package text import ( "image/color" "math" "unicode" "unicode/utf8" "github.com/faiface/pixel" "golang.org/x/image/font" ) // ASCII is a set of all ASCII runes. These runes are codepoints from 32 to 127 inclusive. var ASCII []rune func init() { ASCII = make([]rune, unicode.MaxASCII-32) for i := range ASCII { ASCII[i] = rune(32 + i) } } // RangeTable takes a *unicode.RangeTable and generates a set of runes contained within that // RangeTable. func RangeTable(table *unicode.RangeTable) []rune { var runes []rune for _, rng := range table.R16 { for r := rng.Lo; r <= rng.Hi; r += rng.Stride { runes = append(runes, rune(r)) } } for _, rng := range table.R32 { for r := rng.Lo; r <= rng.Hi; r += rng.Stride { runes = append(runes, rune(r)) } } return runes } // Text allows text drawing. // // To create a Text object, use the New constructor: // txt := text.New(face, text.ASCII) // // As suggested by the constructor, a Text object is always associated with one font face and a // fixed set of runes. For example, the Text we create above can draw text using the font face // contained in the `face` variable and is capable of drawing ASCII characters. // // Here we create a Text object which can draw ASCII and Katakana characters: // txt := text.New(face, text.ASCII, text.RangeTable(unicode.Katakana)) // // Similarly to IMDraw, Text functions as a buffer. It implements io.Writer interface, so writing // text to it is really simple: // fmt.Print(txt, "Hello, world!") // // Finally, if we want the written text to show up on some other Target, we can draw it: // txt.Draw(target) // // Text exports two important fields: Orig and Dot. Dot is the position where the next character // will be written. Dot is automatically moved when writing to a Text object, but you can also // manipulate it manually. Orig specifies the text origin, usually the top-left dot position. Dot is // always aligned to Orig when writing newlines. // // To reset the Dot to the Orig, just assign it: // txt.Dot = txt.Orig type Text struct { // Orig specifies the text origin, usually the top-left dot position. Dot is always aligned // to Orig when writing newlines. Orig pixel.Vec // Dot is the position where the next character will be written. Dot is automatically moved // when writing to a Text object, but you can also manipulate it manually Dot pixel.Vec atlas *Atlas lineHeight float64 tabWidth float64 buf []byte prevR rune bounds pixel.Rect glyph pixel.TrianglesData tris pixel.TrianglesData mat pixel.Matrix col pixel.RGBA trans pixel.TrianglesData transD pixel.Drawer dirty bool } // New creates a new Text capable of drawing runes contained in the provided rune sets, plus // unicode.ReplacementChar using the provided font.Face. // // Do not destroy or close the font.Face after creating a Text. Although Text caches most of the // stuff (pre-drawn glyphs, etc.), it still uses the face for a few things. // // Here we create a Text capable of drawing ASCII characters using the Go Regular font. // ttf, err := truetype.Parse(goregular.TTF) // if err != nil { // panic(err) // } // face := truetype.NewFace(ttf, &truetype.Options{ // Size: 14, // }) // txt := text.New(face, text.ASCII) func New(face font.Face, runeSets ...[]rune) *Text { runes := []rune{unicode.ReplacementChar} for _, set := range runeSets { runes = append(runes, set...) } atlas := NewAtlas(face, runes) txt := &Text{ atlas: atlas, lineHeight: atlas.LineHeight(), tabWidth: atlas.Glyph(' ').Advance * 4, mat: pixel.IM, col: pixel.Alpha(1), } txt.glyph.SetLen(6) for i := range txt.glyph { txt.glyph[i].Color = pixel.Alpha(1) txt.glyph[i].Intensity = 1 } txt.transD.Picture = txt.atlas.pic txt.transD.Triangles = &txt.trans txt.Clear() return txt } // Atlas returns the underlying Text's Atlas containing all of the pre-drawn glyphs. The Atlas is // also useful for getting values such as the recommended line height. func (txt *Text) Atlas() *Atlas { return txt.atlas } // SetMatrix sets a Matrix by which the text will be transformed before drawing to another Target. func (txt *Text) SetMatrix(m pixel.Matrix) { if txt.mat != m { txt.mat = m txt.dirty = true } } // SetColorMask sets a color by which the text will be masked before drawingto another Target. func (txt *Text) SetColorMask(c color.Color) { rgba := pixel.ToRGBA(c) if txt.col != rgba { txt.col = rgba txt.dirty = true } } // Bounds