more examples coming, i still have to clean them up though

This commit is contained in:
Brandon 2018-06-26 11:29:06 -06:00
parent c1f5f9d75b
commit 7e9efea56e
26 changed files with 2269 additions and 1 deletions

View File

@ -0,0 +1,7 @@
# Go Jetpack
by [Branson Camp](https://github.com/bcamp1) using [Pixel](https://github.com/faiface/pixel)
Welcome to Go-Jetpack, where you explore the skies using WASD or Arrow Keys.
This example showcases most of the fundamental pixel elements described in the [Pixel Wiki](https://github.com/faiface/pixel/wiki)
![Screenshot](https://github.com/bcamp1/pixel/blob/master/examples/community/go-jetpack/screenshot.png)

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 295 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 314 B

View File

@ -0,0 +1,306 @@
package main
import (
"fmt"
"image"
"io/ioutil"
"os"
"github.com/go-gl/mathgl/mgl32"
_ "image/png"
"github.com/faiface/pixel"
"github.com/faiface/pixel/pixelgl"
"github.com/faiface/pixel/text"
"github.com/golang/freetype/truetype"
"golang.org/x/image/colornames"
)
// InstallShader ...
func InstallShader(w *pixelgl.Window, uAmount *float32, uResolution, uMouse *mgl32.Vec2) {
wc := w.GetCanvas()
wc.BindUniform("u_resolution", uResolution)
wc.BindUniform("u_mouse", uMouse)
wc.BindUniform("u_amount", uAmount)
wc.SetFragmentShader(pixelateFragShader)
wc.UpdateShader()
}
func loadPicture(path string) (pixel.Picture, error) {
file, err := os.Open(path)
if err != nil {
return nil, err
}
defer file.Close()
img, _, err := image.Decode(file)
if err != nil {
return nil, err
}
return pixel.PictureDataFromImage(img), nil
}
func loadSprite(path string) (pixel.Sprite, error) {
pic, err := loadPicture(path)
if err != nil {
return *pixel.NewSprite(pic, pic.Bounds()), err
}
sprite := pixel.NewSprite(pic, pic.Bounds())
return *sprite, nil
}
func loadTTF(path string, size float64, origin pixel.Vec) *text.Text {
file, err := os.Open(path)
if err != nil {
panic(err)
}
defer file.Close()
bytes, err := ioutil.ReadAll(file)
if err != nil {
panic(err)
}
font, err := truetype.Parse(bytes)
if err != nil {
panic(err)
}
face := truetype.NewFace(font, &truetype.Options{
Size: size,
GlyphCacheEntries: 1,
})
atlas := text.NewAtlas(face, text.ASCII)
txt := text.New(origin, atlas)
return txt
}
func run() {
// Set up window configs
cfg := pixelgl.WindowConfig{ // Default: 1024 x 768
Title: "Golang Jetpack!",
Bounds: pixel.R(0, 0, 1024, 768),
VSync: true,
}
win, err := pixelgl.NewWindow(cfg)
if err != nil {
panic(err)
}
// Importantr variables
var jetX, jetY, velX, velY, radians float64
flipped := 1.0
jetpackOn := false
gravity := 0.6 // Default: 0.004
jetAcc := 0.9 // Default: 0.008
tilt := 0.01 // Default: 0.001
whichOn := false
onNumber := 0
jetpackOffName := "jetpack.png"
jetpackOn1Name := "jetpack-on.png"
jetpackOn2Name := "jetpack-on2.png"
camVector := win.Bounds().Center()
var uAmount float32
var uMouse, uResolution mgl32.Vec2
InstallShader(win, &uAmount, &uResolution, &uMouse)
bg, _ := loadSprite("sky.png")
// Jetpack - Rendering
jetpackOff, err := loadSprite(jetpackOffName)
if err != nil {
panic(err)
}
jetpackOn1, err := loadSprite(jetpackOn1Name)
if err != nil {
panic(err)
}
jetpackOn2, err := loadSprite(jetpackOn2Name)
if err != nil {
panic(err)
}
// Tutorial Text
txt := loadTTF("intuitive.ttf", 50, pixel.V(win.Bounds().Center().X-450, win.Bounds().Center().Y-200))
fmt.Fprintf(txt, "Explore the Skies with WASD or Arrow Keys!")
currentSprite := jetpackOff
canvas := pixelgl.NewCanvas(win.Bounds())
uResolution[0] = float32(win.Bounds().W())
