diff --git a/README.md b/README.md index ac347e9..e1553de 100644 --- a/README.md +++ b/README.md @@ -20,6 +20,7 @@ covering several topics of Pixel. Here's the content of the tutorial parts so fa - [Pressing keys and clicking mouse](https://github.com/faiface/pixel/wiki/Pressing-keys-and-clicking-mouse) - [Drawing efficiently with Batch](https://github.com/faiface/pixel/wiki/Drawing-efficiently-with-Batch) - [Drawing shapes with IMDraw](https://github.com/faiface/pixel/wiki/Drawing-shapes-with-IMDraw) +- [Typing text on the screen](https://github.com/faiface/pixel/wiki/Typing-text-on-the-screen) ## Examples diff --git a/data.go b/data.go index 4e6c528..c941241 100644 --- a/data.go +++ b/data.go @@ -45,7 +45,7 @@ func (td *TrianglesData) SetLen(len int) { Color RGBA Picture Vec Intensity float64 - }{ZV, Alpha(1), ZV, 0}) + }{Color: RGBA{1, 1, 1, 1}}) } } if len < td.Len() { diff --git a/geometry.go b/geometry.go index f934839..13a574d 100644 --- a/geometry.go +++ b/geometry.go @@ -3,8 +3,6 @@ package pixel import ( "fmt" "math" - - "github.com/go-gl/mathgl/mgl64" ) // Vec is a 2D vector type with X and Y coordinates. @@ -251,7 +249,7 @@ func (r Rect) Union(s Rect) Rect { ) } -// Matrix is a 3x3 transformation matrix that can be used for all kinds of spacial transforms, such +// Matrix is a 3x2 affine matrix that can be used for all kinds of spatial transforms, such // as movement, scaling and rotations. // // Matrix has a handful of useful methods, each of which adds a transformation to the matrix. For @@ -261,38 +259,41 @@ func (r Rect) Union(s Rect) Rect { // // This code creates a Matrix that first moves everything by 100 units horizontally and 200 units // vertically and then rotates everything by 90 degrees around the origin. -type Matrix [9]float64 +// +// Layout is: +// [0] [2] [4] +// [1] [3] [5] +// 0 0 1 (implicit row) +type Matrix [6]float64 // IM stands for identity matrix. Does nothing, no transformation. -var IM = Matrix(mgl64.Ident3()) +var IM = Matrix{1, 0, 0, 1, 0, 0} // String returns a string representation of the Matrix. // // m := pixel.IM -// fmt.Println(m) // Matrix(1 0 0 | 0 1 0 | 0 0 1) +// fmt.Println(m) // Matrix(1 0 0 | 0 1 0) func (m Matrix) String() string { return fmt.Sprintf( - "Matrix(%v %v %v | %v %v %v | %v %v %v)", - m[0], m[3], m[6], - m[1], m[4], m[7], - m[2], m[5], m[8], + "Matrix(%v %v %v | %v %v %v)", + m[0], m[2], m[4], + m[1], m[3], m[5], ) } // Moved moves everything by the delta vector. func (m Matrix) Moved(delta Vec) Matrix { - m3 := mgl64.Mat3(m) - m3 = mgl64.Translate2D(delta.XY()).Mul3(m3) - return Matrix(m3) + m[4], m[5] = m[4]+delta.X, m[5]+delta.Y + return m } // ScaledXY scales everything around a given point by the scale factor in each axis respectively. func (m Matrix) ScaledXY(around Vec, scale Vec) Matrix { - m3 := mgl64.Mat3(m) - m3 = mgl64.Translate2D(around.Scaled(-1).XY()).Mul3(m3) - m3 = mgl64.Scale2D(scale.XY()).Mul3(m3) - m3 = mgl64.Translate2D(around.XY()).Mul3(m3) - return Matrix(m3) + m[4], m[5] = m[4]-around.X, m[5]-around.Y + m[0], m[2], m[4] = m[0]*scale.X, m[2]*scale.X, m[4]*scale.X + m[1], m[3], m[5] = m[1]*scale.Y, m[3]*scale.Y, m[5]*scale.Y + m[4], m[5] = m[4]+around.X, m[5]+around.Y + return m } // Scaled scales everything around a given point by the scale factor. @@ -302,36 +303,42 @@ func (m Matrix) Scaled(around Vec, scale float64) Matrix { // Rotated rotates everything around a given point by the given angle in radians. func (m Matrix) Rotated(around Vec, angle float64) Matrix { - m3 := mgl64.Mat3(m) - m3 = mgl64.Translate2D(around.Scaled(-1).XY()).Mul3(m3) - m3 = mgl64.Rotate3DZ(angle).Mul3(m3) - m3 = mgl64.Translate2D(around.XY()).Mul3(m3) - return Matrix(m3) + sint, cost := math.Sincos(angle) + m[4], m[5] = m[4]-around.X, m[5]-around.Y + m = m.Chained(Matrix{cost, sint, -sint, cost, 0, 0}) + m[4], m[5] = m[4]+around.X, m[5]+around.Y + return m } // Chained adds another Matrix to this one. All tranformations by the next Matrix will be applied // after the transformations of this Matrix. func (m Matrix) Chained(next Matrix) Matrix { - m3 := mgl64.Mat3(m) - m3 = mgl64.Mat3(next).Mul3(m3) - return Matrix(m3) + return Matrix{ + m[0]*next[0] + m[2]*next[1], + m[1]*next[0] + m[3]*next[1], + m[0]*next[2] + m[2]*next[3], + m[1]*next[2] + m[3]*next[3], + m[0]*next[4] + m[2]*next[5] + m[4], + m[1]*next[4] + m[3]*next[5] + m[5], + } } // Project applies all transformations added to the Matrix to a vector u and returns the result. // // Time complexity is O(1). func (m Matrix) Project(u Vec) Vec { - m3 := mgl64.Mat3(m) - proj := m3.Mul3x1(mgl64.Vec3{u.X, u.Y, 1}) - return V(proj.X(), proj.Y()) + return Vec{X: m[0]*u.X + m[2]*u.Y + m[4], Y: m[1]*u.X + m[3]*u.Y + m[5]} } // Unproject does the inverse operation to Project. // +// It turns out that multiplying a vector by the inverse matrix of m can be nearly-accomplished by +// subtracting the translate part of the matrix and multplying by the inverse of the top-left 2x2 +// matrix, and the inverse of a 2x2 matrix is simple enough to just be inlined in the computation. +// // Time complexity is O(1). func (m Matrix) Unproject(u Vec) Vec { - m3 := mgl64.Mat3(m) - inv := m3.Inv() - unproj := inv.Mul3x1(mgl64.Vec3{u.X, u.Y, 1}) - return V(unproj.X(), unproj.Y()) + d := (m[0] * m[3]) - (m[1] * m[2]) + u.X, u.Y = (u.X-m[4])/d, (u.Y-m[5])/d + return Vec{u.X*m[3] - u.Y*m[1], u.Y*m[0] - u.X*m[2]} } diff --git a/imdraw/imdraw.go b/imdraw/imdraw.go index 626cb2f..f7ce769 100644 --- a/imdraw/imdraw.go +++ b/imdraw/imdraw.go @@ -52,6 +52,7 @@ type IMDraw struct { EndShape EndShape points []point + pool [][]point matrix pixel.Matrix mask pixel.RGBA @@ -109,7 +110,7 @@ func (imd *IMDraw) Clear() { // // This does not affect matrix and color mask set by SetMatrix and SetColorMask. func (imd *IMDraw) Reset() { - imd.points = nil + imd.points = imd.points[:0] imd.Color = pixel.Alpha(1) imd.Picture = pixel.ZV imd.Intensity = 0 @@ -256,10 +257,22 @@ func (imd *IMDraw) EllipseArc(radius pixel.Vec, low, high, thickness float64) { func (imd *IMDraw) getAndClearPoints() []point { points := imd.points - imd.points = nil + // use one of the existing pools so we don't reallocate as often + if len(imd.pool) > 0 { + pos := len(imd.pool) - 1 + imd.points = imd.pool[pos][:0] + imd.pool = imd.pool[:pos] + } else { + imd.points = nil + } return points } +func (imd *IMDraw) restorePoints(points []point) { + imd.pool = append(imd.pool, imd.points) + imd.points = points[:0] +} + func (imd *IMDraw) applyMatrixAndMask(off int) { for i := range (*imd.tri)[off:] { (*imd.tri)[off+i].Position = imd.matrix.Project((*imd.tri)[off+i].Position) @@ -271,6 +284,7 @@ func (imd *IMDraw) fillRectangle() { points := imd.getAndClearPoints() if len(points) < 2 { + imd.restorePoints(points) return } @@ -292,7 +306,7 @@ func (imd *IMDraw) fillRectangle() { in: (a.in + b.in) / 2, } - for k, p := range []point{a, b, c, a, b, d} { + for k, p := range [...]point{a, b, c, a, b, d} { (*imd.tri)[j+k].Position = p.pos (*imd.tri)[j+k].Color = p.col (*imd.tri)[j+k].Picture = p.pic @@ -302,12 +316,15 @@ func (imd *IMDraw) fillRectangle() { imd.applyMatrixAndMask(off) imd.batch.Dirty() + + imd.restorePoints(points) } func (imd *IMDraw) outlineRectangle(thickness float64) { points := imd.getAndClearPoints() if len(points) < 2 { + imd.restorePoints(points) return } @@ -323,12 +340,15 @@ func (imd *IMDraw) outlineRectangle(thickness float64) { imd.pushPt(pixel.V(b.pos.X, a.pos.Y), mid) imd.polyline(thickness, true) } + + imd.restorePoints(points) } func (imd *IMDraw) fillPolygon() { points := imd.getAndClearPoints() if len(points) < 3 { + imd.restorePoints(points) return } @@ -336,16 +356,19 @@ func (imd *IMDraw) fillPolygon() { imd.tri.SetLen(imd.tri.Len() + 3*(len(points)-2)) for i, j := 1, off; i+1 < len(points); i, j = i+1, j+3 { - for k, p := range []point{points[0], points[i], points[i+1]} { - (*imd.tri)[j+k].Position = p.pos - (*imd.tri)[j+k].Color = p.col - (*imd.tri)[j+k].Picture = p.pic - (*imd.tri)[j+k].Intensity = p.in + for k, p := range [...]int{0, i, i + 1} { + tri := &(*imd.tri)[j+k] + tri.Position = points[p].pos + tri.Color = points[p].col + tri.Picture = points[p].pic + tri.Intensity = points[p].in } } imd.applyMatrixAndMask(off) imd.batch.Dirty() + + imd.restorePoints(points) } func (imd *IMDraw) fillEllipseArc(radius pixel.Vec, low, high float64) { @@ -387,6 +410,8 @@ func (imd *IMDraw) fillEllipseArc(radius pixel.Vec, low, high float64) { imd.applyMatrixAndMask(off) imd.batch.Dirty() } + + imd.restorePoints(points) } func (imd *IMDraw) outlineEllipseArc(radius pixel.Vec, low, high, thickness float64, doEndShape bool) { @@ -485,12 +510,15 @@ func (imd *IMDraw) outlineEllipseArc(radius pixel.Vec, low, high, thickness floa } } } + + imd.restorePoints(points) } func (imd *IMDraw) polyline(thickness float64, closed bool) { points := imd.getAndClearPoints() if len(points) == 0 { + imd.restorePoints(points) return } if len(points) == 1 { @@ -521,6 +549,8 @@ func (imd *IMDraw) polyline(thickness float64, closed bool) { imd.pushPt(points[j].pos.Sub(normal), points[j]) // middle points + // compute "previous" normal: + ijNormal := points[1].pos.Sub(points[0].pos).Rotated(math.Pi / 2).Unit().Scaled(thickness / 2) for i := 0; i < len(points); i++ { j, k := i+1, i+2 @@ -536,7 +566,6 @@ func (imd *IMDraw) polyline(thickness float64, closed bool) { k %= len(points) } - ijNormal := points[j].pos.Sub(points[i].pos).Rotated(math.Pi / 2).Unit().Scaled(thickness / 2) jkNormal := points[k].pos.Sub(points[j].pos).Rotated(math.Pi / 2).Unit().Scaled(thickness / 2) orientation := 1.0 @@ -567,6 +596,8 @@ func (imd *IMDraw) polyline(thickness float64, closed bool) { imd.pushPt(points[j].pos.Add(jkNormal), points[j]) imd.pushPt(points[j].pos.Sub(jkNormal), points[j]) } + // "next" normal becomes previous normal + ijNormal = jkNormal } // last point @@ -591,4 +622,6 @@ func (imd *IMDraw) polyline(thickness float64, closed bool) { imd.fillEllipseArc(pixel.V(thickness/2, thickness/2), normal.Angle(), normal.Angle()-math.Pi) } } + + imd.restorePoints(points) } diff --git a/pixelgl/canvas.go b/pixelgl/canvas.go index 7a6400e..9e1efeb 100644 --- a/pixelgl/canvas.go +++ b/pixelgl/canvas.go @@ -91,8 +91,13 @@ func (c *Canvas) MakePicture(p pixel.Picture) pixel.TargetPicture { // SetMatrix sets a Matrix that every point will be projected by. func (c *Canvas) SetMatrix(m pixel.Matrix) { - for i := range m { - c.mat[i] = float32(m[i]) + // pixel.Matrix is 3x2 with an implicit 0, 0, 1 row after it. So + // [0] [2] [4] [0] [3] [6] + // [1] [3] [5] => [1] [4] [7] + // 0 0 1 0 0 1 + // since all matrix ops are affine, the last row never changes, and we don't need to copy it + for i, j := range [...]int{0, 1, 3, 4, 6, 7} { + c.mat[j] = float32(m[i]) } } @@ -218,6 +223,11 @@ func (c *Canvas) Texture() *glhf.Texture { return c.gf.Texture() } +// Frame returns the underlying OpenGL Frame of this Canvas. +func (c *Canvas) Frame() *glhf.Frame { + return c.gf.frame +} + // SetPixels replaces the content of the Canvas with the provided pixels. The provided slice must be // an alpha-premultiplied RGBA sequence of correct length (4 * width * height). func (c *Canvas) SetPixels(pixels []uint8) { diff --git a/pixelgl/gltriangles.go b/pixelgl/gltriangles.go index 64b7355..bf7a895 100644 --- a/pixelgl/gltriangles.go +++ b/pixelgl/gltriangles.go @@ -103,15 +103,17 @@ func (gt *GLTriangles) updateData(t pixel.Triangles) { tx, ty = (*t)[i].Picture.XY() in = (*t)[i].Intensity ) - gt.data[i*gt.vs.Stride()+0] = float32(px) - gt.data[i*gt.vs.Stride()+1] = float32(py) - gt.data[i*gt.vs.Stride()+2] = float32(col.R) - gt.data[i*gt.vs.Stride()+3] = float32(col.G) - gt.data[i*gt.vs.Stride()+4] = float32(col.B) - gt.data[i*gt.vs.Stride()+5] = float32(col.A) - gt.data[i*gt.vs.Stride()+6] = float32(tx) - gt.data[i*gt.vs.Stride()+7] = float32(ty) - gt.data[i*gt.vs.Stride()+8] = float32(in) + s := gt.vs.Stride() + d := gt.data[i*s : i*s+9] + d[0] = float32(px) + d[1] = float32(py) + d[2] = float32(col.R) + d[3] = float32(col.G) + d[4] = float32(col.B) + d[5] = float32(col.A) + d[6] = float32(tx) + d[7] = float32(ty) + d[8] = float32(in) } return }