package pixel_test import ( "fmt" "math" "reflect" "testing" "github.com/faiface/pixel" "github.com/stretchr/testify/assert" ) // closeEnough will shift the decimal point by the accuracy required, truncates the results and compares them. // Effectively this compares two floats to a given decimal point. // Example: // closeEnough(100.125342432, 100.125, 2) == true // closeEnough(math.Pi, 3.14, 2) == true // closeEnough(0.1234, 0.1245, 3) == false func closeEnough(got, expected float64, decimalAccuracy int) bool { gotShifted := got * math.Pow10(decimalAccuracy) expectedShifted := expected * math.Pow10(decimalAccuracy) return math.Trunc(gotShifted) == math.Trunc(expectedShifted) } func TestRect_Edges(t *testing.T) { type fields struct { Min pixel.Vec Max pixel.Vec } tests := []struct { name string fields fields want [4]pixel.Line }{ { name: "Get edges", fields: fields{Min: pixel.V(0, 0), Max: pixel.V(10, 10)}, want: [4]pixel.Line{ pixel.L(pixel.V(0, 0), pixel.V(0, 10)), pixel.L(pixel.V(0, 10), pixel.V(10, 10)), pixel.L(pixel.V(10, 10), pixel.V(10, 0)), pixel.L(pixel.V(10, 0), pixel.V(0, 0)), }, }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { r := pixel.Rect{ Min: tt.fields.Min, Max: tt.fields.Max, } if got := r.Edges(); !reflect.DeepEqual(got, tt.want) { t.Errorf("Rect.Edges() = %v, want %v", got, tt.want) } }) } } func TestRect_Resize(t *testing.T) { type rectTestTransform struct { name string f func(pixel.Rect) pixel.Rect } // rectangles squareAroundOrigin := pixel.R(-10, -10, 10, 10) squareAround2020 := pixel.R(10, 10, 30, 30) rectangleAroundOrigin := pixel.R(-20, -10, 20, 10) rectangleAround2020 := pixel.R(0, 10, 40, 30) // resize transformations resizeByHalfAroundCenter := rectTestTransform{"by half around center", func(rect pixel.Rect) pixel.Rect { return rect.Resized(rect.Center(), rect.Size().Scaled(0.5)) }} resizeByHalfAroundMin := rectTestTransform{"by half around Min", func(rect pixel.Rect) pixel.Rect { return rect.Resized(rect.Min, rect.Size().Scaled(0.5)) }} resizeByHalfAroundMax := rectTestTransform{"by half around Max", func(rect pixel.Rect) pixel.Rect { return rect.Resized(rect.Max, rect.Size().Scaled(0.5)) }} resizeByHalfAroundMiddleOfLeftSide := rectTestTransform{"by half around middle of left side", func(rect pixel.Rect) pixel.Rect { return rect.Resized(pixel.V(rect.Min.X, rect.Center().Y), rect.Size().Scaled(0.5)) }} resizeByHalfAroundOrigin := rectTestTransform{"by half around the origin", func(rect pixel.Rect) pixel.Rect { return rect.Resized(pixel.ZV, rect.Size().Scaled(0.5)) }} testCases := []struct { input pixel.Rect transform rectTestTransform answer pixel.Rect }{ {squareAroundOrigin, resizeByHalfAroundCenter, pixel.R(-5, -5, 5, 5)}, {squareAround2020, resizeByHalfAroundCenter, pixel.R(15, 15, 25, 25)}, {rectangleAroundOrigin, resizeByHalfAroundCenter, pixel.R(-10, -5, 10, 5)}, {rectangleAround2020, resizeByHalfAroundCenter, pixel.R(10, 15, 30, 25)}, {squareAroundOrigin, resizeByHalfAroundMin, pixel.R(-10, -10, 0, 0)}, {squareAround2020, resizeByHalfAroundMin, pixel.R(10, 10, 20, 20)}, {rectangleAroundOrigin, resizeByHalfAroundMin, pixel.R(-20, -10, 0, 0)}, {rectangleAround2020, resizeByHalfAroundMin, pixel.R(0, 10, 20, 20)}, {squareAroundOrigin, resizeByHalfAroundMax, pixel.R(0, 0, 10, 10)}, {squareAround2020, resizeByHalfAroundMax, pixel.R(20, 20, 30, 30)}, {rectangleAroundOrigin, resizeByHalfAroundMax, pixel.R(0, 0, 20, 10)}, {rectangleAround2020, resizeByHalfAroundMax, pixel.R(20, 20, 40, 30)}, {squareAroundOrigin, resizeByHalfAroundMiddleOfLeftSide, pixel.R(-10, -5, 0, 5)}, {squareAround2020, resizeByHalfAroundMiddleOfLeftSide, pixel.R(10, 15, 20, 25)}, {rectangleAroundOrigin, resizeByHalfAroundMiddleOfLeftSide, pixel.R(-20, -5, 0, 5)}, {rectangleAround2020, resizeByHalfAroundMiddleOfLeftSide, pixel.R(0, 15, 20, 25)}, {squareAroundOrigin, resizeByHalfAroundOrigin, pixel.R(-5, -5, 5, 5)}, {squareAround2020, resizeByHalfAroundOrigin, pixel.R(5, 5, 15, 15)}, {rectangleAroundOrigin, resizeByHalfAroundOrigin, pixel.R(-10, -5, 10, 5)}, {rectangleAround2020, resizeByHalfAroundOrigin, pixel.R(0, 5, 20, 15)}, } for _, testCase := range testCases { t.Run(fmt.Sprintf("Resize %v %s", testCase.input, testCase.transform.name), func(t *testing.T) { testResult := testCase.transform.f(testCase.input) if testResult != testCase.answer { t.Errorf("Got: %v, wanted: %v\n", testResult, testCase.answer) } }) } } func TestRect_Vertices(t *testing.T) { type fields struct { Min pixel.Vec Max pixel.Vec } tests := []struct { name string fields fields want [4]pixel.Vec }{ { name: "Get corners", fields: fields{Min: pixel.V(0, 0), Max: pixel.V(10, 10)}, want: [4]pixel.Vec{ pixel.V(0, 0), pixel.V(0, 10), pixel.V(10, 10), pixel.V(10, 0), }, }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { r := pixel.Rect{ Min: tt.fields.Min, Max: tt.fields.Max, } if got := r.Vertices(); !reflect.DeepEqual(got, tt.want) { t.Errorf("Rect.Vertices() = %v, want %v", got, tt.want) } }) } } func TestMatrix_Unproject(t *testing.T) { const delta = 1e-15 t.Run("for rotated matrix", func(t *testing.T) { matrix := pixel.IM. Rotated(pixel.ZV, math.Pi/2) unprojected := matrix.Unproject(pixel.V(0, 1)) assert.InDelta(t, unprojected.X, 1, delta) assert.InDelta(t, unprojected.Y, 0, delta) }) t.Run("for moved matrix", func(t *testing.T) { matrix := pixel.IM. Moved(pixel.V(1, 2)) unprojected := matrix.Unproject(pixel.V(2, 5)) assert.InDelta(t, unprojected.X, 1, delta) assert.InDelta(t, unprojected.Y, 3, delta) }) t.Run("for scaled matrix", func(t *testing.T) { matrix := pixel.IM. Scaled(pixel.ZV, 2) unprojected := matrix.Unproject(pixel.V(2, 4)) assert.InDelta(t, unprojected.X, 1, delta) assert.InDelta(t, unprojected.Y, 2, delta) }) t.Run("for scaled, rotated and moved matrix", func(t *testing.T) { matrix := pixel.IM. Scaled(pixel.ZV, 2). Rotated(pixel.ZV, math.Pi/2). Moved(pixel.V(2, 2)) unprojected := matrix.Unproject(pixel.V(-2, 6)) assert.InDelta(t, unprojected.X, 2, delta) assert.InDelta(t, unprojected.Y, 2, delta) }) t.Run("for rotated and moved matrix", func(t *testing.T) { matrix := pixel.IM. Rotated(pixel.ZV, math.Pi/2). Moved(pixel.V(1, 1)) unprojected := matrix.Unproject(pixel.V(1, 2)) assert.InDelta(t, unprojected.X, 1, delta) assert.InDelta(t, unprojected.Y, 0, delta) }) t.Run("for projected vertices using all kinds of matrices", func(t *testing.T) { namedMatrices := map[string]pixel.Matrix{ "IM": pixel.IM, "Scaled": pixel.IM.Scaled(pixel.ZV, 0.5), "Scaled x 2": pixel.IM.Scaled(pixel.ZV, 2), "Rotated": pixel.IM.Rotated(pixel.ZV, math.Pi/4), "Moved": pixel.IM.Moved(pixel.V(0.5, 1)), "Moved 2": pixel.IM.Moved(pixel.V(-1, -0.5)), "Scaled and Rotated": pixel.IM.Scaled(pixel.ZV, 0.5).Rotated(pixel.ZV, math.Pi/4), "Scaled, Rotated and Moved": pixel.IM.Scaled(pixel.ZV, 0.5).Rotated(pixel.ZV, math.Pi/4).Moved(pixel.V(1, 2)), "Rotated and Moved": pixel.IM.Rotated(pixel.ZV, math.Pi/4).Moved(pixel.V(1, 2)), } vertices := [...]pixel.Vec{ pixel.V(0, 0), pixel.V(5, 0), pixel.V(5, 10), pixel.V(0, 10), pixel.V(-5, 10), pixel.V(-5, 0), pixel.V(-5, -10), pixel.V(0, -10), pixel.V(5, -10), } for matrixName, matrix := range namedMatrices { for _, vertex := range vertices { testCase := fmt.Sprintf("for matrix %s and vertex %v", matrixName, vertex) t.Run(testCase, func(t *testing.T) { projected := matrix.Project(vertex) unprojected := matrix.Unproject(projected) assert.InDelta(t, vertex.X, unprojected.X, delta) assert.InDelta(t, vertex.Y, unprojected.Y, delta) }) } } }) t.Run("for singular matrix", func(t *testing.T) { matrix := pixel.Matrix{0, 0, 0, 0, 0, 0} unprojected := matrix.Unproject(pixel.ZV) assert.True(t, math.IsNaN(unprojected.X)) assert.True(t, math.IsNaN(unprojected.Y)) }) } func TestC(t *testing.T) { type args struct { radius float64 center pixel.Vec } tests := []struct { name string args args want pixel.Circle }{ { name: "C(): positive radius", args: args{radius: 10, center: pixel.ZV}, want: pixel.Circle{Radius: 10, Center: pixel.ZV}, }, { name: "C(): zero radius", args: args{radius: 0, center: pixel.ZV}, want: pixel.Circle{Radius: 0, Center: pixel.ZV}, }, { name: "C(): negative radius", args: args{radius: -5, center: pixel.ZV}, want: pixel.Circle{Radius: -5, Center: pixel.ZV}, }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { if got := pixel.C(tt.args.center, tt.args.radius); !reflect.DeepEqual(got, tt.want) { t.Errorf("C() = %v, want %v", got, tt.want) } }) } } func TestCircle_String(t *testing.T) { type fields struct { radius float64 center pixel.Vec } tests := []struct { name string fields fields want string }{ { name: "Circle.String(): positive radius", fields: fields{radius: 10, center: pixel.ZV}, want: "Circle(Vec(0, 0), 10.00)", }, { name: "Circle.String(): zero radius", fields: fields{radius: 0, center: pixel.ZV}, want: "Circle(Vec(0, 0), 0.00)", }, { name: "Circle.String(): negative radius", fields: fields{radius: -5, center: pixel.ZV}, want: "Circle(Vec(0, 0), -5.00)", }, { name: "Circle.String(): irrational radius", fields: fields{radius: math.Pi, center: pixel.ZV}, want: "Circle(Vec(0, 0), 3.14)", }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { c := pixel.C(tt.fields.center, tt.fields.radius) if got := c.String(); got != tt.want { t.Errorf("Circle.String() = %v, want %v", got, tt.want) } }) } } func TestCircle_Norm(t *testing.T) { type fields struct { radius float64 center pixel.Vec } tests := []struct { name string fields fields want pixel.Circle }{ { name: "Circle.Norm(): positive radius", fields: fields{radius: 10, center: pixel.ZV}, want: pixel.C(pixel.ZV, 10), }, { name: "Circle.Norm(): zero radius", fields: fields{radius: 0, center: pixel.ZV}, want: pixel.C(pixel.ZV, 0), }, { name: "Circle.Norm(): negative radius", fields: fields{radius: -5, center: pixel.ZV}, want: pixel.C(pixel.ZV, 5), }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { c := pixel.C(tt.fields.center, tt.fields.radius) if got := c.Norm(); !reflect.DeepEqual(got, tt.want) { t.Errorf("Circle.Norm() = %v, want %v", got, tt.want) } }) } } func TestCircle_Area(t *testing.T) { type fields struct { radius float64 center pixel.Vec } tests := []struct { name string fields fields want float64 }{ { name: "Circle.Area(): positive radius", fields: fields{radius: 10, center: pixel.ZV}, want: 100 * math.Pi, }, { name: "Circle.Area(): zero radius", fields: fields{radius: 0, center: pixel.ZV}, want: 0, }, { name: "Circle.Area(): negative radius", fields: fields{radius: -5, center: pixel.ZV}, want: 25 * math.Pi, }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { c := pixel.C(tt.fields.center, tt.fields.radius) if got := c.Area(); got != tt.want { t.Errorf("Circle.Area() = %v, want %v", got, tt.want) } }) } } func TestCircle_Moved(t *testing.T) { type fields struct { radius float64 center pixel.Vec } type args struct { delta pixel.Vec } tests := []struct { name string fields fields args args want pixel.Circle }{ { name: "Circle.Moved(): positive movement", fields: fields{radius: 10, center: pixel.ZV}, args: args{delta: pixel.V(10, 20)}, want: pixel.C(pixel.V(10, 20), 10), }, { name: "Circle.Moved(): zero movement", fields: fields{radius: 10, center: pixel.ZV}, args: args{delta: pixel.ZV}, want: pixel.C(pixel.V(0, 0), 10), }, { name: "Circle.Moved(): negative movement", fields: fields{radius: 10, center: pixel.ZV}, args: args{delta: pixel.V(-5, -10)}, want: pixel.C(pixel.V(-5, -10), 10), }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { c := pixel.C(tt.fields.center, tt.fields.radius) if got := c.Moved(tt.args.delta); !reflect.DeepEqual(got, tt.want) { t.Errorf("Circle.Moved() = %v, want %v", got, tt.want) } }) } } func TestCircle_Resized(t *testing.T) { type fields struct { radius float64 center pixel.Vec } type args struct { radiusDelta float64 } tests := []struct { name string fields fields args args want pixel.Circle }{ { name: "Circle.Resized(): positive delta", fields: fields{radius: 10, center: pixel.ZV}, args: args{radiusDelta: 5}, want: pixel.C(pixel.V(0, 0), 15), }, { name: "Circle.Resized(): zero delta", fields: fields{radius: 10, center: pixel.ZV}, args: args{radiusDelta: 0}, want: pixel.C(pixel.V(0, 0), 10), }, { name: "Circle.Resized(): negative delta", fields: fields{radius: 10, center: pixel.ZV}, args: args{radiusDelta: -5}, want: pixel.C(pixel.V(0, 0), 5), }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { c := pixel.C(tt.fields.center, tt.fields.radius) if got := c.Resized(tt.args.radiusDelta); !reflect.DeepEqual(got, tt.want) { t.Errorf("Circle.Resized() = %v, want %v", got, tt.want) } }) } } func TestCircle_Contains(t *testing.T) { type fields struct { radius float64 center pixel.Vec } type args struct { u pixel.Vec } tests := []struct { name string fields fields args args want bool }{ { name: "Circle.Contains(): point on cicles' center", fields: fields{radius: 10, center: pixel.ZV}, args: args{u: pixel.ZV}, want: true, }, { name: "Circle.Contains(): point offcenter", fields: fields{radius: 10, center: pixel.V(5, 0)}, args: args{u: pixel.ZV}, want: true, }, { name: "Circle.Contains(): point on circumference", fields: fields{radius: 10, center: pixel.V(10, 0)}, args: args{u: pixel.ZV}, want: true, }, { name: "Circle.Contains(): point outside circle", fields: fields{radius: 10, center: pixel.V(15, 0)}, args: args{u: pixel.ZV}, want: false, }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { c := pixel.C(tt.fields.center, tt.fields.radius) if got := c.Contains(tt.args.u); got != tt.want { t.Errorf("Circle.Contains() = %v, want %v", got, tt.want) } }) } } func TestCircle_Union(t *testing.T) { type fields struct { radius float64 center pixel.Vec } type args struct { d pixel.Circle } tests := []struct { name string fields fields args args want pixel.Circle }{ { name: "Circle.Union(): overlapping circles", fields: fields{radius: 5, center: pixel.ZV}, args: args{d: pixel.C(pixel.ZV, 5)}, want: pixel.C(pixel.ZV, 5), }, { name: "Circle.Union(): separate circles", fields: fields{radius: 1, center: pixel.ZV}, args: args{d: pixel.C(pixel.V(0, 2), 1)}, want: pixel.C(pixel.V(0, 1), 2), }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { c := pixel.C(tt.fields.center, tt.fields.radius) if got := c.Union(tt.args.d); !reflect.DeepEqual(got, tt.want) { t.Errorf("Circle.Union() = %v, want %v", got, tt.want) } }) } } func TestCircle_Intersect(t *testing.T) { type fields struct { radius float64 center pixel.Vec } type args struct { d pixel.Circle } tests := []struct { name string fields fields args args want pixel.Circle }{ { name: "Circle.Intersect(): intersecting circles", fields: fields{radius: 1, center: pixel.ZV}, args: args{d: pixel.C(pixel.V(1, 0), 1)}, want: pixel.C(pixel.V(0.5, 0), 1), }, { name: "Circle.Intersect(): non-intersecting circles", fields: fields{radius: 1, center: pixel.ZV}, args: args{d: pixel.C(pixel.V(3, 3), 1)}, want: pixel.C(pixel.V(1.5, 1.5), 0), }, { name: "Circle.Intersect(): first circle encompassing second", fields: fields{radius: 10, center: pixel.ZV}, args: args{d: pixel.C(pixel.V(3, 3), 1)}, want: pixel.C(pixel.ZV, 10), }, { name: "Circle.Intersect(): second circle encompassing first", fields: fields{radius: 1, center: pixel.V(-1, -4)}, args: args{d: pixel.C(pixel.ZV, 10)}, want: pixel.C(pixel.ZV, 10), }, { name: "Circle.Intersect(): matching circles", fields: fields{radius: 1, center: pixel.ZV}, args: args{d: pixel.C(pixel.ZV, 1)}, want: pixel.C(pixel.ZV, 1), }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { c := pixel.C( tt.fields.center, tt.fields.radius, ) if got := c.Intersect(tt.args.d); !reflect.DeepEqual(got, tt.want) { t.Errorf("Circle.Intersect() = %v, want %v", got, tt.want) } }) } } func TestCircle_IntersectPoints(t *testing.T) { type fields struct { Center pixel.Vec Radius float64 } type args struct { l pixel.Line } tests := []struct { name string fields fields args args want []pixel.Vec }{ { name: "Line intersects circle at two points", fields: fields{Center: pixel.V(2, 2), Radius: 1}, args: args{pixel.L(pixel.V(0, 0), pixel.V(10, 10))}, want: []pixel.Vec{pixel.V(1.292, 1.292), pixel.V(2.707, 2.707)}, }, { name: "Line intersects circle at one point", fields: fields{Center: pixel.V(-0.5, -0.5), Radius: 1}, args: args{pixel.L(pixel.V(0, 0), pixel.V(10, 10))}, want: []pixel.Vec{pixel.V(0.207, 0.207)}, }, { name: "Line endpoint is circle center", fields: fields{Center: pixel.V(0, 0), Radius: 1}, args: args{pixel.L(pixel.V(0, 0), pixel.V(10, 10))}, want: []pixel.Vec{pixel.V(0.707, 0.707)}, }, { name: "Both line endpoints within circle", fields: fields{Center: pixel.V(0, 0), Radius: 1}, args: args{pixel.L(pixel.V(0.2, 0.2), pixel.V(0.5, 0.5))}, want: []pixel.Vec{}, }, { name: "Line does not intersect circle", fields: fields{Center: pixel.V(10, 0), Radius: 1}, args: args{pixel.L(pixel.V(0, 0), pixel.V(10, 10))}, want: []pixel.Vec{}, }, { name: "Horizontal line intersects circle at two points", fields: fields{Center: pixel.V(5, 5), Radius: 1}, args: args{pixel.L(pixel.V(0, 5), pixel.V(10, 5))}, want: []pixel.Vec{pixel.V(4, 5), pixel.V(6, 5)}, }, { name: "Vertical line intersects circle at two points", fields: fields{Center: pixel.V(5, 5), Radius: 1}, args: args{pixel.L(pixel.V(5, 0), pixel.V(5, 10))}, want: []pixel.Vec{pixel.V(5, 4), pixel.V(5, 6)}, }, { name: "Left and down line intersects circle at two points", fields: fields{Center: pixel.V(5, 5), Radius: 1}, args: args{pixel.L(pixel.V(10, 10), pixel.V(0, 0))}, want: []pixel.Vec{pixel.V(5.707, 5.707), pixel.V(4.292, 4.292)}, }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { c := pixel.Circle{ Center: tt.fields.Center, Radius: tt.fields.Radius, } got := c.IntersectionPoints(tt.args.l) for i, v := range got { if !closeEnough(v.X, tt.want[i].X, 2) || !closeEnough(v.Y, tt.want[i].Y, 2) { t.Errorf("Circle.IntersectPoints() = %v, want %v", v, tt.want[i]) } } }) } } func TestRect_IntersectCircle(t *testing.T) { type fields struct { Min pixel.Vec Max pixel.Vec } type args struct { c pixel.Circle } tests := []struct { name string fields fields args args want pixel.Vec }{ { name: "Rect.IntersectCircle(): no overlap", fields: fields{Min: pixel.ZV, Max: pixel.V(10, 10)}, args: args{c: pixel.C(pixel.V(50, 50), 1)}, want: pixel.ZV, }, { name: "Rect.IntersectCircle(): circle contains