[1]*m[4] + next[3]*m[5] + next[5], } } // Project applies all transformations added to the Matrix to a vector u and returns the result. // // Time complexity is O(1). func (m Matrix) Project(u Vec) Vec { return Vec{m[0]*u.X + m[2]*u.Y + m[4], m[1]*u.X + m[3]*u.Y + m[5]} } // Unproject does the inverse operation to Project. // // Time complexity is O(1). func (m Matrix) Unproject(u Vec) Vec { det := m[0]*m[3] - m[2]*m[1] return Vec{ (m[3]*(u.X-m[4]) - m[2]*(u.Y-m[5])) / det, (-m[1]*(u.X-m[4]) + m[0]*(u.Y-m[5])) / det, } }