Delete rectangle.go
This commit is contained in:
parent
d5458f874d
commit
68376579d4
284
rectangle.go
284
rectangle.go
|
@ -1,284 +0,0 @@
|
|||
package pixel
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
)
|
||||
|
||||
// Rect is a 2D rectangle aligned with the axes of the coordinate system. It is defined by two
|
||||
// points, Min and Max.
|
||||
//
|
||||
// The invariant should hold, that Max's components are greater or equal than Min's components
|
||||
// respectively.
|
||||
type Rect struct {
|
||||
Min, Max Vec
|
||||
}
|
||||
|
||||
// ZR is a zero rectangle.
|
||||
var ZR = Rect{Min: ZV, Max: ZV}
|
||||
|
||||
// R returns a new Rect with given the Min and Max coordinates.
|
||||
//
|
||||
// Note that the returned rectangle is not automatically normalized.
|
||||
func R(minX, minY, maxX, maxY float64) Rect {
|
||||
return Rect{
|
||||
Min: Vec{minX, minY},
|
||||
Max: Vec{maxX, maxY},
|
||||
}
|
||||
}
|
||||
|
||||
// String returns the string representation of the Rect.
|
||||
//
|
||||
// r := pixel.R(100, 50, 200, 300)
|
||||
// r.String() // returns "Rect(100, 50, 200, 300)"
|
||||
// fmt.Println(r) // Rect(100, 50, 200, 300)
|
||||
func (r Rect) String() string {
|
||||
return fmt.Sprintf("Rect(%v, %v, %v, %v)", r.Min.X, r.Min.Y, r.Max.X, r.Max.Y)
|
||||
}
|
||||
|
||||
// Norm returns the Rect in normal form, such that Max is component-wise greater or equal than Min.
|
||||
func (r Rect) Norm() Rect {
|
||||
return Rect{
|
||||
Min: Vec{
|
||||
math.Min(r.Min.X, r.Max.X),
|
||||
math.Min(r.Min.Y, r.Max.Y),
|
||||
},
|
||||
Max: Vec{
|
||||
math.Max(r.Min.X, r.Max.X),
|
||||
math.Max(r.Min.Y, r.Max.Y),
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
// W returns the width of the Rect.
|
||||
func (r Rect) W() float64 {
|
||||
return r.Max.X - r.Min.X
|
||||
}
|
||||
|
||||
// H returns the height of the Rect.
|
||||
func (r Rect) H() float64 {
|
||||
return r.Max.Y - r.Min.Y
|
||||
}
|
||||
|
||||
// Size returns the vector of width and height of the Rect.
|
||||
func (r Rect) Size() Vec {
|
||||
return V(r.W(), r.H())
|
||||
}
|
||||
|
||||
// Area returns the area of r. If r is not normalized, area may be negative.
|
||||
func (r Rect) Area() float64 {
|
||||
return r.W() * r.H()
|
||||
}
|
||||
|
||||
// Edges will return the four lines which make up the edges of the rectangle.
|
||||
func (r Rect) Edges() [4]Line {
|
||||
corners := r.Vertices()
|
||||
|
||||
return [4]Line{
|
||||
{A: corners[0], B: corners[1]},
|
||||
{A: corners[1], B: corners[2]},
|
||||
{A: corners[2], B: corners[3]},
|
||||
{A: corners[3], B: corners[0]},
|
||||
}
|
||||
}
|
||||
|
||||
// Anchor is a vector used to define anchors, such as `Center`, `Top`, `TopRight`, etc.
|
||||
type Anchor Vec
|
||||
|
||||
var (
|
||||
Center = Anchor{0.5, 0.5}
|
||||
Top = Anchor{0.5, 0}
|
||||
TopRight = Anchor{0, 0}
|
||||
Right = Anchor{0, 0.5}
|
||||
BottomRight = Anchor{0, 1}
|
||||
Bottom = Anchor{0.5, 1}
|
||||
BottomLeft = Anchor{1, 1}
|
||||
Left = Anchor{1, 0.5}
|
||||
TopLeft = Anchor{1, 0}
|
||||
)
|
||||
|
||||
var anchorStrings map[Anchor]string = map[Anchor]string{
|
||||
Center: "center",
|
||||
Top: "top",
|
||||
TopRight: "top-right",
|
||||
Right: "right",
|
||||
BottomRight: "bottom-right",
|
||||
Bottom: "bottom",
|
||||
BottomLeft: "bottom-left",
|
||||
Left: "left",
|
||||
TopLeft: "top-left",
|
||||
}
|
||||
|
||||
// String returns the string representation of an anchor.