uResolution[1] = float32(win.Bounds().H())
uAmount = 300.0
// Game Loop
for !win.Closed() {
mpos := win.MousePosition()
uMouse[0] = float32(mpos.X)
uMouse[1] = float32(mpos.Y)
win.SetTitle(fmt.Sprint(uAmount))
win.Clear(colornames.Blue)
canvas.Clear(colornames.Green)
// Jetpack - Controls
jetpackOn = win.Pressed(pixelgl.KeyUp) || win.Pressed(pixelgl.KeyW)
if win.Pressed(pixelgl.KeyRight) || win.Pressed(pixelgl.KeyD) {
jetpackOn = true
flipped = -1
radians -= tilt
velX += tilt * 30
} else if win.Pressed(pixelgl.KeyLeft) || win.Pressed(pixelgl.KeyA) {
jetpackOn = true
flipped = 1
radians += tilt
velX -= tilt * 30
} else {
if velX < 0 {
radians -= tilt / 3
velX += tilt * 10
} else if velX > 0 {
radians += tilt / 3
velX -= tilt * 10
}
}
if jetY < 0 {
jetY = 0
velY = -0.3 * velY
}
if jetpackOn {
velY += jetAcc
whichOn = !whichOn
onNumber++
if onNumber == 5 { // every 5 frames, toggle anijetMation
onNumber = 0
if whichOn {
currentSprite = jetpackOn1
} else {
currentSprite = jetpackOn2
}
}
} else {
currentSprite = jetpackOff
velY -= gravity
}
if win.Pressed(pixelgl.KeyEqual) {
uAmount += 10
}
if win.Pressed(pixelgl.KeyMinus) {
uAmount -= 10
}
positionVector := pixel.V(win.Bounds().Center().X+jetX, win.Bounds().Center().Y+jetY-372)
jetMat := pixel.IM
jetMat = jetMat.Scaled(pixel.ZV, 4)
jetMat = jetMat.Moved(positionVector)
jetMat = jetMat.ScaledXY(positionVector, pixel.V(flipped, 1))
jetMat = jetMat.Rotated(positionVector, radians)
jetX += velX
jetY += velY
// Camera
camVector.X += (positionVector.X - camVector.X) * 0.2
camVector.Y += (positionVector.Y - camVector.Y) * 0.2
if camVector.X > 25085 {
camVector.X = 25085
} else if camVector.X < -14843 {
camVector.X = -14843
}
if camVector.Y > 22500 {
camVector.Y = 22500
}
cam := pixel.IM.Moved(win.Bounds().Center().Sub(camVector))
canvas.SetMatrix(cam)
// Drawing to the screen
win.SetSmooth(true)
bg.Draw(canvas, pixel.IM.Moved(pixel.V(win.Bounds().Center().X, win.Bounds().Center().Y+766)).Scaled(pixel.ZV, 10))
txt.Draw(canvas, pixel.IM)
win.SetSmooth(false)
currentSprite.Draw(canvas, jetMat)
canvas.Draw(win, pixel.IM.Moved(win.Bounds().Center()))
win.Update()
}
}
func main() {
pixelgl.Run(run)
}
var pixelateFragShader = `
#version 330 core
#ifdef GL_ES
precision mediump float;
precision mediump int;
#endif
in vec4 Color;
in vec2 texcoords;
in vec2 glpos;
out vec4 fragColor;
uniform vec4 u_colormask;
uniform vec4 u_texbounds;
uniform sampler2D u_texture;
uniform float u_amount;
uniform vec2 u_mouse;
uniform vec2 u_resolution;
void main(void)
{
vec2 t = (texcoords - u_texbounds.xy) / u_texbounds.zw;
float d = 1.0 / u_amount;
float ar = u_resolution.x / u_resolution.y;
float u = floor( t.x / d ) * d;
d = ar / u_amount;
float v = floor( t.y / d ) * d;
fragColor = texture( u_texture, vec2( u, v ) );
}
`
/*
//fragColor = vec4(1.0,0.0,0.0,1.0);
// float d = 1.0 / u_amount;
// float ar = u_resolution.x / u_resolution.y;
// float u = floor( texcoords.x / d ) * d;
// d = ar / u_amount;
// float v = floor( texcoords.y / d ) * d;
// fragColor = texture( u_texture, vec2( u, v ) );
// vec2 p = t.st;
// p.x -= mod(t.x / glpos.x, t.x / glpos.x + 0.1);
// p.y -= mod(t.y / glpos.y, t.y / glpos.y + 0.1);
// fragColor = texture(u_texture, p).rgba;
*/
// varying vec2 vUv;
// uniform sampler2D tInput;
// uniform vec2 resolution;
// uniform float amount;
// void main() {
// float d = 1.0 / amount;
// float ar = resolution.x / resolution.y;
// float u = floor( vUv.x / d ) * d;
// d = ar / amount;
// float v = floor( vUv.y / d ) * d;
// gl_FragColor = texture2D( tInput, vec2( u, v ) );
// }

