package pixel import ( "fmt" "math" ) // Clamp returns x clamped to the interval [min, max]. // // If x is less than min, min is returned. If x is more than max, max is returned. Otherwise, x is // returned. func Clamp(x, min, max float64) float64 { if x < min { return min } if x > max { return max } return x } // Vec is a 2D vector type with X and Y coordinates. // // Create vectors with the V constructor: // // u := pixel.V(1, 2) // v := pixel.V(8, -3) // // Use various methods to manipulate them: // // w := u.Add(v) // fmt.Println(w) // Vec(9, -1) // fmt.Println(u.Sub(v)) // Vec(-7, 5) // u = pixel.V(2, 3) // v = pixel.V(8, 1) // if u.X < 0 { // fmt.Println("this won't happen") // } // x := u.Unit().Dot(v.Unit()) type Vec struct { X, Y float64 } // ZV is a zero vector. var ZV = Vec{0, 0} // V returns a new 2D vector with the given coordinates. func V(x, y float64) Vec { return Vec{x, y} } // Unit returns a vector of length 1 facing the given angle. func Unit(angle float64) Vec { return Vec{1, 0}.Rotated(angle) } // String returns the string representation of the vector u. // // u := pixel.V(4.5, -1.3) // u.String() // returns "Vec(4.5, -1.3)" // fmt.Println(u) // Vec(4.5, -1.3) func (u Vec) String() string { return fmt.Sprintf("Vec(%v, %v)", u.X, u.Y) } // XY returns the components of the vector in two return values. func (u Vec) XY() (x, y float64) { return u.X, u.Y } // Add returns the sum of vectors u and v. func (u Vec) Add(v Vec) Vec { return Vec{ u.X + v.X, u.Y + v.Y, } } // Sub returns the difference betweeen vectors u and v. func (u Vec) Sub(v Vec) Vec { return Vec{ u.X - v.X, u.Y - v.Y, } } // Floor converts x and y to their integer equivalents. func (u Vec) Floor() Vec { return Vec{ math.Floor(u.X), math.Floor(u.Y), } } // To returns the vector from u to v. Equivalent to v.Sub(u). func (u Vec) To(v Vec) Vec { return Vec{ v.X - u.X, v.Y - u.Y, } } // Scaled returns the vector u multiplied by c. func (u Vec) Scaled(c float64) Vec { return Vec{u.X * c, u.Y * c} } // ScaledXY returns the vector u multiplied by the vector v component-wise. func (u Vec) ScaledXY(v Vec) Vec { return Vec{u.X * v.X, u.Y * v.Y} } // Len returns the length of the vector u. func (u Vec) Len() float64 { return math.Hypot(u.X, u.Y) } // Angle returns the angle between the vector u and the x-axis. The result is in range [-Pi, Pi]. func (u Vec) Angle() float64 { return math.Atan2(u.Y, u.X) } // Unit returns a vector of length 1 facing the direction of u (has the same angle). func (u Vec) Unit() Vec { if u.X == 0 && u.Y == 0 { return Vec{1, 0} } return u.Scaled(1 / u.Len()) } // Rotated returns the vector u rotated by the given angle in radians. func (u Vec) Rotated(angle float64) Vec { sin, cos := math.Sincos(angle) return Vec{ u.X*cos - u.Y*sin, u.X*sin + u.Y*cos, } } // Normal returns a vector normal to u. Equivalent to u.Rotated(math.Pi / 2), but faster. func (u Vec) Normal() Vec { return Vec{-u.Y, u.X} } // Dot returns the dot product of vectors u and v. func (u Vec) Dot(v Vec) float64 { return u.X*v.X + u.Y*v.Y } // Cross return the cross product of vectors u and v. func (u Vec) Cross(v Vec) float64 { return u.X*v.Y - v.X*u.Y } // Project returns a projection (or component) of vector u in the direction of vector v. // // Behaviour is undefined if v is a zero vector. func (u Vec) Project(v Vec) Vec { len := u.Dot(v) / v.Len() return v.Unit().Scaled(len) } // Map applies the function f to both x and y components of the vector u and returns the modified // vector. // // u := pixel.V(10.5, -1.5) // v := u.Map(math.Floor) // v is Vec(10, -2), both components of u floored func (u Vec) Map(f func(float64) float64) Vec { return Vec{ f(u.X), f(u.Y), } } // Lerp returns a linear interpolation between vectors a and b. // // This function basically returns a point along the line between a and b and t chooses which one. // If t is 0, then a will be returned, if t