package pixel import ( "fmt" "math" ) // Vec is a 2D vector type with X and Y coordinates. // // Create vectors with the V constructor: // // u := pixel.V(1, 2) // v := pixel.V(8, -3) // // Use various methods to manipulate them: // // w := u.Add(v) // fmt.Println(w) // Vec(9, -1) // fmt.Println(u.Sub(v)) // Vec(-7, 5) // u = pixel.V(2, 3) // v = pixel.V(8, 1) // if u.X < 0 { // fmt.Println("this won't happen") // } // x := u.Unit().Dot(v.Unit()) type Vec struct { X, Y float64 } // ZV is a zero vector. var ZV = Vec{0, 0} // V returns a new 2D vector with the given coordinates. func V(x, y float64) Vec { return Vec{x, y} } // String returns the string representation of the vector u. // // u := pixel.V(4.5, -1.3) // u.String() // returns "Vec(4.5, -1.3)" // fmt.Println(u) // Vec(4.5, -1.3) func (u Vec) String() string { return fmt.Sprintf("Vec(%v, %v)", u.X, u.Y) } // XY returns the components of the vector in two return values. func (u Vec) XY() (x, y float64) { return u.X, u.Y } // Add returns the sum of vectors u and v. func (u Vec) Add(v Vec) Vec { return Vec{ u.X + v.X, u.Y + v.Y, } } // Sub returns the difference betweeen vectors u and v. func (u Vec) Sub(v Vec) Vec { return Vec{ u.X - v.X, u.Y - v.Y, } } // Scaled returns the vector u multiplied by c. func (u Vec) Scaled(c float64) Vec { return Vec{u.X * c, u.Y * c} } // ScaledXY returns the vector u multiplied by the vector v component-wise. func (u Vec) ScaledXY(v Vec) Vec { return Vec{u.X * v.X, u.Y * v.Y} } // Len returns the length of the vector u. func (u Vec) Len() float64 { return math.Hypot(u.X, u.Y) } // Angle returns the angle between the vector u and the x-axis. The result is in range [-Pi, Pi]. func (u Vec) Angle() float64 { return math.Atan2(u.Y, u.X) } // Unit returns a vector of length 1 facing the direction of u (has the same angle). func (u Vec) Unit() Vec { if u.X == 0 && u.Y == 0 { return Vec{1, 0} } return u.Scaled(1 / u.Len()) } // Rotated returns the vector u rotated by the given angle in radians. func (u Vec) Rotated(angle float64) Vec { sin, cos := math.Sincos(angle) return Vec{ u.X*cos - u.Y*sin, u.X*sin + u.Y*cos, } } // Dot returns the dot product of vectors u and v. func (u Vec) Dot(v Vec) float64 { return u.X*v.X + u.Y*v.Y } // Cross return the cross product of vectors u and v. func (u Vec) Cross(v Vec) float64 { return u.X*v.Y - v.X*u.Y } // Map applies the function f to both x and y components of the vector u and returns the modified // vector. // // u := pixel.V(10.5, -1.5) // v := u.Map(math.Floor) // v is Vec(10, -2), both components of u floored func (u Vec) Map(f func(float64) float64) Vec { return Vec{ f(u.X), f(u.Y), } } // Lerp returns a linear interpolation between vectors a and b. // // This function basically returns a point along the line between a and b and t chooses which one. // If t is 0, then a will be returned, if t is 1, b will be returned. Anything between 0 and 1 will // return the appropriate point between a and b and so on. func Lerp(a, b Vec, t float64) Vec { return a.Scaled(1 - t).Add(b.Scaled(t)) } // Rect is a 2D rectangle aligned with the axes of the coordinate system. It is defined by two // points, Min and Max. // // The invariant should hold, that Max's components are greater or equal than Min's components // respectively. type Rect struct { Min, Max Vec } // R returns a new Rect with given the Min and Max coordinates. // // Note that the returned rectangle is not automatically normalized. func R(minX, minY, maxX, maxY float64) Rect { return Rect{ Min: V(minX, minY), Max: V(maxX, maxY), } } // String returns the string representation of the Rect. // // r := pixel.R(100, 50, 200, 300) // r.String() // returns "Rect(100, 50, 200, 300)" // fmt.Println(r) // Rect(100, 50, 200, 300) func (r Rect) String() string { return fmt.Sprintf("Rect(%v, %v, %v, %v)", r.Min.X, r.Min.Y, r.Max.X, r.Max.Y) } // Norm returns the Rect in normal form, such that Max is component-wise greater or equal than Min. func (r Rect) Norm() Rect { return Rect{ Min: Vec{ math.Min(r.Min.X, r.Max.X), math.Min(r.Min.Y, r.Max.Y), }, Max: Vec{ math.Max(r.Min.X, r.Max.X), math.Max(r.Min.Y, r.Max.Y), }, } } // W returns the width of the Rect. func (r Rect) W() float64 { return r.Max.X - r.Min.X } // H returns the height of the Rect. func (r Rect) H() float64 { return r.Max.Y - r.Min.Y } // Size returns the vector of width and height of the Rect. func (r Rect) Size() Vec { return V(r.W(), r.H()) } // Center returns the position of the center of the Rect. func (r Rect) Center() Vec { return Lerp(r.Min, r.Max, 0.5) } // Moved returns the Rect moved (both Min and Max) by the given vector delta. func (r Rect) Moved(delta Vec) Rect { return Rect{ Min: r.Min.Add(delta), Max: r.Max.Add(delta), } } // Resized returns the Rect resized to the given size while keeping the position of the given // anchor. // // r.Resized(r.Min, size) // resizes while keeping the position of the lower-left corner // r.Resized(r.Max, size) // same with the top-right corner // r.Resized(r.Center(), size) // resizes around the center // // This function does not make sense for resizing a rectangle of zero area and will panic. Use // ResizedMin in the case of zero area. func (r Rect) Resized(anchor, size Vec) Rect { if r.W()*r.H() == 0 { panic(fmt.Errorf("(%T).Resize: zero area", r)) } fraction := Vec{size.X / r.W(), size.Y / r.H()} return Rect{ Min: anchor.Add(r.Min.Sub(anchor)).ScaledXY(fraction), Max: anchor.Add(r.Max.Sub(anchor)).ScaledXY(fraction), } } // ResizedMin returns the Rect resized to the given size while keeping the position of the Rect's // Min. // // Sizes of zero area are safe here. func (r Rect) ResizedMin(size Vec) Rect { return Rect{ Min: r.Min, Max: r.Min.Add(size), } } // Contains checks whether a vector u is contained within this Rect (including it's borders). func (r Rect) Contains(u Vec) bool { return r.Min.X <= u.X && u.X <= r.Max.X && r.Min.Y <= u.Y && u.Y <= r.Max.Y } // Union returns a minimal Rect which covers both r and s. Rects r and s should be normalized. func (r Rect) Union(s Rect) Rect { return R( math.Min(r.Min.X, s.Min.X), math.Min(r.Min.Y, s.Min.Y), math.Max(r.Max.X, s.Max.X), math.Max(r.Max.Y, s.Max.Y), ) } // Matrix is a 3x2 affine matrix that can be used for all kinds of spatial transforms, such // as movement, scaling and rotations. // // Matrix has a handful of useful methods, each of which adds a transformation to the matrix. For // example: // // pixel.IM.Moved(pixel.V(100, 200)).Rotated(pixel.ZV, math.Pi/2) // // This code creates a Matrix that first moves everything by 100 units horizontally and 200 units // vertically and then rotates everything by 90 degrees around the origin. // // Layout is: // [0] [2] [4] // [1] [3] [5] // 0 0 1 [implicit row] type Matrix [6]float64 // IM stands for identity matrix. Does nothing, no transformation. var IM = Matrix{1, 0, 0, 1, 0, 0} // String returns a string representation of the Matrix. // // m := pixel.IM // fmt.Println(m) // Matrix(1 0 0 | 0 1 0) func (m Matrix) String() string { return fmt.Sprintf( "Matrix(%v %v %v | %v %v %v)", m[0], m[2], m[4], m[1], m[3], m[5], ) } // Moved moves everything by the delta vector. func (m Matrix) Moved(delta Vec) Matrix { m[4], m[5] = m[4]+delta.X, m[5]+delta.Y return m } // ScaledXY scales everything around a given point by the scale factor in each axis respectively. func (m Matrix) ScaledXY(around Vec, scale Vec) Matrix { m[4], m[5] = m[4]-around.X, m[5]-around.Y m[0], m[2], m[4] = m[0]*scale.X, m[2]*scale.X, m[4]*scale.X m[1], m[3], m[5] = m[1]*scale.Y, m[3]*scale.Y, m[5]*scale.Y m[4], m[5] = m[4]+around.X, m[5]+around.Y return m } // Scaled scales everything around a given point by the scale factor. func (m Matrix) Scaled(around Vec, scale float64) Matrix { return m.ScaledXY(around, V(scale, scale)) } // Rotated rotates everything around a given point by the given angle in radians. func (m Matrix) Rotated(around Vec, angle float64) Matrix { sint, cost := math.Sincos(angle) m[4], m[5] = m[4]-around.X, m[5]-around.Y m = m.Chained(Matrix{cost, sint, -sint, cost, 0, 0}) m[4], m[5] = m[4]+around.X, m[5]+around.Y return m } // Chained adds another Matrix to this one. All tranformations by the next Matrix will be applied // after the transformations of this Matrix. func (m Matrix) Chained(next Matrix) Matrix { return Matrix{ m[0]*next[0] + m[2]*next[1], m[1]*next[0] + m[3]*next[1], m[0]*next[2] + m[2]*next[3], m[1]*next[2] + m[3]*next[3], m[0]*next[4] + m[2]*next[5] + m[4], m[1]*next[4] + m[3]*next[5] + m[5], } } // Project applies all transformations added to the Matrix to a vector u and returns the result. // // Time complexity is O(1). func (m Matrix) Project(u Vec) Vec { return Vec{X: m[0]*u.X + m[2]*u.Y + m[4], Y: m[1]*u.X + m[3]*u.Y + m[5]} } // Unproject does the inverse operation to Project. // // It turns out that multiplying a vector by the inverse matrix of m // can be nearly-accomplished by subtracting the translate part of the // matrix and multplying by the inverse of the top-left 2x2 matrix, // and the inverse of a 2x2 matrix is simple enough to just be // inlined in the computation. // // Time complexity is O(1). func (m Matrix) Unproject(u Vec) Vec { d := (m[0] * m[3]) - (m[1] * m[2]) u.X, u.Y = (u.X-m[4])/d, (u.Y-m[5])/d return Vec{u.X*m[3] - u.Y*m[1], u.Y*m[0] - u.X*m[2]} }