Added circle intersection points

This commit is contained in:
Ben Cragg 2019-04-04 11:53:48 +01:00
parent 4795a92b41
commit f3377bb16f
2 changed files with 156 additions and 17 deletions

View File

@ -707,6 +707,12 @@ func (c Circle) Contains(u Vec) bool {
return c.Radius >= toCenter.Len()
}
// Formula returns the values of h and k, for the equation of the circle: (x-h)^2 + (y-k)^2 = r^2
// where r is the radius of the circle.
func (c Circle) Formula() (h, k float64) {
return c.Center.X, c.Center.Y
}
// maxCircle will return the larger circle based on the radius.
func maxCircle(c, d Circle) Circle {
if c.Radius < d.Radius {
@ -870,7 +876,90 @@ func (c Circle) IntersectRect(r Rect) Vec {
// IntersectionPoints returns all the points where the Circle intersects with the line provided. This can be zero, one or
// two points, depending on the location of the shapes.
func (c Circle) IntersectionPoints(l Line) []Vec {
return []Vec{}
cContainsA := c.Contains(l.A)
cContainsB := c.Contains(l.B)
// Special case for both endpoint being contained within the circle
if cContainsA && cContainsB {
return []Vec{}
}
// Get closest point on the line to this circles' center
closestToCenter := l.Closest(c.Center)
// If the distance to the closest point is greater than the radius, there are no points of intersection
if closestToCenter.To(c.Center).Len() > c.Radius {
return []Vec{}
}
// If the distance to the closest point is equal to the radius, the line is tangent and the closest point is the
// point at which it touches the circle.
if closestToCenter.To(c.Center).Len() == c.Radius {
return []Vec{closestToCenter}
}
// Special case for endpoint being on the circles' center
if c.Center == l.A || c.Center == l.B {
otherEnd := l.B
if c.Center == l.B {
otherEnd = l.A
}
intersect := c.Center.Add(c.Center.To(otherEnd).Unit().Scaled(c.Radius))
return []Vec{intersect}
}
// This means the distance to the closest point is less than the radius, so there is at least one intersection,
// possibly two.
// If one of the end points exists within the circle, there is only one intersection
if cContainsA || cContainsB {
containedPoint := l.A
otherEnd := l.B
if cContainsB {
containedPoint = l.B
otherEnd = l.A
}
// Use trigonometry to get the length of the line between the contained point and the intersection point.
// The following is used to describe the triangle formed:
// - a is the side between contained point and circle center
// - b is the side between the center and the intersection point (radius)
// - c is the side between the contained point and the intersection point
// The captials of these letters are used as the angles opposite the respective sides.
// a and b are known
a := containedPoint.To(c.Center).Len()
b := c.Radius
// B can be calculated by subtracting the angle of b (to the x-axis) from the angle of c (to the x-axis)
B := containedPoint.To(c.Center).Angle() - containedPoint.To(otherEnd).Angle()
// Using the Sin rule we can get A
A := math.Asin((a * math.Sin(B)) / b)
// Using the rule that there are 180 degrees (or Pi radians) in a triangle, we can now get C
C := math.Pi - A + B
// If C is zero, the line segment is in-line with the center-intersect line.
var c float64
if C == 0 {
c = b - a
} else {
// Using the Sine rule again, we can now get c
c = (a * math.Sin(C)) / math.Sin(A)
}
// Travelling from the contained point to the other end by length of a will provide the intersection point.
return []Vec{
containedPoint.Add(containedPoint.To(otherEnd).Unit().Scaled(c)),
}
}
// Otherwise the endpoints exist outside of the circle, and the line segment intersects in two locations.
// The vector formed by going from the closest point to the center of the circle will be perpendicular to the line;
// this forms a right-angled triangle with the intersection points, with the radius as the hypotenuse.
// Calculate the other triangles' sides' length.
a := math.Sqrt(math.Pow(c.Radius, 2) - math.Pow(closestToCenter.To(c.Center).Len(), 2))
// Travelling in both directions from the closest point by length of a will provide the two intersection points.
first := closestToCenter.Add(closestToCenter.To(l.A).Unit().Scaled(a))
second := closestToCenter.Add(closestToCenter.To(l.B).Unit().Scaled(a))
return []Vec{first, second}
}
// Matrix is a 2x3 affine matrix that can be used for all kinds of spatial transforms, such