rect", fields: fields{Min: pixel.ZV, Max: pixel.V(10, 10)}, args: args{c: pixel.C(pixel.V(5, 5), 10)}, want: pixel.V(-15, 0), }, { name: "Rect.IntersectCircle(): rect contains circle", fields: fields{Min: pixel.ZV, Max: pixel.V(10, 10)}, args: args{c: pixel.C(pixel.V(5, 5), 1)}, want: pixel.V(-6, 0), }, { name: "Rect.IntersectCircle(): circle overlaps bottom-left corner", fields: fields{Min: pixel.ZV, Max: pixel.V(10, 10)}, args: args{c: pixel.C(pixel.V(-0.5, -0.5), 1)}, want: pixel.V(-0.2, -0.2), }, { name: "Rect.IntersectCircle(): circle overlaps top-left corner", fields: fields{Min: pixel.ZV, Max: pixel.V(10, 10)}, args: args{c: pixel.C(pixel.V(-0.5, 10.5), 1)}, want: pixel.V(-0.2, 0.2), }, { name: "Rect.IntersectCircle(): circle overlaps bottom-right corner", fields: fields{Min: pixel.ZV, Max: pixel.V(10, 10)}, args: args{c: pixel.C(pixel.V(10.5, -0.5), 1)}, want: pixel.V(0.2, -0.2), }, { name: "Rect.IntersectCircle(): circle overlaps top-right corner", fields: fields{Min: pixel.ZV, Max: pixel.V(10, 10)}, args: args{c: pixel.C(pixel.V(10.5, 10.5), 1)}, want: pixel.V(0.2, 0.2), }, { name: "Rect.IntersectCircle(): circle overlaps two corners", fields: fields{Min: pixel.ZV, Max: pixel.V(10, 10)}, args: args{c: pixel.C(pixel.V(0, 5), 6)}, want: pixel.V(6, 0), }, { name: "Rect.IntersectCircle(): circle overlaps left edge", fields: fields{Min: pixel.ZV, Max: pixel.V(10, 10)}, args: args{c: pixel.C(pixel.V(0, 5), 1)}, want: pixel.V(1, 0), }, { name: "Rect.IntersectCircle(): circle overlaps bottom edge", fields: fields{Min: pixel.ZV, Max: pixel.V(10, 10)}, args: args{c: pixel.C(pixel.V(5, 0), 1)}, want: pixel.V(0, 1), }, { name: "Rect.IntersectCircle(): circle overlaps right edge", fields: fields{Min: pixel.ZV, Max: pixel.V(10, 10)}, args: args{c: pixel.C(pixel.V(10, 5), 1)}, want: pixel.V(-1, 0), }, { name: "Rect.IntersectCircle(): circle overlaps top edge", fields: fields{Min: pixel.ZV, Max: pixel.V(10, 10)}, args: args{c: pixel.C(pixel.V(5, 10), 1)}, want: pixel.V(0, -1), }, { name: "Rect.IntersectCircle(): edge is tangent of left side", fields: fields{Min: pixel.ZV, Max: pixel.V(10, 10)}, args: args{c: pixel.C(pixel.V(-1, 5), 1)}, want: pixel.ZV, }, { name: "Rect.IntersectCircle(): edge is tangent of top side", fields: fields{Min: pixel.ZV, Max: pixel.V(10, 10)}, args: args{c: pixel.C(pixel.V(5, -1), 1)}, want: pixel.ZV, }, { name: "Rect.IntersectCircle(): circle above rectangle", fields: fields{Min: pixel.ZV, Max: pixel.V(10, 10)}, args: args{c: pixel.C(pixel.V(5, 12), 1)}, want: pixel.ZV, }, { name: "Rect.IntersectCircle(): circle below rectangle", fields: fields{Min: pixel.ZV, Max: pixel.V(10, 10)}, args: args{c: pixel.C(pixel.V(5, -2), 1)}, want: pixel.ZV, }, { name: "Rect.IntersectCircle(): circle left of rectangle", fields: fields{Min: pixel.ZV, Max: pixel.V(10, 10)}, args: args{c: pixel.C(pixel.V(-1, 5), 1)}, want: pixel.ZV, }, { name: "Rect.IntersectCircle(): circle right of rectangle", fields: fields{Min: pixel.ZV, Max: pixel.V(10, 10)}, args: args{c: pixel.C(pixel.V(11, 5), 1)}, want: pixel.ZV, }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { r := pixel.Rect{ Min: tt.fields.Min, Max: tt.fields.Max, } got := r.IntersectCircle(tt.args.c) if !closeEnough(got.X, tt.want.X, 2) || !closeEnough(got.Y, tt.want.Y, 2) { t.Errorf("Rect.IntersectCircle() = %v, want %v", got, tt.want) } }) } } func TestRect_IntersectionPoints(t *testing.T) { type fields struct { Min pixel.Vec Max pixel.Vec } type args struct { l pixel.Line } tests := []struct { name string fields fields args args want []pixel.Vec }{ { name: "No intersection points", fields: fields{Min: pixel.V(1, 1), Max: pixel.V(5, 5)}, args: args{l: pixel.L(pixel.V(-5, 0), pixel.V(-2, 2))}, want: []pixel.Vec{}, }, { name: "One intersection point", fields: fields{Min: pixel.V(1, 1), Max: pixel.V(5, 5)}, args: args{l: pixel.L(pixel.V(2, 0), pixel.V(2, 3))}, want: []pixel.Vec{pixel.V(2, 1)}, }, { name: "Two intersection points", fields: fields{Min: pixel.V(1, 1), Max: pixel.V(5, 5)}, args: args{l: pixel.L(pixel.V(0, 2), pixel.V(6, 2))}, want: []pixel.Vec{pixel.V(1, 2), pixel.V(5, 2)}, }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { r := pixel.Rect{ Min: tt.fields.Min, Max: tt.fields.Max, } if got := r.IntersectionPoints(tt.args.l); !reflect.DeepEqual(got, tt.want) { t.Errorf("Rect.IntersectPoints() = %v, want %v", got, tt.want) } }) } } func TestLine_Bounds(t *testing.T) { type fields struct { A pixel.Vec B pixel.Vec } tests := []struct { name string fields fields want pixel.Rect }{ { name: "Positive