is 1, b will be returned. Anything between 0 and 1 will // return the appropriate point between a and b and so on. func Lerp(a, b Vec, t float64) Vec { return a.Scaled(1 - t).Add(b.Scaled(t)) } // Rect is a 2D rectangle aligned with the axes of the coordinate system. It is defined by two // points, Min and Max. // // The invariant should hold, that Max's components are greater or equal than Min's components // respectively. type Rect struct { Min, Max Vec } // R returns a new Rect with given the Min and Max coordinates. // // Note that the returned rectangle is not automatically normalized. func R(minX, minY, maxX, maxY float64) Rect { return Rect{ Min: Vec{minX, minY}, Max: Vec{maxX, maxY}, } } // String returns the string representation of the Rect. // // r := pixel.R(100, 50, 200, 300) // r.String() // returns "Rect(100, 50, 200, 300)" // fmt.Println(r) // Rect(100, 50, 200, 300) func (r Rect) String() string { return fmt.Sprintf("Rect(%v, %v, %v, %v)", r.Min.X, r.Min.Y, r.Max.X, r.Max.Y) } // Norm returns the Rect in normal form, such that Max is component-wise greater or equal than Min. func (r Rect) Norm() Rect { return Rect{ Min: Vec{ math.Min(r.Min.X, r.Max.X), math.Min(r.Min.Y, r.Max.Y), }, Max: Vec{ math.Max(r.Min.X, r.Max.X), math.Max(r.Min.Y, r.Max.Y), }, } } // W returns the width of the Rect. func (r Rect) W() float64 { return r.Max.X - r.Min.X } // H returns the height of the Rect. func (r Rect) H() float64 { return r.Max.Y - r.Min.Y } // Size returns the vector of width and height of the Rect. func (r Rect) Size() Vec { return V(r.W(), r.H()) } // Area returns the area of r. If r is not normalized, area may be negative. func (r Rect) Area() float64 { return r.W() * r.H() } // Center returns the position of the center of the Rect. func (r Rect) Center() Vec { return Lerp(r.Min, r.Max, 0.5) } // Moved returns the Rect moved (both Min and Max) by the given vector delta. func (r Rect) Moved(delta Vec) Rect { return Rect{ Min: r.Min.Add(delta), Max: r.Max.Add(delta), } } // Resized returns the Rect resized to the given size while keeping the position of the given // anchor. // // r.Resized(r.Min, size) // resizes while keeping the position of the lower-left corner // r.Resized(r.Max, size) // same with the top-right corner // r.Resized(r.Center(), size) // resizes around the center // // This function does not make sense for resizing a rectangle of zero area and will panic. Use // ResizedMin in the case of zero area. func (r Rect) Resized(anchor, size Vec) Rect { if r.W()*r.H() == 0 { panic(fmt.Errorf("(%T).Resize: zero area", r)) } fraction := Vec{size.X / r.W(), size.Y / r.H()} return Rect{ Min: anchor.Add(r.Min.Sub(anchor).ScaledXY(fraction)), Max: anchor.Add(r.Max.Sub(anchor).ScaledXY(fraction)), } } // ResizedMin returns the Rect resized to the given size while keeping the position of the Rect's // Min. // // Sizes of zero area are safe here. func (r Rect) ResizedMin(size Vec) Rect { return Rect{ Min: r.Min, Max: r.Min.Add(size), } } // Contains checks whether a vector u is contained within this Rect (including it's borders). func (r Rect) Contains(u Vec) bool { return r.Min.X <= u.X && u.X <= r.Max.X && r.Min.Y <= u.Y && u.Y <= r.Max.Y } // Union returns the minimal Rect which covers both r and s. Rects r and s must be normalized. func (r Rect) Union(s Rect) Rect { return R( math.Min(r.Min.X, s.Min.X), math.Min(r.Min.Y, s.Min.Y), math.Max(r.Max.X, s.Max.X), math.Max(r.Max.Y, s.Max.Y), ) } // Intersect returns the maximal Rect which is covered by both r and s. Rects r and s must be normalized. // // If r and s don't overlap, this function returns R(0, 0, 0, 0). func (r Rect) Intersect(s Rect) Rect { t := R( math.Max(r.Min.X, s.Min.X), math.Max(r.Min.Y, s.Min.Y), math.Min(r.Max.X, s.Max.X), math.Min(r.Max.Y, s.Max.Y), ) if t.Min.X >= t.Max.X || t.Min.Y >= t.Max.Y { return Rect{} } return t } // IntersectsCircle returns