View File

@ -10,6 +10,19 @@ import (
"github.com/stretchr/testify/assert"
)
// closeEnough will shift the decimal point by the accuracy required, truncates the results and compares them.
// Effectively this compares two floats to a given decimal point.
// Example:
// closeEnough(100.125342432, 100.125, 2) == true
// closeEnough(math.Pi, 3.14, 2) == true
// closeEnough(0.1234, 0.1245, 3) == false
func closeEnough(got, expected float64, decimalAccuracy int) bool {
gotShifted := got * math.Pow10(decimalAccuracy)
expectedShifted := expected * math.Pow10(decimalAccuracy)
return math.Trunc(gotShifted) == math.Trunc(expectedShifted)
}
func TestRect_Edges(t *testing.T) {
type fields struct {
Min pixel.Vec
@ -623,7 +636,54 @@ func TestCircle_IntersectPoints(t *testing.T) {
args args
want []pixel.Vec
}{
// TODO: Add test cases.
{
name: "Line intersects circle at two points",
fields: fields{Center: pixel.V(2, 2), Radius: 1},
args: args{pixel.L(pixel.V(0, 0), pixel.V(10, 10))},
want: []pixel.Vec{pixel.V(1.292, 1.292), pixel.V(2.707, 2.707)},
},
{
name: "Line intersects circle at one point",
fields: fields{Center: pixel.V(-0.5, -0.5), Radius: 1},
args: args{pixel.L(pixel.V(0, 0), pixel.V(10, 10))},
want: []pixel.Vec{pixel.V(0.207, 0.207)},
},
{
name: "Line endpoint is circle center",
fields: fields{Center: pixel.V(0, 0), Radius: 1},
args: args{pixel.L(pixel.V(0, 0), pixel.V(10, 10))},
want: []pixel.Vec{pixel.V(0.707, 0.707)},
},
{
name: "Both line endpoints within circle",
fields: fields{Center: pixel.V(0, 0), Radius: 1},
args: args{pixel.L(pixel.V(0.2, 0.2), pixel.V(0.5, 0.5))},
want: []pixel.Vec{},
},
{
name: "Line does not intersect circle",
fields: fields{Center: pixel.V(10, 0), Radius: 1},
args: args{pixel.L(pixel.V(0, 0), pixel.V(10, 10))},
want: []pixel.Vec{},
},
{
name: "Horizontal line intersects circle at two points",
fields: fields{Center: pixel.V(5, 5), Radius: 1},
args: args{pixel.L(pixel.V(0, 5), pixel.V(10, 5))},
want: []pixel.Vec{pixel.V(4, 5), pixel.V(6, 5)},
},
{
name: "Vertical line intersects circle at two points",
fields: fields{Center: pixel.V(5, 5), Radius: 1},
args: args{pixel.L(pixel.V(5, 0), pixel.V(5, 10))},
want: []pixel.Vec{pixel.V(5, 4), pixel.V(5, 6)},
},
{
name: "Left and down line intersects circle at two points",
fields: fields{Center: pixel.V(5, 5), Radius: 1},
args: args{pixel.L(pixel.V(10, 10), pixel.V(0, 0))},
want: []pixel.Vec{pixel.V(5.707, 5.707), pixel.V(4.292, 4.292)},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
@ -631,27 +691,17 @@ func TestCircle_IntersectPoints(t *testing.T) {
Center: tt.fields.Center,
Radius: tt.fields.Radius,
}
if got := c.IntersectionPoints(tt.args.l); !reflect.DeepEqual(got, tt.want) {
t.Errorf("Circle.IntersectPoints() = %v, want %v", got, tt.want)
got := c.IntersectionPoints(tt.args.l)
for i, v := range got {
if !closeEnough(v.X, tt.want[i].X, 2) || !closeEnough(v.Y, tt.want[i].Y, 2) {
t.Errorf("Circle.IntersectPoints() = %v, want %v", v, tt.want[i])
}
}
})
}
}
func TestRect_IntersectCircle(t *testing.T) {
// closeEnough will shift the decimal point by the accuracy required, truncates the results and compares them.
// Effectively this compares two floats to a given decimal point.
// Example:
// closeEnough(100.125342432, 100.125, 2) == true
// closeEnough(math.Pi, 3.14, 2) == true
// closeEnough(0.1234, 0.1245, 3) == false
closeEnough := func(got, expected float64, decimalAccuracy int) bool {
gotShifted := got * math.Pow10(decimalAccuracy)
expectedShifted := expected * math.Pow10(decimalAccuracy)
return math.Trunc(gotShifted) == math.Trunc(expectedShifted)
}
type fields struct {
Min pixel.Vec
Max pixel.Vec