slope", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, want: pixel.R(0, 0, 10, 10), }, { name: "Negative slope", fields: fields{A: pixel.V(10, 10), B: pixel.V(0, 0)}, want: pixel.R(0, 0, 10, 10), }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { l := pixel.Line{ A: tt.fields.A, B: tt.fields.B, } if got := l.Bounds(); !reflect.DeepEqual(got, tt.want) { t.Errorf("Line.Bounds() = %v, want %v", got, tt.want) } }) } } func TestLine_Center(t *testing.T) { type fields struct { A pixel.Vec B pixel.Vec } tests := []struct { name string fields fields want pixel.Vec }{ { name: "Positive slope", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, want: pixel.V(5, 5), }, { name: "Negative slope", fields: fields{A: pixel.V(10, 10), B: pixel.V(0, 0)}, want: pixel.V(5, 5), }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { l := pixel.Line{ A: tt.fields.A, B: tt.fields.B, } if got := l.Center(); !reflect.DeepEqual(got, tt.want) { t.Errorf("Line.Center() = %v, want %v", got, tt.want) } }) } } func TestLine_Closest(t *testing.T) { type fields struct { A pixel.Vec B pixel.Vec } type args struct { v pixel.Vec } tests := []struct { name string fields fields args args want pixel.Vec }{ { name: "Point on line", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{v: pixel.V(5, 5)}, want: pixel.V(5, 5), }, { name: "Point on next to line", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{v: pixel.V(0, 10)}, want: pixel.V(5, 5), }, { name: "Point on next to vertical line", fields: fields{A: pixel.V(5, 0), B: pixel.V(5, 10)}, args: args{v: pixel.V(6, 5)}, want: pixel.V(5, 5), }, { name: "Point on next to horizontal line", fields: fields{A: pixel.V(0, 5), B: pixel.V(10, 5)}, args: args{v: pixel.V(5, 6)}, want: pixel.V(5, 5), }, { name: "Point far from line", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{v: pixel.V(80, -70)}, want: pixel.V(5, 5), }, { name: "Point on inline with line", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{v: pixel.V(20, 20)}, want: pixel.V(10, 10), }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { l := pixel.Line{ A: tt.fields.A, B: tt.fields.B, } if got := l.Closest(tt.args.v); !reflect.DeepEqual(got, tt.want) { t.Errorf("Line.Closest() = %v, want %v", got, tt.want) } }) } } func TestLine_Contains(t *testing.T) { type fields struct { A pixel.Vec B pixel.Vec } type args struct { v pixel.Vec } tests := []struct { name string fields fields args args want bool }{ { name: "Point on line", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{v: pixel.V(5, 5)}, want: true, }, { name: "Point on negative sloped line", fields: fields{A: pixel.V(0, 10), B: pixel.V(10, 0)}, args: args{v: pixel.V(5, 5)}, want: true, }, { name: "Point not on line", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{v: pixel.V(0, 10)}, want: false, }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { l := pixel.Line{ A: tt.fields.A, B: tt.fields.B, } if got := l.Contains(tt.args.v); got != tt.want { t.Errorf("Line.Contains() = %v, want %v", got, tt.want) } }) } } func TestLine_Formula(t *testing.T) { type fields struct { A pixel.Vec B pixel.Vec } tests := []struct { name string fields fields wantM float64 wantB float64 }{ { name: "Getting formula - 45 degs", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, wantM: 1, wantB: 0, }, { name: "Getting formula - 90 degs", fields: fields{A: pixel.V(0, 0), B: pixel.V(0, 10)}, wantM: math.Inf(1), wantB: math.NaN(), }, { name: "Getting formula - 0 degs", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 0)}, wantM: 0, wantB: 0, }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { l := pixel.Line{ A: tt.fields.A, B: tt.fields.B, } gotM, gotB := l.Formula() if gotM != tt.wantM { t.Errorf("Line.Formula() gotM = %v, want %v", gotM, tt.wantM) } if gotB != tt.wantB { if math.IsNaN(tt.wantB) && !math.IsNaN(gotB) { t.Errorf("Line.Formula() gotB = %v, want %v", gotB, tt.wantB) } } }) } } func TestLine_Intersect(t *testing.T) { type fields struct { A pixel.Vec B pixel.Vec } type args struct { k pixel.Line } tests := []struct { name string fields fields args args want pixel.Vec want1 bool }{ { name: "Lines intersect", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{k: pixel.L(pixel.V(0, 10), pixel.V(10, 0))}, want: pixel.V(5, 5), want1: true, }, { name: "Lines intersect 2", fields: fields{A: pixel.V(5, 1), B: pixel.V(1, 1)}, args: args{k: pixel.L(pixel.V(2, 0), pixel.V(2, 3))}, want: pixel.V(2, 1), want1: true, }, { name: "Line intersect with vertical", fields: fields{A: pixel.V(5, 0), B: pixel.V(5, 10)}, args: args{k: pixel.L(pixel.V(0, 0), pixel.V(10, 10))}, want: pixel.V(5, 5), want1: true, }, { name: "Line intersect with horizontal", fields: fields{A: pixel.V(0, 5), B: pixel.V(10, 5)}, args: args{k: pixel.L(pixel.V(0, 0), pixel.V(10, 10))}, want: pixel.V(5, 5), want1: true, }, { name: "Lines don't intersect", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{k: pixel.L(pixel.V(0, 10), pixel.V(1, 20))}, want: pixel.ZV, want1: false, }, { name: "Lines don't intersect 2", fields: fields{A: pixel.V(1, 1), B: pixel.V(1, 5)}, args: args{k: pixel.L(pixel.V(-5, 0), pixel.V(-2, 2))}, want: pixel.ZV, want1: false, }, { name: "Lines don't intersect 3", fields: fields{A: pixel.V(2, 0), B: pixel.V(2, 3)}, args: args{k: pixel.L(pixel.V(1, 5), pixel.V(5, 5))}, want: pixel.ZV, want1: false, }, { name: "Lines parallel", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{k: pixel.L(pixel.V(0, 1), pixel.V(10, 11))}, want: pixel.ZV, want1: false, }, { name: "Lines intersect", fields: fields{A: pixel.V(600, 600), B: pixel.V(925, 150)}, args: args{k: pixel.L(pixel.V(740, 255), pixel.V(925, 255))}, want: pixel.V(849.1666666666666, 255), want1: true, }, { name: "Lines intersect", fields: fields{A: pixel.V(600, 600), B: pixel.V(925, 150)}, args: args{k: pixel.L(pixel.V(740, 255), pixel.V(925, 255.0001))}, want: pixel.V(849.1666240490657, 255.000059008986), want1: true, }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { l := pixel.Line{ A: tt.fields.A, B: tt.fields.B, } got, got1 := l.Intersect(tt.args.k) if !reflect.DeepEqual(got, tt.want) { t.Errorf("Line.Intersect() got = %v, want %v", got, tt.want) } if got1 != tt.want1 { t.Errorf("Line.Intersect() got1 = %v, want %v", got1, tt.want1) } }) } } func TestLine_IntersectCircle(t *testing.T) { type fields struct { A pixel.Vec B pixel.Vec } type args struct { c pixel.Circle } tests := []struct { name string fields fields args args want pixel.Vec }{ { name: "Cirle intersects", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{c: pixel.C(pixel.V(6, 4), 2)}, want: pixel.V(0.5857864376269049, -0.5857864376269049), }, { name: "Cirle doesn't intersects", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{c: pixel.C(pixel.V(0, 5), 1)}, want: pixel.ZV, }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { l := pixel.Line{ A: tt.fields.A, B: tt.fields.B, } if got := l.IntersectCircle(tt.args.c); !reflect.DeepEqual(got, tt.want) { t.Errorf("Line.IntersectCircle() = %v, want %v", got, tt.want) } }) } } func TestLine_IntersectRect(t *testing.T) { type fields struct { A pixel.Vec B pixel.Vec } type args struct { r pixel.Rect } tests := []struct { name string fields fields args args want pixel.Vec }{ { name: "Line through rect vertically", fields: fields{A: pixel.V(0, 0), B: pixel.V(0, 10)}, args: args{r: pixel.R(-1, 1, 5, 5)}, want: pixel.V(-1, 0), }, { name: "Line through rect horizontally", fields: fields{A: pixel.V(0, 1), B: pixel.V(10, 1)}, args: args{r: pixel.R(1, 0, 5, 5)}, want: pixel.V(0, -1), }, { name: "Line through rect diagonally bottom and left edges", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{r: pixel.R(0, 2, 3, 3)}, want: pixel.V(-1, 1), }, { name: "Line through rect diagonally top and right edges", fields: fields{A: pixel.V(10, 0), B: pixel.V(0, 10)}, args: args{r: pixel.R(5, 0, 8, 3)}, want: pixel.V(-2.5, -2.5), }, { name: "Line with not rect intersect", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{r: pixel.R(20, 20, 21, 21)}, want: pixel.ZV, }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { l := pixel.Line{ A: tt.fields.A, B: tt.fields.B, } if got := l.IntersectRect(tt.args.r); !reflect.DeepEqual(got, tt.want) { t.Errorf("Line.IntersectRect() = %v, want %v", got, tt.want) } }) } } func TestLine_Len(t *testing.T) { type fields struct { A pixel.Vec B pixel.Vec } tests := []struct { name string fields fields want float64 }{ { name: "End right-up of start", fields: fields{A: pixel.V(0, 0), B: pixel.V(3, 4)}, want: 5, }, { name: "End left-up of start", fields: fields{A: pixel.V(0, 0), B: pixel.V(-3, 4)}, want: 5, }, { name: "End right-down of start", fields: fields{A: pixel.V(0, 0), B: pixel.V(3, -4)}, want: 5, }, { name: "End left-down of start", fields: fields{A: pixel.V(0, 0), B: pixel.V(-3, -4)}, want: 5, }, { name: "End same as start", fields: fields{A: pixel.V(0, 0), B: pixel.V(0, 0)}, want: 0, }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { l := pixel.Line{ A: tt.fields.A, B: tt.fields.B, } if got := l.Len(); got != tt.want { t.Errorf("Line.Len() = %v, want %v", got, tt.want) } }) } } func