Binary file not shown.

After

Width:  |  Height:  |  Size: 243 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 106 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.7 MiB

View File

@ -0,0 +1,7 @@
# Go Jetpack
by [Branson Camp](https://github.com/bcamp1) using [Pixel](https://github.com/faiface/pixel)
Welcome to Go-Jetpack, where you explore the skies using WASD or Arrow Keys.
This example showcases most of the fundamental pixel elements described in the [Pixel Wiki](https://github.com/faiface/pixel/wiki)
![Screenshot](https://github.com/bcamp1/pixel/blob/master/examples/community/go-jetpack/screenshot.png)

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 295 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 314 B

View File

@ -0,0 +1,451 @@
package main
import (
"fmt"
"image"
"io/ioutil"
"os"
"github.com/go-gl/mathgl/mgl32"
_ "image/png"
"github.com/faiface/pixel"
"github.com/faiface/pixel/pixelgl"
"github.com/faiface/pixel/text"
"github.com/golang/freetype/truetype"
"golang.org/x/image/colornames"
)
// InstallShader ...
func InstallShader(w *pixelgl.Window, uAmount *float32, uResolution, uMouse *mgl32.Vec2) {
wc := w.GetCanvas()
wc.BindUniform("u_resolution", uResolution)
wc.BindUniform("u_mouse", uMouse)
wc.BindUniform("u_amount", uAmount)
wc.SetFragmentShader(toonFragShader)
wc.UpdateShader()
}
func loadPicture(path string) (pixel.Picture, error) {
file, err := os.Open(path)
if err != nil {
return nil, err
}
defer file.Close()
img, _, err := image.Decode(file)
if err != nil {
return nil, err
}
return pixel.PictureDataFromImage(img), nil
}
func loadSprite(path string) (pixel.Sprite, error) {
pic, err := loadPicture(path)
if err != nil {
return *pixel.NewSprite(pic, pic.Bounds()), err
}
sprite := pixel.NewSprite(pic, pic.Bounds())
return *sprite, nil
}
func loadTTF(path string, size float64, origin pixel.Vec) *text.Text {
file, err := os.Open(path)
if err != nil {
panic(err)
}
defer file.Close()
bytes, err := ioutil.ReadAll(file)
if err != nil {
panic(err)
}
font, err := truetype.Parse(bytes)
if err != nil {
panic(err)
}
face := truetype.NewFace(font, &truetype.Options{
Size: size,
GlyphCacheEntries: 1,
})
atlas := text.NewAtlas(face, text.ASCII)
txt := text.New(origin, atlas)
return txt
}
func run() {
// Set up window configs
cfg := pixelgl.WindowConfig{ // Default: 1024 x 768
Title: "Golang Jetpack!",
Bounds: pixel.R(0, 0, 1024, 768),
VSync: true,
}
win, err := pixelgl.NewWindow(cfg)
if err != nil {
panic(err)
}
// Importantr variables
var jetX, jetY, velX, velY, radians float64
flipped := 1.0
jetpackOn := false
gravity := 0.6 // Default: 0.004
jetAcc := 0.9 // Default: 0.008
tilt := 0.01 // Default: 0.001
whichOn := false
onNumber := 0
jetpackOffName := "jetpack.png"
jetpackOn1Name := "jetpack-on.png"
jetpackOn2Name := "jetpack-on2.png"
camVector := win.Bounds().Center()
var uAmount float32
var uMouse, uResolution mgl32.Vec2
InstallShader(win, &uAmount, &uResolution, &uMouse)
bg, _ := loadSprite("sky.png")
// Jetpack - Rendering
jetpackOff, err := loadSprite(jetpackOffName)
if err != nil {
panic(err)
}
jetpackOn1, err := loadSprite(jetpackOn1Name)
if err != nil {
panic(err)
}
jetpackOn2, err := loadSprite(jetpackOn2Name)
if err != nil {
panic(err)
}
// Tutorial Text
txt := loadTTF("intuitive.ttf", 50, pixel.V(win.Bounds().Center().X-450, win.Bounds().Center().Y-200))
fmt.Fprintf(txt, "Explore the Skies with WASD or Arrow Keys!")
currentSprite := jetpackOff
canvas := pixelgl.NewCanvas(win.Bounds())
uResolution[0] = float32(win.Bounds().W())
uResolution[1] = float32(win.Bounds().H())
uAmount = 300.0
// Game Loop
for !win.Closed() {
mpos := win.MousePosition()
uMouse[0] = float32(mpos.X)
uMouse[1] = float32(mpos.Y)
win.SetTitle(fmt.Sprint(uAmount))
win.Clear(colornames.Blue)
canvas.Clear(colornames.Green)
// Jetpack - Controls
jetpackOn = win.Pressed(pixelgl.KeyUp) || win.Pressed(pixelgl.KeyW)
if win.Pressed(pixelgl.KeyRight) || win.Pressed(pixelgl.KeyD) {
jetpackOn = true
flipped = -1
radians -= tilt
velX += tilt * 30
} else if win.Pressed(pixelgl.KeyLeft) || win.Pressed(pixelgl.KeyA) {
jetpackOn = true
flipped = 1
radians += tilt
velX -= tilt * 30
} else {
if velX < 0 {
radians -= tilt / 3
velX += tilt * 10
} else if velX > 0 {
radians += tilt / 3
velX -= tilt * 10
}
}
if jetY < 0 {
jetY = 0
velY = -0.3 * velY
}
if jetpackOn {
velY += jetAcc
whichOn = !whichOn
onNumber++
if onNumber == 5 { // every 5 frames, toggle anijetMation
onNumber = 0
if whichOn {
currentSprite = jetpackOn1
} else {
currentSprite = jetpackOn2
}
}
} else {
currentSprite = jetpackOff
velY -= gravity
}
if win.Pressed(pixelgl.KeyEqual) {
uAmount += 10
}
if win.Pressed(pixelgl.KeyMinus) {
uAmount -= 10
}
positionVector := pixel.V(win.Bounds().Center().X+jetX, win.Bounds().Center().Y+jetY-372)
jetMat := pixel.IM
jetMat = jetMat.Scaled(pixel.ZV, 4)
jetMat = jetMat.Moved(positionVector)
jetMat = jetMat.ScaledXY(positionVector, pixel.V(flipped, 1))