returns the bounding box of the text currently written to the Text excluding whitespace. // // If the Text is empty, a zero rectangle is returned. func (txt *Text) Bounds() pixel.Rect { return txt.bounds } // BoundsOf returns the bounding box of s if it was to be written to the Text right now. func (txt *Text) BoundsOf(s string) pixel.Rect { dot := txt.Dot prevR := txt.prevR bounds := pixel.Rect{} for _, r := range s { var control bool dot, control = txt.controlRune(r, dot) if control { continue } var b pixel.Rect _, _, b, dot = txt.Atlas().DrawRune(prevR, r, dot) if bounds.W()*bounds.H() == 0 { bounds = b } else { bounds = bounds.Union(b) } prevR = r } return bounds } // Color sets the text color. This does not affect any previously written text. func (txt *Text) Color(c color.Color) { rgba := pixel.ToRGBA(c) for i := range txt.glyph { txt.glyph[i].Color = rgba } } // LineHeight sets the vertical distance between two lines of text. This does not affect any // previously written text. func (txt *Text) LineHeight(height float64) { txt.lineHeight = height } // TabWidth sets the horizontal tab width. Tab characters will align to the multiples of this width. func (txt *Text) TabWidth(width float64) { txt.tabWidth = width } // Clear removes all written text from the Text. func (txt *Text) Clear() { txt.prevR = -1 txt.bounds = pixel.Rect{} txt.tris.SetLen(0) txt.dirty = true } // Write writes a slice of bytes to the Text. This method never fails, always returns len(p), nil. func (txt *Text) Write(p []byte) (n int, err error) { txt.buf = append(txt.buf, p...) txt.drawBuf() return len(p), nil } // WriteString writes a string to the Text. This method never fails, always returns len(s), nil. func (txt *Text) WriteString(s string) (n int, err error) { txt.buf = append(txt.buf, s...) txt.drawBuf() return len(s), nil } // WriteByte writes a byte to the Text. This method never fails, always returns nil. // // Writing a multi-byte rune byte-by-byte is perfectly supported. func (txt *Text) WriteByte(c byte) error { txt.buf = append(txt.buf, c) txt.drawBuf() return nil } // WriteRune writes a rune to the Text. This method never fails, always returns utf8.RuneLen(r), nil. func (txt *Text) WriteRune(r rune) (n int, err error) { var b [4]byte n = utf8.EncodeRune(b[:], r) txt.buf = append(txt.buf, b[:n]...) txt.drawBuf() return n, nil } // Draw draws all text written to the Text to the provided Target. The text is transformed by the // Text's matrix and color mask. func (txt *Text) Draw(t pixel.Target) { if txt.dirty { txt.trans.SetLen(txt.tris.Len()) txt.trans.Update(&txt.tris) for i := range txt.trans { txt.trans[i].Position = txt.mat.Project(txt.trans[i].Position) txt.trans[i].Color = txt.trans[i].Color.Mul(txt.col) } txt.transD.Dirty() txt.dirty = false } txt.transD.Draw(t) } // controlRune checks if r is a control rune (newline, tab, ...). If it is, a new dot position and // true is returned. If r is not a control rune, the original dot and false is returned. func (txt *Text) controlRune(r rune, dot pixel.Vec) (newDot pixel.Vec, control bool) { switch r { case '\n': dot -= pixel.Y(txt.lineHeight) dot = dot.WithX(txt.Orig.X()) case '\r': dot = dot.WithX(txt.Orig.X()) case '\t': rem := math.Mod(dot.X()-txt.Orig.X(), txt.tabWidth) rem = math.Mod(rem, rem+txt.tabWidth) if rem == 0 { rem = txt.tabWidth } dot += pixel.X(rem) default: return dot, false } return dot, true } func (txt *Text) drawBuf() { for utf8.FullRune(txt.buf) { r, size := utf8.DecodeRune(txt.buf) txt.buf = txt.buf[size:] var control bool txt.Dot, control = txt.controlRune(r, txt.Dot) if control { continue } var rect, frame, bounds pixel.Rect rect, frame, bounds, txt.Dot = txt.Atlas().DrawRune(txt.prevR, r, txt.Dot) txt.prevR = r rv := [...]pixel.Vec{pixel.V(rect.Min.X(), rect.Min.Y()), pixel.V(rect.Max.X(), rect.Min.Y()), pixel.V(rect.Max.X(), rect.Max.Y()), pixel.V(rect.Min.X(), rect.Max.Y()), } fv := [...]pixel.Vec{pixel.V(frame.Min.X(), frame.Min.Y()), pixel.V(frame.Max.X(), frame.Min.Y()), pixel.V(frame.Max.X(), frame.Max.Y()), pixel.V(frame.Min.X(), frame.Max.Y()), } for i, j := range [...]int{0, 1, 2, 0, 2, 3} { txt.glyph[i].Position = rv[j] txt.glyph[i].Picture = fv[j] } txt.tris = append(txt.tris, txt.glyph...) txt.dirty = true if txt.bounds.W()*txt.bounds.H() == 0 { txt.bounds = bounds } else { txt.bounds = txt.bounds.Union(bounds) } } }