TestLine_Rotated(t *testing.T) { // round returns the nearest integer, rounding ties away from zero. // This is required because `math.Round` wasn't introduced until Go1.10 round := func(x float64) float64 { t := math.Trunc(x) if math.Abs(x-t) >= 0.5 { return t + math.Copysign(1, x) } return t } type fields struct { A pixel.Vec B pixel.Vec } type args struct { around pixel.Vec angle float64 } tests := []struct { name string fields fields args args want pixel.Line }{ { name: "Rotating around line center", fields: fields{A: pixel.V(1, 1), B: pixel.V(3, 3)}, args: args{around: pixel.V(2, 2), angle: math.Pi}, want: pixel.L(pixel.V(3, 3), pixel.V(1, 1)), }, { name: "Rotating around x-y origin", fields: fields{A: pixel.V(1, 1), B: pixel.V(3, 3)}, args: args{around: pixel.V(0, 0), angle: math.Pi}, want: pixel.L(pixel.V(-1, -1), pixel.V(-3, -3)), }, { name: "Rotating around line end", fields: fields{A: pixel.V(1, 1), B: pixel.V(3, 3)}, args: args{around: pixel.V(1, 1), angle: math.Pi}, want: pixel.L(pixel.V(1, 1), pixel.V(-1, -1)), }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { l := pixel.Line{ A: tt.fields.A, B: tt.fields.B, } // Have to round the results, due to floating-point in accuracies. Results are correct to approximately // 10 decimal places. got := l.Rotated(tt.args.around, tt.args.angle) if round(got.A.X) != tt.want.A.X || round(got.B.X) != tt.want.B.X || round(got.A.Y) != tt.want.A.Y || round(got.B.Y) != tt.want.B.Y { t.Errorf("Line.Rotated() = %v, want %v", got, tt.want) } }) } } func TestLine_Scaled(t *testing.T) { type fields struct { A pixel.Vec B pixel.Vec } type args struct { scale float64 } tests := []struct { name string fields fields args args want pixel.Line }{ { name: "Scaling by 1", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{scale: 1}, want: pixel.L(pixel.V(0, 0), pixel.V(10, 10)), }, { name: "Scaling by >1", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{scale: 2}, want: pixel.L(pixel.V(-5, -5), pixel.V(15, 15)), }, { name: "Scaling by <1", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{scale: 0.5}, want: pixel.L(pixel.V(2.5, 2.5), pixel.V(7.5, 7.5)), }, { name: "Scaling by -1", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{scale: -1}, want: pixel.L(pixel.V(10, 10), pixel.V(0, 0)), }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { l := pixel.Line{ A: tt.fields.A, B: tt.fields.B, } if got := l.Scaled(tt.args.scale); !reflect.DeepEqual(got, tt.want) { t.Errorf("Line.Scaled() = %v, want %v", got, tt.want) } }) } } func TestLine_ScaledXY(t *testing.T) { type fields struct { A pixel.Vec B pixel.Vec } type args struct { around pixel.Vec scale float64 } tests := []struct { name string fields fields args args want pixel.Line }{ { name: "Scaling by 1 around origin", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{around: pixel.ZV, scale: 1}, want: pixel.L(pixel.V(0, 0), pixel.V(10, 10)), }, { name: "Scaling by >1 around origin", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{around: pixel.ZV, scale: 2}, want: pixel.L(pixel.V(0, 0), pixel.V(20, 20)), }, { name: "Scaling by <1 around origin", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{around: pixel.ZV, scale: 0.5}, want: pixel.L(pixel.V(0, 0), pixel.V(5, 5)), }, { name: "Scaling by -1 around origin", fields: fields{A: pixel.V(0, 0), B: pixel.V(10, 10)}, args: args{around: pixel.ZV, scale: -1}, want: pixel.L(pixel.V(0, 0), pixel.V(-10, -10)), }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { l := pixel.Line{ A: tt.fields.A, B: tt.fields.B, } if got := l.ScaledXY(tt.args.around, tt.args.scale); !reflect.DeepEqual(got, tt.want) { t.Errorf("Line.ScaledXY() = %v, want %v", got, tt.want) } }) } } func TestLine_String(t *testing.T) { type fields struct { A pixel.Vec B pixel.Vec } tests := []struct { name string fields fields want string }{ { name: "Getting string", fields: fields{A: pixel.V(0, 0), B: pixel.V(1, 1)}, want: "Line(Vec(0, 0), Vec(1, 1))", }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { l := pixel.Line{ A: tt.fields.A, B: tt.fields.B, } if got := l.String(); got != tt.want { t.Errorf("Line.String() = %v, want %v", got, tt.want) } }) } } func BenchmarkRect_Intersect(b *testing.B) { root := pixel.R(10, 10, 50, 50) inter := pixel.R(11, 11, 15, 15) for i := 0; i < b.N; i++ { if root.Intersect(inter) != pixel.ZR { // do a thing } // do a thing } } func BenchmarkRect_IsIntersect(b *testing.B) { root := pixel.R(10, 10, 50, 50) inter := pixel.R(11, 11, 15, 15) for i := 0; i < b.N; i++ { if root.Intersects(inter) { // do a thing } // do a thing } }