jetMat = jetMat.Rotated(positionVector, radians)
jetX += velX
jetY += velY
// Camera
camVector.X += (positionVector.X - camVector.X) * 0.2
camVector.Y += (positionVector.Y - camVector.Y) * 0.2
if camVector.X > 25085 {
camVector.X = 25085
} else if camVector.X < -14843 {
camVector.X = -14843
}
if camVector.Y > 22500 {
camVector.Y = 22500
}
cam := pixel.IM.Moved(win.Bounds().Center().Sub(camVector))
canvas.SetMatrix(cam)
// Drawing to the screen
win.SetSmooth(true)
bg.Draw(canvas, pixel.IM.Moved(pixel.V(win.Bounds().Center().X, win.Bounds().Center().Y+766)).Scaled(pixel.ZV, 10))
txt.Draw(canvas, pixel.IM)
win.SetSmooth(false)
currentSprite.Draw(canvas, jetMat)
canvas.Draw(win, pixel.IM.Moved(win.Bounds().Center()))
win.Update()
}
}
func main() {
pixelgl.Run(run)
}
var toonFragShader = `
#version 330 core
in vec4 Color;
in vec2 texcoords;
out vec4 fragColor;
uniform vec4 u_colormask;
uniform vec4 u_texbounds;
uniform sampler2D u_texture;
uniform float u_amount;
uniform vec2 u_mouse;
uniform vec2 u_resolution;
#define HueLevCount 6
#define SatLevCount 7
#define ValLevCount 4
float HueLevels[HueLevCount];
float SatLevels[SatLevCount];
float ValLevels[ValLevCount];
vec3 RGBtoHSV( float r, float g, float b) {
float minv, maxv, delta;
vec3 res;
minv = min(min(r, g), b);
maxv = max(max(r, g), b);
res.z = maxv; // v
delta = maxv - minv;
if( maxv != 0.0 )
res.y = delta / maxv; // s
else {
// r = g = b = 0 // s = 0, v is undefined
res.y = 0.0;
res.x = -1.0;
return res;
}
if( r == maxv )
res.x = ( g - b ) / delta; // between yellow & magenta
else if( g == maxv )
res.x = 2.0 + ( b - r ) / delta; // between cyan & yellow
else
res.x = 4.0 + ( r - g ) / delta; // between magenta & cyan
res.x = res.x * 60.0; // degrees
if( res.x < 0.0 )
res.x = res.x + 360.0;
return res;
}
vec3 HSVtoRGB(float h, float s, float v ) {
int i;
float f, p, q, t;
vec3 res;
if( s == 0.0 ) {
// achromatic (grey)
res.x = v;
res.y = v;
res.z = v;
return res;
}
h /= 60.0; // sector 0 to 5
i = int(floor( h ));
f = h - float(i); // factorial part of h
p = v * ( 1.0 - s );
q = v * ( 1.0 - s * f );
t = v * ( 1.0 - s * ( 1.0 - f ) );
if (i==0) {
res.x = v;
res.y = t;
res.z = p;
} else if (i==1) {
res.x = q;
res.y = v;
res.z = p;
} else if (i==2) {
res.x = p;
res.y = v;
res.z = t;
} else if (i==3) {
res.x = p;
res.y = q;
res.z = v;
} else if (i==4) {
res.x = t;
res.y = p;
res.z = v;
} else if (i==5) {
res.x = v;
res.y = p;
res.z = q;
}
return res;
}
float nearestLevel(float col, int mode) {
if (mode==0) {
for (int i =0; i<HueLevCount-1; i++ ) {
if (col >= HueLevels[i] && col <= HueLevels[i+1]) {
return HueLevels[i+1];
}
}
}
if (mode==1) {
for (int i =0; i<SatLevCount-1; i++ ) {
if (col >= SatLevels[i] && col <= SatLevels[i+1]) {
return SatLevels[i+1];
}
}
}
if (mode==2) {
for (int i =0; i<ValLevCount-1; i++ ) {
if (col >= ValLevels[i] && col <= ValLevels[i+1]) {
return ValLevels[i+1];
}
}
}
}
// averaged pixel intensity from 3 color channels
float avg_intensity(vec4 pix) {
return (pix.r + pix.g + pix.b)/3.;
}
vec4 get_pixel(vec2 coords, float dx, float dy) {
return texture(u_texture, coords + vec2(dx, dy));
}
// returns pixel color
float IsEdge(in vec2 coords){
float dxtex = 1.0 / u_resolution.x ;
float dytex = 1.0 / u_resolution.y ;
float pix[9];
int k = -1;
float delta;
// read neighboring pixel intensities
float pix0 = avg_intensity(get_pixel(coords,-1.0*dxtex, -1.0*dytex));
float pix1 = avg_intensity(get_pixel(coords,-1.0*dxtex, 0.0*dytex));
float pix2 = avg_intensity(get_pixel(coords,-1.0*dxtex, 1.0*dytex));
float pix3 = avg_intensity(get_pixel(coords,0.0*dxtex, -1.0*dytex));
float pix4 = avg_intensity(get_pixel(coords,0.0*dxtex, 0.0*dytex));
float pix5 = avg_intensity(get_pixel(coords,0.0*dxtex, 1.0*dytex));
float pix6 = avg_intensity(get_pixel(coords,1.0*dxtex, -1.0*dytex));
float pix7 = avg_intensity(get_pixel(coords,1.0*dxtex, 0.0*dytex));
float pix8 = avg_intensity(get_pixel(coords,1.0*dxtex, 1.0*dytex));
// average color differences around neighboring pixels
delta = (abs(pix1-pix7)+
abs(pix5-pix3) +
abs(pix0-pix8)+
abs(pix2-pix6)
)/4.;
return clamp(5.5*delta,0.0,1.0);
}
void main(void)
{
vec2 uv = (texcoords - u_texbounds.xy) / u_texbounds.zw;
HueLevels[0] = 0.0;
HueLevels[1] = 80.0;
HueLevels[2] = 160.0;
HueLevels[3] = 240.0;
HueLevels[4] = 320.0;
HueLevels[5] = 360.0;
SatLevels[0] = 0.0;
SatLevels[1] = 0.1;
SatLevels[2] = 0.3;
SatLevels[3] = 0.5;
SatLevels[4] = 0.6;
SatLevels[5] = 0.8;
SatLevels[6] = 1.0;
ValLevels[0] = 0.0;
ValLevels[1] = 0.3;
ValLevels[2] = 0.6;
ValLevels[3] = 1.0;
vec4 colorOrg = texture( u_texture, uv );
vec3 vHSV = RGBtoHSV(colorOrg.r,colorOrg.g,colorOrg.b);
vHSV.x = nearestLevel(vHSV.x, 0);
vHSV.y = nearestLevel(vHSV.y, 1);
vHSV.z = nearestLevel(vHSV.z, 2);
float edg = IsEdge(uv);
vec3 vRGB = (edg >= 0.3)? vec3(0.0,0.0,0.0):HSVtoRGB(vHSV.x,vHSV.y,vHSV.z);
fragColor = vec4(vRGB.x,vRGB.y,vRGB.z,1.0);
}
`

Binary file not shown.

After

Width:  |  Height:  |  Size: 243 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 106 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.7 MiB

View File

@ -0,0 +1,13 @@
# Isometric view basics
Created by [Sergio Vera](https://github.com/svera).
Isometric view is a display method used to create an illusion of 3D for an otherwise 2D game - sometimes referred to as pseudo 3D or 2.5D.
Implementing an isometric view can be done in many ways, but for the sake of simplicity we'll implement a tile-based approach, which is the most efficient and widely used method.
In the tile-based approach, each visual element is broken down into smaller pieces, called tiles, of a standard size. These tiles will be arranged to form the game world according to pre-determined level data - usually a 2D array.
For a detailed explanation about the maths behind this, read [http://clintbellanger.net/articles/isometric_math/](http://clintbellanger.net/articles/isometric_math/).
![Result](result.png)

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

View File

@ -0,0 +1,161 @@
#version 330-core
// Using a sobel filter to create a normal map and then applying simple lighting.
// This makes the darker areas less bumpy but I like it
#define USE_LINEAR_FOR_BUMPMAP
//#define SHOW_NORMAL_MAP
//#define SHOW_ALBEDO
in vec2 texcoords;
uniform vec4 u_texbounds;
uniform sampler2D u_texture;
uniform vec2 u_resolution;
uniform float u_time;
uniform vec4 u_mouse;
out vec4 fragColor;
struct C_Sample
{
vec3 vAlbedo;
vec3 vNormal;
};
C_Sample SampleMaterial(const in vec2 uv, sampler2D sampler, const in vec2 vTextureSize, const in float fNormalScale)
{
C_Sample result;
vec2 vInvTextureSize = vec2(1.0) / vTextureSize;
vec3 cSampleNegXNegY = texture(sampler, uv + (vec2(-1.0, -1.0)) * vInvTextureSize.xy).rgb;
vec3 cSampleZerXNegY = texture(sampler, uv + (vec2( 0.0, -1.0)) * vInvTextureSize.xy).rgb;
vec3 cSamplePosXNegY = texture(sampler, uv + (vec2( 1.0, -1.0)) * vInvTextureSize.xy).rgb;
vec3 cSampleNegXZerY = texture(sampler, uv + (vec2(-1.0, 0.0)) * vInvTextureSize.xy).rgb;
vec3 cSampleZerXZerY = texture(sampler, uv + (vec2( 0.0, 0.0)) * vInvTextureSize.xy).rgb;
vec3 cSamplePosXZerY = texture(sampler, uv + (vec2( 1.0, 0.0)) * vInvTextureSize.xy).rgb;
vec3 cSampleNegXPosY = texture(sampler, uv + (vec2(-1.0, 1.0)) * vInvTextureSize.xy).rgb;
vec3 cSampleZerXPosY = texture(sampler, uv + (vec2( 0.0, 1.0)) * vInvTextureSize.xy).rgb;
vec3 cSamplePosXPosY = texture(sampler, uv + (vec2( 1.0, 1.0)) * vInvTextureSize.xy).rgb;
// convert to linear
vec3 cLSampleNegXNegY = cSampleNegXNegY * cSampleNegXNegY;
vec3 cLSampleZerXNegY = cSampleZerXNegY * cSampleZerXNegY;
vec3 cLSamplePosXNegY = cSamplePosXNegY * cSamplePosXNegY;
vec3 cLSampleNegXZerY = cSampleNegXZerY * cSampleNegXZerY;
vec3 cLSampleZerXZerY = cSampleZerXZerY * cSampleZerXZerY;
vec3 cLSamplePosXZerY = cSamplePosXZerY * cSamplePosXZerY;
vec3 cLSampleNegXPosY = cSampleNegXPosY * cSampleNegXPosY;
vec3 cLSampleZerXPosY = cSampleZerXPosY * cSampleZerXPosY;
vec3 cLSamplePosXPosY = cSamplePosXPosY * cSamplePosXPosY;
// Average samples to get albdeo colour
result.vAlbedo = ( cLSampleNegXNegY + cLSampleZerXNegY + cLSamplePosXNegY
+ cLSampleNegXZerY + cLSampleZerXZerY + cLSamplePosXZerY
+ cLSampleNegXPosY + cLSampleZerXPosY + cLSamplePosXPosY ) / 9.0;
vec3 vScale = vec3(0.3333);
#ifdef USE_LINEAR_FOR_BUMPMAP
float fSampleNegXNegY = dot(cLSampleNegXNegY, vScale);
float fSampleZerXNegY = dot(cLSampleZerXNegY, vScale);
float fSamplePosXNegY = dot(cLSamplePosXNegY, vScale);
float fSampleNegXZerY = dot(cLSampleNegXZerY, vScale);
float fSampleZerXZerY = dot(cLSampleZerXZerY, vScale);
float fSamplePosXZerY = dot(cLSamplePosXZerY, vScale);
float fSampleNegXPosY = dot(cLSampleNegXPosY, vScale);
float fSampleZerXPosY = dot(cLSampleZerXPosY, vScale);
float fSamplePosXPosY = dot(cLSamplePosXPosY, vScale);
#else
float fSampleNegXNegY = dot(cSampleNegXNegY, vScale);
float fSampleZerXNegY = dot(cSampleZerXNegY, vScale);
float fSamplePosXNegY = dot(cSamplePosXNegY, vScale);
float fSampleNegXZerY = dot(cSampleNegXZerY, vScale);
float fSampleZerXZerY = dot(cSampleZerXZerY, vScale);
float fSamplePosXZerY = dot(cSamplePosXZerY, vScale);
float fSampleNegXPosY = dot(cSampleNegXPosY, vScale);
float fSampleZerXPosY = dot(cSampleZerXPosY, vScale);
float fSamplePosXPosY = dot(cSamplePosXPosY, vScale);
#endif
// Sobel operator - http://en.wikipedia.org/wiki/Sobel_operator
vec2 vEdge;
vEdge.x = (fSampleNegXNegY - fSamplePosXNegY) * 0.25
+ (fSampleNegXZerY - fSamplePosXZerY) * 0.5
+ (fSampleNegXPosY - fSamplePosXPosY) * 0.25;
vEdge.y = (fSampleNegXNegY - fSampleNegXPosY) * 0.25
+ (fSampleZerXNegY - fSampleZerXPosY) * 0.5
+ (fSamplePosXNegY - fSamplePosXPosY) * 0.25;
result.vNormal = normalize(vec3(vEdge * fNormalScale, 1.0));
return result;
}
out vec4 fragColor;
void main()
{
vec2 uv = fragCoord.xy / u_resolution.xy;
C_Sample materialSample;
float fNormalScale = 10.0;
materialSample = SampleMaterial( uv, u_texture, u_resolution.xy, fNormalScale );
// Random Lighting...
float fLightHeight = 0.2;
float fViewHeight = 2.0;
vec3 vSurfacePos = vec3(uv, 0.0);
vec3 vViewPos = vec3(0.5, 0.5, fViewHeight);
vec3 vLightPos = vec3( vec2(sin(u_time),cos(u_time)) * 0.25 + 0.5 , fLightHeight);
if( u_mouse.z > 0.0 )
{
vLightPos = vec3(u_mouse.xy / u_resolution.xy, fLightHeight);
}
vec3 vDirToView = normalize( vViewPos - vSurfacePos );
vec3 vDirToLight = normalize( vLightPos - vSurfacePos );
float fNDotL = clamp( dot(materialSample.vNormal, vDirToLight), 0.0, 1.0);
float fDiffuse = fNDotL;
vec3 vHalf = normalize( vDirToView + vDirToLight );
float fNDotH = clamp( dot(materialSample.vNormal, vHalf), 0.0, 1.0);
float fSpec = pow(fNDotH, 10.0) * fNDotL * 0.5;
vec3 vResult = materialSample.vAlbedo * fDiffuse + fSpec;
vResult = sqrt(vResult);
#ifdef SHOW_NORMAL_MAP
vResult = materialSample.vNormal * 0.5 + 0.5;
#endif
#ifdef SHOW_ALBEDO
vResult = sqrt(materialSample.vAlbedo);
#endif
fragColor = vec4(vResult,1.0);
}

View File

@ -0,0 +1,309 @@
package main
import (
"image"
"os"
"time"
"github.com/go-gl/mathgl/mgl32"
"github.com/faiface/pixel"
"github.com/faiface/pixel/pixelgl"
_ "image/png"
)
const (
windowWidth = 800
windowHeight = 800
// sprite tiles are squared, 64x64 size
tileSize = 64
f = 0 // floor identifier
w = 1 // wall identifier
)
var levelData = [][]uint{
{f, f, f, f, f, f}, // This row will be rendered in the lower left part of the screen (closer to the viewer)
{w, f, f, f, f, w},
{w, f, f, f, f, w},
{w, f, f, f, f, w},
{w, f, f, f, f, w},
{w, w, w, w, w, w}, // And this in the upper right
}
var win *pixelgl.Window
var canvas *pixelgl.Canvas
var offset = pixel.V(400, 325)
var floorTile, wallTile *pixel.Sprite
func installshader(c *pixelgl.Canvas, src string, uniformNameAndVar ...interface{}) {
c.SetFragmentShader(src)
for i := 0; i < len(uniformNameAndVar); i += 2 {
c.BindUniform(
uniformNameAndVar[i+0].(string),
uniformNameAndVar[i+1],
)
}
c.UpdateShader()
}
func loadPicture(path string) (pixel.Picture, error) {
file, err := os.Open(path)
if err != nil {
return nil, err
}
defer file.Close()
img, _, err := image.Decode(file)
if err != nil {
return nil, err
}
return pixel.PictureDataFromImage(img), nil
}
func run() {
var err error
cfg := pixelgl.WindowConfig{
Title: "Isometric demo",
Bounds: pixel.R(0, 0, windowWidth, windowHeight),
VSync: true,
}
win, err = pixelgl.NewWindow(cfg)
if err != nil {
panic(err)
}
pic, err := loadPicture("castle.png")
if err != nil {
panic(err)
}
wallTile = pixel.NewSprite(pic, pixel.R(0, 448, tileSize, 512))
floorTile = pixel.NewSprite(pic, pixel.R(0, 128, tileSize, 192))
uResolution := mgl32.Vec2{float32(win.Bounds().W()), float32(win.Bounds().H())}
var uTime float32
var uMouse mgl32.Vec4
canvas = pixelgl.NewCanvas(win.Bounds())
wc := win.GetCanvas()
installshader(wc, embossFragmentShader,
"u_resolution", &uResolution,
"u_time", &uTime,
"u_mouse", &uMouse,
)
start := time.Now()
for !win.Closed() {
uTime = float32(time.Since(start).Seconds())
uMouse[0] = float32(win.MousePosition().X)
uMouse[1] = float32(win.MousePosition().Y)
if win.Pressed(pixelgl.MouseButton1) {
uMouse[2] = 1.0
} else {
uMouse[2] = 0.0
}
if win.Pressed(pixelgl.MouseButton2) {
uMouse[3] = 1.0
} else {
uMouse[3] = 0.0
}
canvas.Clear(pixel.RGBA{R: 0.09, G: 0.05, B: 0.09, A: 1.0})
depthSort()
canvas.Draw(win, pixel.IM.Moved(win.Bounds().Center()))
win.Update()
}
}
// Draw level data tiles to window, from farthest to closest.
// In order to achieve the depth effect, we need to render tiles up to down, being lower
// closer to the viewer (see painter's algorithm). To do that, we need to process levelData in reverse order,
// so its first row is rendered last, as OpenGL considers its origin to be in the lower left corner of the display.
func depthSort() {
for x := len(levelData) - 1; x >= 0; x-- {
for y := len(levelData[x]) - 1; y >= 0; y-- {
isoCoords := cartesianToIso(pixel.V(float64(x), float64(y)))
mat := pixel.IM.Moved(offset.Add(isoCoords))
// Not really needed, just put to show bigger blocks
mat = mat.ScaledXY(win.Bounds().Center(), pixel.V(2, 2))
tileType := levelData[x][y]
if tileType == f {
floorTile.Draw(canvas, mat)
} else {
wallTile.Draw(canvas, mat)
}
}
}
}
func cartesianToIso(pt pixel.Vec) pixel.Vec {
return pixel.V((pt.X-pt.Y)*(tileSize/2), (pt.X+pt.Y)*(tileSize/4))
}
func main() {
pixelgl.Run(run)
}
var embossFragmentShader = `
#version 330 core
// Using a sobel filter to create a normal map and then applying simple lighting.
// This makes the darker areas less bumpy but I like it
#define USE_LINEAR_FOR_BUMPMAP
//#define SHOW_NORMAL_MAP
//#define SHOW_ALBEDO
in vec2 texcoords;
uniform vec4 u_texbounds;
uniform sampler2D u_texture;
uniform vec2 u_resolution;
uniform float u_time;
uniform vec4 u_mouse;
out vec4 fragColor;
struct C_Sample
{
vec3 vAlbedo;
vec3 vNormal;
};
C_Sample SampleMaterial(const in vec2 uv, sampler2D sampler, const in vec2 vTextureSize, const in float fNormalScale)
{
C_Sample result;
vec2 vInvTextureSize = vec2(1.0) / vTextureSize;
vec3 cSampleNegXNegY = texture(sampler, uv + (vec2(-1.0, -1.0)) * vInvTextureSize.xy).rgb;
vec3 cSampleZerXNegY = texture(sampler, uv + (vec2( 0.0, -1.0)) * vInvTextureSize.xy).rgb;
vec3 cSamplePosXNegY = texture(sampler, uv + (vec2( 1.0, -1.0)) * vInvTextureSize.xy).rgb;
vec3 cSampleNegXZerY = texture(sampler, uv + (vec2(-1.0, 0.0)) * vInvTextureSize.xy).rgb;
vec3 cSampleZerXZerY = texture(sampler, uv + (vec2( 0.0, 0.0)) * vInvTextureSize.xy).rgb;
vec3 cSamplePosXZerY = texture(sampler, uv + (vec2( 1.0, 0.0)) * vInvTextureSize.xy).rgb;
vec3 cSampleNegXPosY = texture(sampler, uv + (vec2(-1.0, 1.0)) * vInvTextureSize.xy).rgb;
vec3 cSampleZerXPosY = texture(sampler, uv + (vec2( 0.0, 1.0)) * vInvTextureSize.xy).rgb;
vec3 cSamplePosXPosY = texture(sampler, uv + (vec2( 1.0, 1.0)) * vInvTextureSize.xy).rgb;
// convert to linear
vec3 cLSampleNegXNegY = cSampleNegXNegY * cSampleNegXNegY;
vec3 cLSampleZerXNegY = cSampleZerXNegY * cSampleZerXNegY;
vec3 cLSamplePosXNegY = cSamplePosXNegY * cSamplePosXNegY;
vec3 cLSampleNegXZerY = cSampleNegXZerY * cSampleNegXZerY;
vec3 cLSampleZerXZerY = cSampleZerXZerY * cSampleZerXZerY;
vec3 cLSamplePosXZerY = cSamplePosXZerY * cSamplePosXZerY;
vec3 cLSampleNegXPosY = cSampleNegXPosY * cSampleNegXPosY;
vec3 cLSampleZerXPosY = cSampleZerXPosY * cSampleZerXPosY;
vec3 cLSamplePosXPosY = cSamplePosXPosY * cSamplePosXPosY;
// Average samples to get albdeo colour
result.vAlbedo = ( cLSampleNegXNegY + cLSampleZerXNegY + cLSamplePosXNegY
+ cLSampleNegXZerY + cLSampleZerXZerY + cLSamplePosXZerY
+ cLSampleNegXPosY + cLSampleZerXPosY + cLSamplePosXPosY ) / 9.0;
vec3 vScale = vec3(0.3333);
#ifdef USE_LINEAR_FOR_BUMPMAP
float fSampleNegXNegY = dot(cLSampleNegXNegY, vScale);
float fSampleZerXNegY = dot(cLSampleZerXNegY, vScale);
float fSamplePosXNegY = dot(cLSamplePosXNegY, vScale);
float fSampleNegXZerY = dot(cLSampleNegXZerY, vScale);
float fSampleZerXZerY = dot(cLSampleZerXZerY, vScale);
float fSamplePosXZerY = dot(cLSamplePosXZerY, vScale);
float fSampleNegXPosY = dot(cLSampleNegXPosY, vScale);
float fSampleZerXPosY = dot(cLSampleZerXPosY, vScale);
float fSamplePosXPosY = dot(cLSamplePosXPosY, vScale);
#else
float fSampleNegXNegY = dot(cSampleNegXNegY, vScale);
float fSampleZerXNegY = dot(cSampleZerXNegY, vScale);
float fSamplePosXNegY = dot(cSamplePosXNegY, vScale);
float fSampleNegXZerY = dot(cSampleNegXZerY, vScale);
float fSampleZerXZerY = dot(cSampleZerXZerY, vScale);
float fSamplePosXZerY = dot(cSamplePosXZerY, vScale);
float fSampleNegXPosY = dot(cSampleNegXPosY, vScale);
float fSampleZerXPosY = dot(cSampleZerXPosY, vScale);
float fSamplePosXPosY = dot(cSamplePosXPosY, vScale);
#endif
// Sobel operator - http://en.wikipedia.org/wiki/Sobel_operator
vec2 vEdge;
vEdge.x = (fSampleNegXNegY - fSamplePosXNegY) * 0.25
+ (fSampleNegXZerY - fSamplePosXZerY) * 0.5
+ (fSampleNegXPosY - fSamplePosXPosY) * 0.25;
vEdge.y = (fSampleNegXNegY - fSampleNegXPosY) * 0.25
+ (fSampleZerXNegY - fSampleZerXPosY) * 0.5
+ (fSamplePosXNegY - fSamplePosXPosY) * 0.25;
result.vNormal = normalize(vec3(vEdge * fNormalScale, 1.0));
return result;
}
void main()
{
vec2 uv = gl_FragCoord.xy / u_resolution.xy;
C_Sample materialSample;
float fNormalScale = 5.0;
materialSample = SampleMaterial( uv, u_texture, u_resolution.xy, fNormalScale );
// Random Lighting...
float fLightHeight = 0.2;
float fViewHeight = 1.0;
vec3 vSurfacePos = vec3(uv, 0.0);
vec3 vViewPos = vec3(0.5, 0.5, fViewHeight);
vec3 vLightPos = vec3( vec2(sin(u_time),cos(u_time)) * 0.25 + 0.5 , fLightHeight);
if( u_mouse.z > 0.0 )
{
vLightPos = vec3(u_mouse.xy / u_resolution.xy, fLightHeight);
}
vec3 vDirToView = normalize( vViewPos - vSurfacePos );
vec3 vDirToLight = normalize( vLightPos - vSurfacePos );
float fNDotL = clamp( dot(materialSample.vNormal, vDirToLight), 0.0, 1.0);
float fDiffuse = fNDotL;
vec3 vHalf = normalize( vDirToView + vDirToLight );
float fNDotH = clamp( dot(materialSample.vNormal, vHalf), 0.0, 1.0);
float fSpec = pow(fNDotH, 10.0) * fNDotL * 0.5;
vec3 vResult = materialSample.vAlbedo * fDiffuse + fSpec;
vResult = sqrt(vResult);
#ifdef SHOW_NORMAL_MAP
vResult = materialSample.vNormal * 0.5 + 0.5;
#endif
#ifdef SHOW_ALBEDO
vResult = sqrt(materialSample.vAlbedo);
#endif
fragColor = vec4(vResult,1.0);
}
`

Binary file not shown.

After

Width:  |  Height:  |  Size: 126 KiB

View File

@ -0,0 +1,22 @@
# raycaster
A raycaster made by [Peter Hellberg](https://github.com/peterhellberg/) as part of his [pixel-experiments](https://github.com/peterhellberg/pixel-experiments).
Based on Lodes article on [raycasting](http://lodev.org/cgtutor/raycasting.html).
## Controls
WASD for strafing and arrow keys for rotation.
Place blocks using the number keys.
## Screenshots
![raycaster animation](https://user-images.githubusercontent.com/565124/31828029-798e6620-b5b9-11e7-96b7-fda540755745.gif)
![raycaster screenshot](screenshot.png)
## Links
- https://github.com/peterhellberg/pixel-experiments/tree/master/raycaster
- https://gist.github.com/peterhellberg/835eccabf95800555120cc8f0c9e16c2

View File

@ -0,0 +1,63 @@
#version 330 core
in vec2 texcoords;
uniform vec4 u_texbounds;
uniform sampler2D u_texture;
uniform vec2 u_resolution;
uniform float u_amount;
uniform float u_time;
uniform vec2 u_mouse;
out vec4 fragColor;
#define FXAA_REDUCE_MIN (1.0/128.0)
#define FXAA_REDUCE_MUL (1.0/8.0)
#define FXAA_SPAN_MAX 8.0
void main() {
vec2 uv = (texcoords - u_texbounds.xy) / u_texbounds.zw;
vec2 res = 1. / u_resolution;
vec3 rgbNW = texture( u_texture, ( uv.xy + vec2( -1.0, -1.0 ) * res ) ).xyz;
vec3 rgbNE = texture( u_texture, ( uv.xy + vec2( 1.0, -1.0 ) * res ) ).xyz;
vec3 rgbSW = texture( u_texture, ( uv.xy + vec2( -1.0, 1.0 ) * res ) ).xyz;
vec3 rgbSE = texture( u_texture, ( uv.xy + vec2( 1.0, 1.0 ) * res ) ).xyz;
vec4 rgbaM = texture( u_texture, uv.xy * res );
vec3 rgbM = rgbaM.xyz;
vec3 luma = vec3( 0.299, 0.587, 0.114 );
float lumaNW = dot( rgbNW, luma );
float lumaNE = dot( rgbNE, luma );
float lumaSW = dot( rgbSW, luma );
float lumaSE = dot( rgbSE, luma );
float lumaM = dot( rgbM, luma );
float lumaMin = min( lumaM, min( min( lumaNW, lumaNE ), min( lumaSW, lumaSE ) ) );
float lumaMax = max( lumaM, max( max( lumaNW, lumaNE) , max( lumaSW, lumaSE ) ) );
vec2 dir;
dir.x = -((lumaNW + lumaNE) - (lumaSW + lumaSE));
dir.y = ((lumaNW + lumaSW) - (lumaNE + lumaSE));
float dirReduce = max( ( lumaNW + lumaNE + lumaSW + lumaSE ) * ( 0.25 * FXAA_REDUCE_MUL ), FXAA_REDUCE_MIN );
float rcpDirMin = 1.0 / ( min( abs( dir.x ), abs( dir.y ) ) + dirReduce );
dir = min( vec2( FXAA_SPAN_MAX, FXAA_SPAN_MAX),
max( vec2(-FXAA_SPAN_MAX, -FXAA_SPAN_MAX),
dir * rcpDirMin)) * res;
vec4 rgbA = (1.0/2.0) * (
texture(u_texture, uv.xy + dir * (1.0/3.0 - 0.5)) +
texture(u_texture, uv.xy + dir * (2.0/3.0 - 0.5)));
vec4 rgbB = rgbA * (1.0/2.0) + (1.0/4.0) * (
texture(u_texture, uv.xy + dir * (0.0/3.0 - 0.5)) +
texture(u_texture, uv.xy + dir * (3.0/3.0 - 0.5)));
float lumaB = dot(rgbB, vec4(luma, 0.0));
if ( ( lumaB < lumaMin ) || ( lumaB > lumaMax ) ) {
fragColor = rgbA;
} else {
fragColor = rgbB;
}
//fragColor = vec4( texture( u_texture,uv ).xyz, 1. );
}

File diff suppressed because one or more lines are too long

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

View File

@ -116,9 +116,9 @@ in vec2 position;
in vec4 color; in vec4 color;
in vec2 texCoords; in vec2 texCoords;
in float intensity; in float intensity;
out vec4 Color; out vec4 Color;
out vec2 texcoords; out vec2 texcoords;
out vec2 glpos;
out float Intensity; out float Intensity;
uniform mat3 u_transform; uniform mat3 u_transform;
@ -131,6 +131,7 @@ void main() {
Color = color; Color = color;
texcoords = texCoords; texcoords = texCoords;
Intensity = intensity; Intensity = intensity;
glpos = transPos;
} }
` `