99 lines
2.9 KiB
Go
99 lines
2.9 KiB
Go
|
package pixel
|
||
|
|
||
|
import (
|
||
|
"fmt"
|
||
|
"math"
|
||
|
)
|
||
|
|
||
|
// Matrix is a 2x3 affine matrix that can be used for all kinds of spatial transforms, such
|
||
|
// as movement, scaling and rotations.
|
||
|
//
|
||
|
// Matrix has a handful of useful methods, each of which adds a transformation to the matrix. For
|
||
|
// example:
|
||
|
//
|
||
|
// pixel.IM.Moved(pixel.V(100, 200)).Rotated(pixel.ZV, math.Pi/2)
|
||
|
//
|
||
|
// This code creates a Matrix that first moves everything by 100 units horizontally and 200 units
|
||
|
// vertically and then rotates everything by 90 degrees around the origin.
|
||
|
//
|
||
|
// Layout is:
|
||
|
// [0] [2] [4]
|
||
|
// [1] [3] [5]
|
||
|
// 0 0 1 (implicit row)
|
||
|
type Matrix [6]float64
|
||
|
|
||
|
// IM stands for identity matrix. Does nothing, no transformation.
|
||
|
var IM = Matrix{1, 0, 0, 1, 0, 0}
|
||
|
|
||
|
// String returns a string representation of the Matrix.
|
||
|
//
|
||
|
// m := pixel.IM
|
||
|
// fmt.Println(m) // Matrix(1 0 0 | 0 1 0)
|
||
|
func (m Matrix) String() string {
|
||
|
return fmt.Sprintf(
|
||
|
"Matrix(%v %v %v | %v %v %v)",
|
||
|
m[0], m[2], m[4],
|
||
|
m[1], m[3], m[5],
|
||
|
)
|
||
|
}
|
||
|
|
||
|
// Moved moves everything by the delta vector.
|
||
|
func (m Matrix) Moved(delta Vec) Matrix {
|
||
|
m[4], m[5] = m[4]+delta.X, m[5]+delta.Y
|
||
|
return m
|
||
|
}
|
||
|
|
||
|
// ScaledXY scales everything around a given point by the scale factor in each axis respectively.
|
||
|
func (m Matrix) ScaledXY(around Vec, scale Vec) Matrix {
|
||
|
m[4], m[5] = m[4]-around.X, m[5]-around.Y
|
||
|
m[0], m[2], m[4] = m[0]*scale.X, m[2]*scale.X, m[4]*scale.X
|
||
|
m[1], m[3], m[5] = m[1]*scale.Y, m[3]*scale.Y, m[5]*scale.Y
|
||
|
m[4], m[5] = m[4]+around.X, m[5]+around.Y
|
||
|
return m
|
||
|
}
|
||
|
|
||
|
// Scaled scales everything around a given point by the scale factor.
|
||
|
func (m Matrix) Scaled(around Vec, scale float64) Matrix {
|
||
|
return m.ScaledXY(around, V(scale, scale))
|
||
|
}
|
||
|
|
||
|
// Rotated rotates everything around a given point by the given angle in radians.
|
||
|
func (m Matrix) Rotated(around Vec, angle float64) Matrix {
|
||
|
sint, cost := math.Sincos(angle)
|
||
|
m[4], m[5] = m[4]-around.X, m[5]-around.Y
|
||
|
m = m.Chained(Matrix{cost, sint, -sint, cost, 0, 0})
|
||
|
m[4], m[5] = m[4]+around.X, m[5]+around.Y
|
||
|
return m
|
||
|
}
|
||
|
|
||
|
// Chained adds another Matrix to this one. All tranformations by the next Matrix will be applied
|
||
|
// after the transformations of this Matrix.
|
||
|
func (m Matrix) Chained(next Matrix) Matrix {
|
||
|
return Matrix{
|
||
|
next[0]*m[0] + next[2]*m[1],
|
||
|
next[1]*m[0] + next[3]*m[1],
|
||
|
next[0]*m[2] + next[2]*m[3],
|
||
|
next[1]*m[2] + next[3]*m[3],
|
||
|
next[0]*m[4] + next[2]*m[5] + next[4],
|
||
|
next[1]*m[4] + next[3]*m[5] + next[5],
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Project applies all transformations added to the Matrix to a vector u and returns the result.
|
||
|
//
|
||
|
// Time complexity is O(1).
|
||
|
func (m Matrix) Project(u Vec) Vec {
|
||
|
return Vec{m[0]*u.X + m[2]*u.Y + m[4], m[1]*u.X + m[3]*u.Y + m[5]}
|
||
|
}
|
||
|
|
||
|
// Unproject does the inverse operation to Project.
|
||
|
//
|
||
|
// Time complexity is O(1).
|
||
|
func (m Matrix) Unproject(u Vec) Vec {
|
||
|
det := m[0]*m[3] - m[2]*m[1]
|
||
|
return Vec{
|
||
|
(m[3]*(u.X-m[4]) - m[2]*(u.Y-m[5])) / det,
|
||
|
(-m[1]*(u.X-m[4]) + m[0]*(u.Y-m[5])) / det,
|
||
|
}
|
||
|
}
|