whether the Circle and the Rect intersect. // // This function will return true if: // - The Rect contains the Circle, partially or fully // - The Circle contains the Rect, partially of fully // - An edge of the Rect is a tangent to the Circle func (r Rect) IntersectsCircle(c Circle) bool { return c.IntersectsRect(r) } // Circle is a 2D circle. It is defined by two properties: // - Radius float64 // - Center vector type Circle struct { Radius float64 Center Vec } // C returns a new Circle with the given radius and center coordinates. // // Note that a negative radius is valid. func C(radius float64, center Vec) Circle { return Circle{ Radius: radius, Center: center, } } // String returns the string representation of the Circle. // // c := pixel.C(10.1234, pixel.ZV) // c.String() // returns "Circle(10.12, Vec(0, 0))" // fmt.Println(c) // Circle(10.12, Vec(0, 0)) func (c Circle) String() string { return fmt.Sprintf("Circle(%.2f, %s)", c.Radius, c.Center) } // Norm returns the Circle in normalized form - this sets the radius to its absolute value. // // c := pixel.C(-10, pixel.ZV) // c.Norm() // returns pixel.Circle{10, pixel.Vec{0, 0}} func (c Circle) Norm() Circle { return Circle{ Radius: math.Abs(c.Radius), Center: c.Center, } } // Area returns the area of the Circle. func (c Circle) Area() float64 { return math.Pi * c.Radius * 2 } // Moved returns the Circle moved by the given vector delta. func (c Circle) Moved(delta Vec) Circle { return Circle{ Radius: c.Radius, Center: c.Center.Add(delta), } } // Resized returns the Circle resized by the given delta. The Circles center is use as the anchor. // // c := pixel.C(10, pixel.ZV) // c.Resized(-5) // returns pixel.Circle{5, pixel.Vec{0, 0}} // c.Resized(25) // returns pixel.Circle{35, pixel.Vec{0, 0}} func (c Circle) Resized(radiusDelta float64) Circle { return Circle{ Radius: c.Radius + radiusDelta, Center: c.Center, } } // Contains checks whether a vector `u` is contained within this Circle (including it's perimeter). func (c Circle) Contains(u Vec) bool { toCenter := c.Center.To(u) return c.Radius >= toCenter.Len() } // maxCircle will return the larger circle based on the radius. func maxCircle(c, d Circle) Circle { if c.Radius < d.Radius { return d } return c } // minCircle will return the smaller circle based on the radius. func minCircle(c, d Circle) Circle { if c.Radius < d.Radius { return c } return d } // Union returns the minimal Circle which covers both `c` and `d`. func (c Circle) Union(d Circle) Circle { biggerC := maxCircle(c.Norm(), d.Norm()) smallerC := minCircle(c.Norm(), d.Norm()) // Get distance between centers dist := c.Center.To(d.Center).Len() // If the bigger Circle encompasses the smaller one, we have the result if dist+smallerC.Radius <= biggerC.Radius { return biggerC } // Calculate radius for encompassing Circle r := (dist + biggerC.Radius + smallerC.Radius) / 2 // Calculate center for encompassing Circle theta := .5 + (biggerC.Radius-smallerC.Radius)/(2*dist) center := Lerp(smallerC.Center, biggerC.Center, theta) return Circle{ Radius: r, Center: center, } } // Intersect returns the maximal Circle which is covered by both `c` and `d`. // // If `c` and `d` don't overlap, this function returns a zero-sized circle at the centerpoint between the two Circle's // centers. func (c Circle) Intersect(d Circle) Circle { // Check if one of the circles encompasses the other; if so, return that one biggerC := maxCircle(c.Norm(), d.Norm()) smallerC := minCircle(c.Norm(), d.Norm()) if biggerC.Radius >= biggerC.Center.To(smallerC.Center).Len()+smallerC.Radius { return biggerC } // Calculate the midpoint between the two radii // Distance between centers dist := c.Center.To(d.Center).Len() // Difference between radii diff := dist - (c.Radius + d.Radius) // Distance from c.Center to the weighted midpoint distToMidpoint := c.Radius + 0.5*diff // Weighted midpoint center := Lerp(c.Center, d.Center, distToMidpoint/dist) // No need to calculate radius if the circles do not overlap if c.Center.To(d.Center).Len() >= c.Radius+d.Radius { return C(0, center) } radius := c.Center.To(d.Center).Len() - (c.Radius + d.Radius) return Circle{ Radius: math.Abs(radius), Center: center, } } // IntersectsRect returns whether the Circle and the Rect intersect. // // This function will return true if: // - The Rect contains the Circle, partially or fully // - The Circle contains the Rect, partially of fully // - An edge of the Rect is a tangent to the Circle func (c Circle) IntersectsRect(r Rect) bool { // Checks if the c.Center is not in the diagonal quadrants of the rectangle if (r.Min.X <= c.Center.X && c.Center.X <= r.Max.X) || (r.Min.Y <= c.Center.Y && c.Center.Y <= r.Max.Y) { // 'grow' the Rect by c.Radius in each orthagonal return Rect{ Min: r.Min.Sub(V(c.Radius, c.Radius)), Max: r.Max.Add(V(c.Radius, c.Radius)), }.Contains(c.Center) } // The center is in the diagonal quadrants return c.Center.To(r.Min).Len() <= c.Radius || c.Center.To(r.Max).Len() <= c.Radius } // Matrix is a 2x3 affine matrix that can be used for all kinds of spatial transforms, such // as movement, scaling and rotations. // // Matrix has a handful of useful methods, each of which adds a transformation to the matrix. For // example: // // pixel.IM.Moved(pixel.V(100, 200)).Rotated(pixel.ZV, math.Pi/2) // // This code creates a Matrix that first moves everything by 100 units horizontally and 200 units // vertically and then rotates everything by 90 degrees around the origin. // // Layout is: // [0] [2] [4] // [1] [3] [5] // 0 0 1 (implicit row) type Matrix [6]float64 // IM stands for identity matrix. Does nothing, no transformation. var IM = Matrix{1, 0, 0, 1, 0, 0} // String returns a string representation of the Matrix. // // m := pixel.IM // fmt.Println(m) // Matrix(1 0 0 | 0 1 0) func (m Matrix) String() string { return fmt.Sprintf( "Matrix(%v %v %v | %v %v %v)", m[0], m[2], m[4], m[1], m[3], m[5], ) } // Moved moves everything by the delta vector. func (m Matrix) Moved(delta Vec) Matrix { m[4], m[5] = m[4]+delta.X, m[5]+delta.Y return m } // ScaledXY scales everything around a given point by the scale factor in each axis respectively. func (m Matrix) ScaledXY(around Vec, scale Vec) Matrix { m[4], m[5] = m[4]-around.X, m[5]-around.Y m[0], m[2], m[4] = m[0]*scale.X, m[2]*scale.X, m[4]*scale.X m[1], m[3], m[5] = m[1]*scale.Y, m[3]*scale.Y, m[5]*scale.Y m[4], m[5] = m[4]+around.X, m[5]+around.Y return m } // Scaled scales everything around a given point by the scale factor. func (m Matrix) Scaled(around Vec, scale float64) Matrix { return m.ScaledXY(around, V(scale, scale)) } // Rotated rotates everything around a given point by the given angle in radians. func (m Matrix) Rotated(around Vec, angle float64) Matrix { sint, cost := math.Sincos(angle) m[4], m[5] = m[4]-around.X, m[5]-around.Y m = m.Chained(Matrix{cost, sint, -sint, cost, 0, 0}) m[4], m[5] = m[4]+around.X, m[5]+around.Y return m } // Chained adds another Matrix to this one. All tranformations by the next Matrix will be applied // after the transformations of this Matrix. func (m Matrix) Chained(next Matrix) Matrix { return Matrix{ next[0]*m[0] + next[2]*m[1], next[1]*m[0] + next[3]*m[1], next[0]*m[2] + next[2]*m[3], next[1]*m[2] + next[3]*m[3], next[0]*m[4] + next[2]*m[5] + next[4], next[1]*m[4] + next[3]*m[5] + next[5], } } // Project applies all transformations added to the Matrix to a vector u and returns the result. // // Time complexity is O(1). func (m Matrix) Project(u Vec) Vec { return Vec{m[0]*u.X + m[2]*u.Y + m[4], m[1]*u.X + m[3]*u.Y + m[5]} } // Unproject does the inverse operation to Project. // // Time complexity is O(1). func (m Matrix) Unproject(u Vec) Vec { det := m[0]*m[3] - m[2]*m[1] return Vec{ (m[3]*(u.X-m[4]) - m[2]*(u.Y-m[5])) / det, (-m[1]*(u.X-m[4]) + m[0]*(u.Y-m[5])) / det, } }