|
||||
func (anchor Anchor) String() string {
|
||||
return anchorStrings[anchor]
|
||||
}
|
||||
|
||||
var oppositeAnchors map[Anchor]Anchor = map[Anchor]Anchor{
|
||||
Center: Center,
|
||||
Top: Bottom,
|
||||
Bottom: Top,
|
||||
Right: Left,
|
||||
Left: Right,
|
||||
TopRight: BottomLeft,
|
||||
BottomLeft: TopRight,
|
||||
BottomRight: TopLeft,
|
||||
TopLeft: BottomRight,
|
||||
}
|
||||
|
||||
// Opposite returns the opposite position of the anchor (ie. Top -> Bottom; BottomLeft -> TopRight, etc.).
|
||||
func (anchor Anchor) Opposite() Anchor {
|
||||
return oppositeAnchors[anchor]
|
||||
}
|
||||
|
||||
// AnchorPos returns the relative position of the given anchor.
|
||||
func (r Rect) AnchorPos(anchor Anchor) Vec {
|
||||
return r.Size().ScaledXY(V(0, 0).Sub(Vec(anchor)))
|
||||
}
|
||||
|
||||
// AlignedTo returns the rect moved by the given anchor.
|
||||
func (rect Rect) AlignedTo(anchor Anchor) Rect {
|
||||
return rect.Moved(rect.AnchorPos(anchor))
|
||||
}
|
||||
|
||||
// Center returns the position of the center of the Rect.
|
||||
// `rect.Center()` is equivalent to `rect.Anchor(pixel.Anchor.Center)`
|
||||
func (r Rect) Center() Vec {
|
||||
return Lerp(r.Min, r.Max, 0.5)
|
||||
}
|
||||
|
||||
// Moved returns the Rect moved (both Min and Max) by the given vector delta.
|
||||
func (r Rect) Moved(delta Vec) Rect {
|
||||
return Rect{
|
||||
Min: r.Min.Add(delta),
|
||||
Max: r.Max.Add(delta),
|
||||
}
|
||||
}
|
||||
|
||||
// Resized returns the Rect resized to the given size while keeping the position of the given
|
||||
// anchor.
|
||||
//
|
||||
// r.Resized(r.Min, size) // resizes while keeping the position of the lower-left corner
|
||||
// r.Resized(r.Max, size) // same with the top-right corner
|
||||
// r.Resized(r.Center(), size) // resizes around the center
|
||||
//
|
||||
// This function does not make sense for resizing a rectangle of zero area and will panic. Use
|
||||
// ResizedMin in the case of zero area.
|
||||
func (r Rect) Resized(anchor, size Vec) Rect {
|
||||
if r.W()*r.H() == 0 {
|
||||
panic(fmt.Errorf("(%T).Resize: zero area", r))
|
||||
}
|
||||
fraction := Vec{size.X / r.W(), size.Y / r.H()}
|
||||
return Rect{
|
||||
Min: anchor.Add(r.Min.Sub(anchor).ScaledXY(fraction)),
|
||||
Max: anchor.Add(r.Max.Sub(anchor).ScaledXY(fraction)),
|
||||
}
|
||||
}
|
||||
|
||||
// ResizedMin returns the Rect resized to the given size while keeping the position of the Rect's
|
||||
// Min.
|
||||
//
|
||||
// Sizes of zero area are safe here.
|
||||
func (r Rect) ResizedMin(size Vec) Rect {
|
||||
return Rect{
|
||||
Min: r.Min,
|
||||
Max: r.Min.Add(size),
|
||||
}
|
||||
}
|
||||
|
||||
// Contains checks whether a vector u is contained within this Rect (including it's borders).
|
||||
func (r Rect) Contains(u Vec) bool {
|
||||
return r.Min.X <= u.X && u.X <= r.Max.X && r.Min.Y <= u.Y && u.Y <= r.Max.Y
|
||||
}
|
||||
|
||||
// Union returns the minimal Rect which covers both r and s. Rects r and s must be normalized.
