Merge pull request #89 from terakilobyte/master

adds a game of life example
This commit is contained in:
Michal Štrba 2018-01-19 15:26:04 +01:00 committed by GitHub
commit e788339625
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 193 additions and 0 deletions

View File

@ -0,0 +1,20 @@
# Conway's Game of Lfe
Created by [Nathan Leniz](https://github.com/terakilobyte).
Inspired by and heavily uses [the doc](https://golang.org/doc/play/life.go)
> The Game of Life, also known simply as Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970. The "game" is a zero-player game, meaning that its evolution is determined by its initial state, requiring no further input. One interacts with the Game of Life by creating an initial configuration and observing how it evolves, or, for advanced "players", by creating patterns with particular properties. The Game has been reprogrammed multiple times in various coding languages.
For more information, please see the [wikipedia](https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life) article.
## Use
go run main.go -h
-frameRate duration
The framerate in milliseconds (default 33ms)
-size int
The size of each cell (default 5)
-windowSize float
The pixel size of one side of the grid (default 800)
![life](life.png)

Binary file not shown.

After

Width:  |  Height:  |  Size: 86 KiB

View File

@ -0,0 +1,74 @@
package life
import (
"github.com/faiface/pixel"
"github.com/faiface/pixel/imdraw"
"golang.org/x/image/colornames"
)
// Shamelessly taken/inspired by https://golang.org/doc/play/life.go
// Grid is the structure in which the cellular automota live
type Grid struct {
h int
cellSize int
Cells [][]bool
}
// NewGrid constructs a new Grid
func NewGrid(h, size int) *Grid {
cells := make([][]bool, h)
for i := 0; i < h; i++ {
cells[i] = make([]bool, h)
}
return &Grid{h: h, cellSize: size, Cells: cells}
}
// Alive returns whether the specified position is alive
func (g *Grid) Alive(x, y int) bool {
x += g.h
x %= g.h
y += g.h
y %= g.h
return g.Cells[y][x]
}
// Set sets the state of a specific location
func (g *Grid) Set(x, y int, state bool) {
g.Cells[y][x] = state
}
// Draw draws the grid
func (g *Grid) Draw(imd *imdraw.IMDraw) {
for i := 0; i < g.h; i++ {
for j := 0; j < g.h; j++ {
if g.Alive(i, j) {
imd.Color = colornames.Black
} else {
imd.Color = colornames.White
}
imd.Push(
pixel.V(float64(i*g.cellSize), float64(j*g.cellSize)),
pixel.V(float64(i*g.cellSize+g.cellSize), float64(j*g.cellSize+g.cellSize)),
)
imd.Rectangle(0)
}
}
}
// Next returns the next state
func (g *Grid) Next(x, y int) bool {
// Count the adjacent cells that are alive.
alive := 0
for i := -1; i <= 1; i++ {
for j := -1; j <= 1; j++ {
if (j != 0 || i != 0) && g.Alive(x+i, y+j) {
alive++
}
}
}
// Return next state according to the game rules:
// exactly 3 neighbors: on,
// exactly 2 neighbors: maintain current state,
// otherwise: off.
return alive == 3 || alive == 2 && g.Alive(x, y)
}

View File

@ -0,0 +1,35 @@
// Package life manages the "game" state
// Shamelessly taken from https://golang.org/doc/play/life.go
package life
import "math/rand"
// Life stores the state of a round of Conway's Game of Life.
type Life struct {
A, b *Grid
h int
}
// NewLife returns a new Life game state with a random initial state.
func NewLife(h, size int) *Life {
a := NewGrid(h, size)
for i := 0; i < (h * h / 2); i++ {
a.Set(rand.Intn(h), rand.Intn(h), true)
}
return &Life{
A: a, b: NewGrid(h, size),
h: h,
}
}
// Step advances the game by one instant, recomputing and updating all cells.
func (l *Life) Step() {
// Update the state of the next field (b) from the current field (a).
for y := 0; y < l.h; y++ {
for x := 0; x < l.h; x++ {
l.b.Set(x, y, l.A.Next(x, y))
}
}
// Swap fields a and b.
l.A, l.b = l.b, l.A
}

View File

@ -0,0 +1,64 @@
package main
import (
"flag"
"math/rand"
"time"
"golang.org/x/image/colornames"
"github.com/faiface/pixel"
"github.com/faiface/pixel/examples/community/game_of_life/life"
"github.com/faiface/pixel/imdraw"
"github.com/faiface/pixel/pixelgl"
)
var (
size *int
windowSize *float64
frameRate *time.Duration
)
func init() {
rand.Seed(time.Now().UnixNano())
size = flag.Int("size", 5, "The size of each cell")
windowSize = flag.Float64("windowSize", 800, "The pixel size of one side of the grid")
frameRate = flag.Duration("frameRate", 33*time.Millisecond, "The framerate in milliseconds")
flag.Parse()
}
func main() {
pixelgl.Run(run)
}
func run() {
cfg := pixelgl.WindowConfig{
Title: "Pixel Rocks!",
Bounds: pixel.R(0, 0, *windowSize, *windowSize),
VSync: true,
}
win, err := pixelgl.NewWindow(cfg)
if err != nil {
panic(err)
}
win.Clear(colornames.White)
// since the game board is square, rows and cols will be the same
rows := int(*windowSize) / *size
gridDraw := imdraw.New(nil)
game := life.NewLife(rows, *size)
tick := time.Tick(*frameRate)
for !win.Closed() {
// game loop
select {
case <-tick:
gridDraw.Clear()
game.A.Draw(gridDraw)
gridDraw.Draw(win)
game.Step()
}
win.Update()
}
}