|
||||
func (r Rect) Union(s Rect) Rect {
|
||||
return R(
|
||||
math.Min(r.Min.X, s.Min.X),
|
||||
math.Min(r.Min.Y, s.Min.Y),
|
||||
math.Max(r.Max.X, s.Max.X),
|
||||
math.Max(r.Max.Y, s.Max.Y),
|
||||
)
|
||||
}
|
||||
|
||||
// Intersect returns the maximal Rect which is covered by both r and s. Rects r and s must be normalized.
|
||||
//
|
||||
// If r and s don't overlap, this function returns a zero-rectangle.
|
||||
func (r Rect) Intersect(s Rect) Rect {
|
||||
t := R(
|
||||
math.Max(r.Min.X, s.Min.X),
|
||||
math.Max(r.Min.Y, s.Min.Y),
|
||||
math.Min(r.Max.X, s.Max.X),
|
||||
math.Min(r.Max.Y, s.Max.Y),
|
||||
)
|
||||
if t.Min.X >= t.Max.X || t.Min.Y >= t.Max.Y {
|
||||
return ZR
|
||||
}
|
||||
return t
|
||||
}
|
||||
|
||||
// Intersects returns whether or not the given Rect intersects at any point with this Rect.
|
||||
//
|
||||
// This function is overall about 5x faster than Intersect, so it is better
|
||||
// to use if you have no need for the returned Rect from Intersect.
|
||||
func (r Rect) Intersects(s Rect) bool {
|
||||
return !(s.Max.X <= r.Min.X ||
|
||||
s.Min.X >= r.Max.X ||
|
||||
s.Max.Y <= r.Min.Y ||
|
||||
s.Min.Y >= r.Max.Y)
|
||||
}
|
||||
|
||||
// IntersectCircle returns a minimal required Vector, such that moving the rect by that vector would stop the Circle
|
||||
// and the Rect intersecting. This function returns a zero-vector if the Circle and Rect do not overlap, and if only
|
||||
// the perimeters touch.
|
||||
//
|
||||
// This function will return a non-zero vector if:
|
||||
// - The Rect contains the Circle, partially or fully
|
||||
// - The Circle contains the Rect, partially of fully
|
||||
func (r Rect) IntersectCircle(c Circle) Vec {
|
||||
return c.IntersectRect(r).Scaled(-1)
|
||||
}
|
||||
|
||||
// IntersectLine will return the shortest Vec such that if the Rect is moved by the Vec returned, the Line and Rect no
|
||||
// longer intersect.
|
||||
func (r Rect) IntersectLine(l Line) Vec {
|
||||
return l.IntersectRect(r).Scaled(-1)
|
||||
}
|
||||
|
||||
// IntersectionPoints returns all the points where the Rect intersects with the line provided. This can be zero, one or
|
||||
// two points, depending on the location of the shapes. The points of intersection will be returned in order of
|
||||
// closest-to-l.A to closest-to-l.B.
|
||||
func (r Rect) IntersectionPoints(l Line) []Vec {
|
||||
// Use map keys to ensure unique points
|
||||
pointMap := make(map[Vec]struct{})
|
||||
|
||||
for _, edge := range r.Edges() {
|
||||
if intersect, ok := l.Intersect(edge); ok {
|
||||
pointMap[intersect] = struct{}{}
|
||||
}
|
||||
}
|
||||
|
||||
points := make([]Vec, 0, len(pointMap))
|
||||
for point := range pointMap {
|
||||
points = append(points, point)
|
||||
}
|
||||
|
||||
// Order the points
|
||||
if len(points) == 2 {
|
||||
if points[1].To(l.A).Len() < points[0].To(l.A).Len() {
|
||||
return []Vec{points[1], points[0]}
|
||||
}
|
||||
}
|
||||
|
||||
return points
|
||||
}
|
||||
|
||||
// Vertices returns a slice of the four corners which make up the rectangle.
|
||||
func (r Rect) Vertices() [4]Vec {
|
||||
return [4]Vec{
|
||||
r.Min,
|
||||
V(r.Min.X, r.Max.Y),
|
||||
r.Max,
|
||||
V(r.Max.X, r.Min.Y),
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue