go-ethereum/miner/worker.go

1293 lines
42 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package miner
import (
"errors"
"fmt"
"math/big"
"sync"
"sync/atomic"
"time"
mapset "github.com/deckarep/golang-set/v2"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/consensus"
"github.com/ethereum/go-ethereum/consensus/misc"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/trie"
)
const (
// resultQueueSize is the size of channel listening to sealing result.
resultQueueSize = 10
// txChanSize is the size of channel listening to NewTxsEvent.
// The number is referenced from the size of tx pool.
txChanSize = 4096
// chainHeadChanSize is the size of channel listening to ChainHeadEvent.
chainHeadChanSize = 10
// chainSideChanSize is the size of channel listening to ChainSideEvent.
chainSideChanSize = 10
// resubmitAdjustChanSize is the size of resubmitting interval adjustment channel.
resubmitAdjustChanSize = 10
// sealingLogAtDepth is the number of confirmations before logging successful sealing.
sealingLogAtDepth = 7
// minRecommitInterval is the minimal time interval to recreate the sealing block with
// any newly arrived transactions.
minRecommitInterval = 1 * time.Second
// maxRecommitInterval is the maximum time interval to recreate the sealing block with
// any newly arrived transactions.
maxRecommitInterval = 15 * time.Second
// intervalAdjustRatio is the impact a single interval adjustment has on sealing work
// resubmitting interval.
intervalAdjustRatio = 0.1
// intervalAdjustBias is applied during the new resubmit interval calculation in favor of
// increasing upper limit or decreasing lower limit so that the limit can be reachable.
intervalAdjustBias = 200 * 1000.0 * 1000.0
// staleThreshold is the maximum depth of the acceptable stale block.
staleThreshold = 7
)
var (
errBlockInterruptedByNewHead = errors.New("new head arrived while building block")
errBlockInterruptedByRecommit = errors.New("recommit interrupt while building block")
errBlockInterruptedByTimeout = errors.New("timeout while building block")
)
// environment is the worker's current environment and holds all
// information of the sealing block generation.
type environment struct {
signer types.Signer
state *state.StateDB // apply state changes here
ancestors mapset.Set[common.Hash] // ancestor set (used for checking uncle parent validity)
family mapset.Set[common.Hash] // family set (used for checking uncle invalidity)
tcount int // tx count in cycle
gasPool *core.GasPool // available gas used to pack transactions
coinbase common.Address
header *types.Header
txs []*types.Transaction
receipts []*types.Receipt
uncles map[common.Hash]*types.Header
}
// copy creates a deep copy of environment.
func (env *environment) copy() *environment {
cpy := &environment{
signer: env.signer,
state: env.state.Copy(),
ancestors: env.ancestors.Clone(),
family: env.family.Clone(),
tcount: env.tcount,
coinbase: env.coinbase,
header: types.CopyHeader(env.header),
receipts: copyReceipts(env.receipts),
}
if env.gasPool != nil {
gasPool := *env.gasPool
cpy.gasPool = &gasPool
}
// The content of txs and uncles are immutable, unnecessary
// to do the expensive deep copy for them.
cpy.txs = make([]*types.Transaction, len(env.txs))
copy(cpy.txs, env.txs)
cpy.uncles = make(map[common.Hash]*types.Header)
for hash, uncle := range env.uncles {
cpy.uncles[hash] = uncle
}
return cpy
}
// unclelist returns the contained uncles as the list format.
func (env *environment) unclelist() []*types.Header {
var uncles []*types.Header
for _, uncle := range env.uncles {
uncles = append(uncles, uncle)
}
return uncles
}
// discard terminates the background prefetcher go-routine. It should
// always be called for all created environment instances otherwise
// the go-routine leak can happen.
func (env *environment) discard() {
if env.state == nil {
return
}
env.state.StopPrefetcher()
}
// task contains all information for consensus engine sealing and result submitting.
type task struct {
receipts []*types.Receipt
state *state.StateDB
block *types.Block
createdAt time.Time
}
const (
commitInterruptNone int32 = iota
commitInterruptNewHead
commitInterruptResubmit
commitInterruptTimeout
)
// newWorkReq represents a request for new sealing work submitting with relative interrupt notifier.
type newWorkReq struct {
interrupt *atomic.Int32
noempty bool
timestamp int64
}
// newPayloadResult represents a result struct corresponds to payload generation.
type newPayloadResult struct {
err error
block *types.Block
fees *big.Int
}
// getWorkReq represents a request for getting a new sealing work with provided parameters.
type getWorkReq struct {
params *generateParams
result chan *newPayloadResult // non-blocking channel
}
// intervalAdjust represents a resubmitting interval adjustment.
type intervalAdjust struct {
ratio float64
inc bool
}
// worker is the main object which takes care of submitting new work to consensus engine
// and gathering the sealing result.
type worker struct {
config *Config
chainConfig *params.ChainConfig
engine consensus.Engine
eth Backend
chain *core.BlockChain
// Feeds
pendingLogsFeed event.Feed
// Subscriptions
mux *event.TypeMux
txsCh chan core.NewTxsEvent
txsSub event.Subscription
chainHeadCh chan core.ChainHeadEvent
chainHeadSub event.Subscription
chainSideCh chan core.ChainSideEvent
chainSideSub event.Subscription
// Channels
newWorkCh chan *newWorkReq
getWorkCh chan *getWorkReq
taskCh chan *task
resultCh chan *types.Block
startCh chan struct{}
exitCh chan struct{}
resubmitIntervalCh chan time.Duration
resubmitAdjustCh chan *intervalAdjust
wg sync.WaitGroup
current *environment // An environment for current running cycle.
localUncles map[common.Hash]*types.Block // A set of side blocks generated locally as the possible uncle blocks.
remoteUncles map[common.Hash]*types.Block // A set of side blocks as the possible uncle blocks.
unconfirmed *unconfirmedBlocks // A set of locally mined blocks pending canonicalness confirmations.
mu sync.RWMutex // The lock used to protect the coinbase and extra fields
coinbase common.Address
extra []byte
pendingMu sync.RWMutex
pendingTasks map[common.Hash]*task
snapshotMu sync.RWMutex // The lock used to protect the snapshots below
snapshotBlock *types.Block
snapshotReceipts types.Receipts
snapshotState *state.StateDB
// atomic status counters
running atomic.Bool // The indicator whether the consensus engine is running or not.
newTxs atomic.Int32 // New arrival transaction count since last sealing work submitting.
// noempty is the flag used to control whether the feature of pre-seal empty
// block is enabled. The default value is false(pre-seal is enabled by default).
// But in some special scenario the consensus engine will seal blocks instantaneously,
// in this case this feature will add all empty blocks into canonical chain
// non-stop and no real transaction will be included.
noempty atomic.Bool
// newpayloadTimeout is the maximum timeout allowance for creating payload.
// The default value is 2 seconds but node operator can set it to arbitrary
// large value. A large timeout allowance may cause Geth to fail creating
// a non-empty payload within the specified time and eventually miss the slot
// in case there are some computation expensive transactions in txpool.
newpayloadTimeout time.Duration
// recommit is the time interval to re-create sealing work or to re-build
// payload in proof-of-stake stage.
recommit time.Duration
// External functions
isLocalBlock func(header *types.Header) bool // Function used to determine whether the specified block is mined by local miner.
// Test hooks
newTaskHook func(*task) // Method to call upon receiving a new sealing task.
skipSealHook func(*task) bool // Method to decide whether skipping the sealing.
fullTaskHook func() // Method to call before pushing the full sealing task.
resubmitHook func(time.Duration, time.Duration) // Method to call upon updating resubmitting interval.
}
func newWorker(config *Config, chainConfig *params.ChainConfig, engine consensus.Engine, eth Backend, mux *event.TypeMux, isLocalBlock func(header *types.Header) bool, init bool) *worker {
worker := &worker{
config: config,
chainConfig: chainConfig,
engine: engine,
eth: eth,
chain: eth.BlockChain(),
mux: mux,
isLocalBlock: isLocalBlock,
localUncles: make(map[common.Hash]*types.Block),
remoteUncles: make(map[common.Hash]*types.Block),
unconfirmed: newUnconfirmedBlocks(eth.BlockChain(), sealingLogAtDepth),
coinbase: config.Etherbase,
extra: config.ExtraData,
pendingTasks: make(map[common.Hash]*task),
txsCh: make(chan core.NewTxsEvent, txChanSize),
chainHeadCh: make(chan core.ChainHeadEvent, chainHeadChanSize),
chainSideCh: make(chan core.ChainSideEvent, chainSideChanSize),
newWorkCh: make(chan *newWorkReq),
getWorkCh: make(chan *getWorkReq),
taskCh: make(chan *task),
resultCh: make(chan *types.Block, resultQueueSize),
startCh: make(chan struct{}, 1),
exitCh: make(chan struct{}),
resubmitIntervalCh: make(chan time.Duration),
resubmitAdjustCh: make(chan *intervalAdjust, resubmitAdjustChanSize),
}
// Subscribe NewTxsEvent for tx pool
worker.txsSub = eth.TxPool().SubscribeNewTxsEvent(worker.txsCh)
// Subscribe events for blockchain
worker.chainHeadSub = eth.BlockChain().SubscribeChainHeadEvent(worker.chainHeadCh)
worker.chainSideSub = eth.BlockChain().SubscribeChainSideEvent(worker.chainSideCh)
// Sanitize recommit interval if the user-specified one is too short.
recommit := worker.config.Recommit
if recommit < minRecommitInterval {
log.Warn("Sanitizing miner recommit interval", "provided", recommit, "updated", minRecommitInterval)
recommit = minRecommitInterval
}
worker.recommit = recommit
// Sanitize the timeout config for creating payload.
newpayloadTimeout := worker.config.NewPayloadTimeout
if newpayloadTimeout == 0 {
log.Warn("Sanitizing new payload timeout to default", "provided", newpayloadTimeout, "updated", DefaultConfig.NewPayloadTimeout)
newpayloadTimeout = DefaultConfig.NewPayloadTimeout
}
if newpayloadTimeout < time.Millisecond*100 {
log.Warn("Low payload timeout may cause high amount of non-full blocks", "provided", newpayloadTimeout, "default", DefaultConfig.NewPayloadTimeout)
}
worker.newpayloadTimeout = newpayloadTimeout
worker.wg.Add(4)
go worker.mainLoop()
go worker.newWorkLoop(recommit)
go worker.resultLoop()
go worker.taskLoop()
// Submit first work to initialize pending state.
if init {
worker.startCh <- struct{}{}
}
return worker
}
// setEtherbase sets the etherbase used to initialize the block coinbase field.
func (w *worker) setEtherbase(addr common.Address) {
w.mu.Lock()
defer w.mu.Unlock()
w.coinbase = addr
}
// etherbase retrieves the configured etherbase address.
func (w *worker) etherbase() common.Address {
w.mu.RLock()
defer w.mu.RUnlock()
return w.coinbase
}
func (w *worker) setGasCeil(ceil uint64) {
w.mu.Lock()
defer w.mu.Unlock()
w.config.GasCeil = ceil
}
// setExtra sets the content used to initialize the block extra field.
func (w *worker) setExtra(extra []byte) {
w.mu.Lock()
defer w.mu.Unlock()
w.extra = extra
}
// setRecommitInterval updates the interval for miner sealing work recommitting.
func (w *worker) setRecommitInterval(interval time.Duration) {
select {
case w.resubmitIntervalCh <- interval:
case <-w.exitCh:
}
}
// disablePreseal disables pre-sealing feature
func (w *worker) disablePreseal() {
w.noempty.Store(true)
}
// enablePreseal enables pre-sealing feature
func (w *worker) enablePreseal() {
w.noempty.Store(false)
}
// pending returns the pending state and corresponding block.
func (w *worker) pending() (*types.Block, *state.StateDB) {
// return a snapshot to avoid contention on currentMu mutex
w.snapshotMu.RLock()
defer w.snapshotMu.RUnlock()
if w.snapshotState == nil {
return nil, nil
}
return w.snapshotBlock, w.snapshotState.Copy()
}
// pendingBlock returns pending block.
func (w *worker) pendingBlock() *types.Block {
// return a snapshot to avoid contention on currentMu mutex
w.snapshotMu.RLock()
defer w.snapshotMu.RUnlock()
return w.snapshotBlock
}
// pendingBlockAndReceipts returns pending block and corresponding receipts.
func (w *worker) pendingBlockAndReceipts() (*types.Block, types.Receipts) {
// return a snapshot to avoid contention on currentMu mutex
w.snapshotMu.RLock()
defer w.snapshotMu.RUnlock()
return w.snapshotBlock, w.snapshotReceipts
}
// start sets the running status as 1 and triggers new work submitting.
func (w *worker) start() {
w.running.Store(true)
w.startCh <- struct{}{}
}
// stop sets the running status as 0.
func (w *worker) stop() {
w.running.Store(false)
}
// isRunning returns an indicator whether worker is running or not.
func (w *worker) isRunning() bool {
return w.running.Load()
}
// close terminates all background threads maintained by the worker.
// Note the worker does not support being closed multiple times.
func (w *worker) close() {
w.running.Store(false)
close(w.exitCh)
w.wg.Wait()
}
// recalcRecommit recalculates the resubmitting interval upon feedback.
func recalcRecommit(minRecommit, prev time.Duration, target float64, inc bool) time.Duration {
var (
prevF = float64(prev.Nanoseconds())
next float64
)
if inc {
next = prevF*(1-intervalAdjustRatio) + intervalAdjustRatio*(target+intervalAdjustBias)
max := float64(maxRecommitInterval.Nanoseconds())
if next > max {
next = max
}
} else {
next = prevF*(1-intervalAdjustRatio) + intervalAdjustRatio*(target-intervalAdjustBias)
min := float64(minRecommit.Nanoseconds())
if next < min {
next = min
}
}
return time.Duration(int64(next))
}
// newWorkLoop is a standalone goroutine to submit new sealing work upon received events.
func (w *worker) newWorkLoop(recommit time.Duration) {
defer w.wg.Done()
var (
interrupt *atomic.Int32
minRecommit = recommit // minimal resubmit interval specified by user.
timestamp int64 // timestamp for each round of sealing.
)
timer := time.NewTimer(0)
defer timer.Stop()
<-timer.C // discard the initial tick
// commit aborts in-flight transaction execution with given signal and resubmits a new one.
commit := func(noempty bool, s int32) {
if interrupt != nil {
interrupt.Store(s)
}
interrupt = new(atomic.Int32)
select {
case w.newWorkCh <- &newWorkReq{interrupt: interrupt, noempty: noempty, timestamp: timestamp}:
case <-w.exitCh:
return
}
timer.Reset(recommit)
w.newTxs.Store(0)
}
// clearPending cleans the stale pending tasks.
clearPending := func(number uint64) {
w.pendingMu.Lock()
for h, t := range w.pendingTasks {
if t.block.NumberU64()+staleThreshold <= number {
delete(w.pendingTasks, h)
}
}
w.pendingMu.Unlock()
}
for {
select {
case <-w.startCh:
clearPending(w.chain.CurrentBlock().Number.Uint64())
timestamp = time.Now().Unix()
commit(false, commitInterruptNewHead)
case head := <-w.chainHeadCh:
clearPending(head.Block.NumberU64())
timestamp = time.Now().Unix()
commit(false, commitInterruptNewHead)
case <-timer.C:
// If sealing is running resubmit a new work cycle periodically to pull in
// higher priced transactions. Disable this overhead for pending blocks.
if w.isRunning() && (w.chainConfig.Clique == nil || w.chainConfig.Clique.Period > 0) {
// Short circuit if no new transaction arrives.
if w.newTxs.Load() == 0 {
timer.Reset(recommit)
continue
}
commit(true, commitInterruptResubmit)
}
case interval := <-w.resubmitIntervalCh:
// Adjust resubmit interval explicitly by user.
if interval < minRecommitInterval {
log.Warn("Sanitizing miner recommit interval", "provided", interval, "updated", minRecommitInterval)
interval = minRecommitInterval
}
log.Info("Miner recommit interval update", "from", minRecommit, "to", interval)
minRecommit, recommit = interval, interval
if w.resubmitHook != nil {
w.resubmitHook(minRecommit, recommit)
}
case adjust := <-w.resubmitAdjustCh:
// Adjust resubmit interval by feedback.
if adjust.inc {
before := recommit
target := float64(recommit.Nanoseconds()) / adjust.ratio
recommit = recalcRecommit(minRecommit, recommit, target, true)
log.Trace("Increase miner recommit interval", "from", before, "to", recommit)
} else {
before := recommit
recommit = recalcRecommit(minRecommit, recommit, float64(minRecommit.Nanoseconds()), false)
log.Trace("Decrease miner recommit interval", "from", before, "to", recommit)
}
if w.resubmitHook != nil {
w.resubmitHook(minRecommit, recommit)
}
case <-w.exitCh:
return
}
}
}
// mainLoop is responsible for generating and submitting sealing work based on
// the received event. It can support two modes: automatically generate task and
// submit it or return task according to given parameters for various proposes.
func (w *worker) mainLoop() {
defer w.wg.Done()
defer w.txsSub.Unsubscribe()
defer w.chainHeadSub.Unsubscribe()
defer w.chainSideSub.Unsubscribe()
defer func() {
if w.current != nil {
w.current.discard()
}
}()
cleanTicker := time.NewTicker(time.Second * 10)
defer cleanTicker.Stop()
for {
select {
case req := <-w.newWorkCh:
w.commitWork(req.interrupt, req.noempty, req.timestamp)
case req := <-w.getWorkCh:
block, fees, err := w.generateWork(req.params)
req.result <- &newPayloadResult{
err: err,
block: block,
fees: fees,
}
case ev := <-w.chainSideCh:
// Short circuit for duplicate side blocks
if _, exist := w.localUncles[ev.Block.Hash()]; exist {
continue
}
if _, exist := w.remoteUncles[ev.Block.Hash()]; exist {
continue
}
// Add side block to possible uncle block set depending on the author.
if w.isLocalBlock != nil && w.isLocalBlock(ev.Block.Header()) {
w.localUncles[ev.Block.Hash()] = ev.Block
} else {
w.remoteUncles[ev.Block.Hash()] = ev.Block
}
// If our sealing block contains less than 2 uncle blocks,
// add the new uncle block if valid and regenerate a new
// sealing block for higher profit.
if w.isRunning() && w.current != nil && len(w.current.uncles) < 2 {
start := time.Now()
if err := w.commitUncle(w.current, ev.Block.Header()); err == nil {
w.commit(w.current.copy(), nil, true, start)
}
}
case <-cleanTicker.C:
chainHead := w.chain.CurrentBlock()
for hash, uncle := range w.localUncles {
if uncle.NumberU64()+staleThreshold <= chainHead.Number.Uint64() {
delete(w.localUncles, hash)
}
}
for hash, uncle := range w.remoteUncles {
if uncle.NumberU64()+staleThreshold <= chainHead.Number.Uint64() {
delete(w.remoteUncles, hash)
}
}
case ev := <-w.txsCh:
// Apply transactions to the pending state if we're not sealing
//
// Note all transactions received may not be continuous with transactions
// already included in the current sealing block. These transactions will
// be automatically eliminated.
if !w.isRunning() && w.current != nil {
// If block is already full, abort
if gp := w.current.gasPool; gp != nil && gp.Gas() < params.TxGas {
continue
}
txs := make(map[common.Address]types.Transactions)
for _, tx := range ev.Txs {
acc, _ := types.Sender(w.current.signer, tx)
txs[acc] = append(txs[acc], tx)
}
txset := types.NewTransactionsByPriceAndNonce(w.current.signer, txs, w.current.header.BaseFee)
tcount := w.current.tcount
w.commitTransactions(w.current, txset, nil)
// Only update the snapshot if any new transactions were added
// to the pending block
if tcount != w.current.tcount {
w.updateSnapshot(w.current)
}
} else {
// Special case, if the consensus engine is 0 period clique(dev mode),
// submit sealing work here since all empty submission will be rejected
// by clique. Of course the advance sealing(empty submission) is disabled.
if w.chainConfig.Clique != nil && w.chainConfig.Clique.Period == 0 {
w.commitWork(nil, true, time.Now().Unix())
}
}
w.newTxs.Add(int32(len(ev.Txs)))
// System stopped
case <-w.exitCh:
return
case <-w.txsSub.Err():
return
case <-w.chainHeadSub.Err():
return
case <-w.chainSideSub.Err():
return
}
}
}
// taskLoop is a standalone goroutine to fetch sealing task from the generator and
// push them to consensus engine.
func (w *worker) taskLoop() {
defer w.wg.Done()
var (
stopCh chan struct{}
prev common.Hash
)
// interrupt aborts the in-flight sealing task.
interrupt := func() {
if stopCh != nil {
close(stopCh)
stopCh = nil
}
}
for {
select {
case task := <-w.taskCh:
if w.newTaskHook != nil {
w.newTaskHook(task)
}
// Reject duplicate sealing work due to resubmitting.
sealHash := w.engine.SealHash(task.block.Header())
if sealHash == prev {
continue
}
// Interrupt previous sealing operation
interrupt()
stopCh, prev = make(chan struct{}), sealHash
if w.skipSealHook != nil && w.skipSealHook(task) {
continue
}
w.pendingMu.Lock()
w.pendingTasks[sealHash] = task
w.pendingMu.Unlock()
if err := w.engine.Seal(w.chain, task.block, w.resultCh, stopCh); err != nil {
log.Warn("Block sealing failed", "err", err)
w.pendingMu.Lock()
delete(w.pendingTasks, sealHash)
w.pendingMu.Unlock()
}
case <-w.exitCh:
interrupt()
return
}
}
}
// resultLoop is a standalone goroutine to handle sealing result submitting
// and flush relative data to the database.
func (w *worker) resultLoop() {
defer w.wg.Done()
for {
select {
case block := <-w.resultCh:
// Short circuit when receiving empty result.
if block == nil {
continue
}
// Short circuit when receiving duplicate result caused by resubmitting.
if w.chain.HasBlock(block.Hash(), block.NumberU64()) {
continue
}
var (
sealhash = w.engine.SealHash(block.Header())
hash = block.Hash()
)
w.pendingMu.RLock()
task, exist := w.pendingTasks[sealhash]
w.pendingMu.RUnlock()
if !exist {
log.Error("Block found but no relative pending task", "number", block.Number(), "sealhash", sealhash, "hash", hash)
continue
}
// Different block could share same sealhash, deep copy here to prevent write-write conflict.
var (
receipts = make([]*types.Receipt, len(task.receipts))
logs []*types.Log
)
for i, taskReceipt := range task.receipts {
receipt := new(types.Receipt)
receipts[i] = receipt
*receipt = *taskReceipt
// add block location fields
receipt.BlockHash = hash
receipt.BlockNumber = block.Number()
receipt.TransactionIndex = uint(i)
// Update the block hash in all logs since it is now available and not when the
// receipt/log of individual transactions were created.
receipt.Logs = make([]*types.Log, len(taskReceipt.Logs))
for i, taskLog := range taskReceipt.Logs {
log := new(types.Log)
receipt.Logs[i] = log
*log = *taskLog
log.BlockHash = hash
}
logs = append(logs, receipt.Logs...)
}
// Commit block and state to database.
_, err := w.chain.WriteBlockAndSetHead(block, receipts, logs, task.state, true)
if err != nil {
log.Error("Failed writing block to chain", "err", err)
continue
}
log.Info("Successfully sealed new block", "number", block.Number(), "sealhash", sealhash, "hash", hash,
"elapsed", common.PrettyDuration(time.Since(task.createdAt)))
// Broadcast the block and announce chain insertion event
w.mux.Post(core.NewMinedBlockEvent{Block: block})
// Insert the block into the set of pending ones to resultLoop for confirmations
w.unconfirmed.Insert(block.NumberU64(), block.Hash())
case <-w.exitCh:
return
}
}
}
// makeEnv creates a new environment for the sealing block.
func (w *worker) makeEnv(parent *types.Header, header *types.Header, coinbase common.Address) (*environment, error) {
// Retrieve the parent state to execute on top and start a prefetcher for
// the miner to speed block sealing up a bit.
state, err := w.chain.StateAt(parent.Root)
if err != nil {
return nil, err
}
state.StartPrefetcher("miner")
// Note the passed coinbase may be different with header.Coinbase.
env := &environment{
signer: types.MakeSigner(w.chainConfig, header.Number, header.Time),
state: state,
coinbase: coinbase,
ancestors: mapset.NewSet[common.Hash](),
family: mapset.NewSet[common.Hash](),
header: header,
uncles: make(map[common.Hash]*types.Header),
}
// when 08 is processed ancestors contain 07 (quick block)
for _, ancestor := range w.chain.GetBlocksFromHash(parent.Hash(), 7) {
for _, uncle := range ancestor.Uncles() {
env.family.Add(uncle.Hash())
}
env.family.Add(ancestor.Hash())
env.ancestors.Add(ancestor.Hash())
}
// Keep track of transactions which return errors so they can be removed
env.tcount = 0
return env, nil
}
// commitUncle adds the given block to uncle block set, returns error if failed to add.
func (w *worker) commitUncle(env *environment, uncle *types.Header) error {
if w.isTTDReached(env.header) {
return errors.New("ignore uncle for beacon block")
}
hash := uncle.Hash()
if _, exist := env.uncles[hash]; exist {
return errors.New("uncle not unique")
}
if env.header.ParentHash == uncle.ParentHash {
return errors.New("uncle is sibling")
}
if !env.ancestors.Contains(uncle.ParentHash) {
return errors.New("uncle's parent unknown")
}
if env.family.Contains(hash) {
return errors.New("uncle already included")
}
env.uncles[hash] = uncle
return nil
}
// updateSnapshot updates pending snapshot block, receipts and state.
func (w *worker) updateSnapshot(env *environment) {
w.snapshotMu.Lock()
defer w.snapshotMu.Unlock()
w.snapshotBlock = types.NewBlock(
env.header,
env.txs,
env.unclelist(),
env.receipts,
trie.NewStackTrie(nil),
)
w.snapshotReceipts = copyReceipts(env.receipts)
w.snapshotState = env.state.Copy()
}
func (w *worker) commitTransaction(env *environment, tx *types.Transaction) ([]*types.Log, error) {
var (
snap = env.state.Snapshot()
gp = env.gasPool.Gas()
)
receipt, err := core.ApplyTransaction(w.chainConfig, w.chain, &env.coinbase, env.gasPool, env.state, env.header, tx, &env.header.GasUsed, *w.chain.GetVMConfig())
if err != nil {
env.state.RevertToSnapshot(snap)
env.gasPool.SetGas(gp)
return nil, err
}
env.txs = append(env.txs, tx)
env.receipts = append(env.receipts, receipt)
return receipt.Logs, nil
}
func (w *worker) commitTransactions(env *environment, txs *types.TransactionsByPriceAndNonce, interrupt *atomic.Int32) error {
gasLimit := env.header.GasLimit
if env.gasPool == nil {
env.gasPool = new(core.GasPool).AddGas(gasLimit)
}
var coalescedLogs []*types.Log
for {
// Check interruption signal and abort building if it's fired.
if interrupt != nil {
if signal := interrupt.Load(); signal != commitInterruptNone {
return signalToErr(signal)
}
}
// If we don't have enough gas for any further transactions then we're done.
if env.gasPool.Gas() < params.TxGas {
log.Trace("Not enough gas for further transactions", "have", env.gasPool, "want", params.TxGas)
break
}
// Retrieve the next transaction and abort if all done.
tx := txs.Peek()
if tx == nil {
break
}
// Error may be ignored here. The error has already been checked
// during transaction acceptance is the transaction pool.
from, _ := types.Sender(env.signer, tx)
// Check whether the tx is replay protected. If we're not in the EIP155 hf
// phase, start ignoring the sender until we do.
if tx.Protected() && !w.chainConfig.IsEIP155(env.header.Number) {
log.Trace("Ignoring reply protected transaction", "hash", tx.Hash(), "eip155", w.chainConfig.EIP155Block)
txs.Pop()
continue
}
// Start executing the transaction
env.state.SetTxContext(tx.Hash(), env.tcount)
logs, err := w.commitTransaction(env, tx)
switch {
case errors.Is(err, core.ErrNonceTooLow):
// New head notification data race between the transaction pool and miner, shift
log.Trace("Skipping transaction with low nonce", "sender", from, "nonce", tx.Nonce())
txs.Shift()
case errors.Is(err, nil):
// Everything ok, collect the logs and shift in the next transaction from the same account
coalescedLogs = append(coalescedLogs, logs...)
env.tcount++
txs.Shift()
default:
// Transaction is regarded as invalid, drop all consecutive transactions from
// the same sender because of `nonce-too-high` clause.
log.Debug("Transaction failed, account skipped", "hash", tx.Hash(), "err", err)
txs.Pop()
}
}
if !w.isRunning() && len(coalescedLogs) > 0 {
// We don't push the pendingLogsEvent while we are sealing. The reason is that
// when we are sealing, the worker will regenerate a sealing block every 3 seconds.
// In order to avoid pushing the repeated pendingLog, we disable the pending log pushing.
// make a copy, the state caches the logs and these logs get "upgraded" from pending to mined
// logs by filling in the block hash when the block was mined by the local miner. This can
// cause a race condition if a log was "upgraded" before the PendingLogsEvent is processed.
cpy := make([]*types.Log, len(coalescedLogs))
for i, l := range coalescedLogs {
cpy[i] = new(types.Log)
*cpy[i] = *l
}
w.pendingLogsFeed.Send(cpy)
}
return nil
}
// generateParams wraps various of settings for generating sealing task.
type generateParams struct {
timestamp uint64 // The timstamp for sealing task
forceTime bool // Flag whether the given timestamp is immutable or not
parentHash common.Hash // Parent block hash, empty means the latest chain head
coinbase common.Address // The fee recipient address for including transaction
random common.Hash // The randomness generated by beacon chain, empty before the merge
withdrawals types.Withdrawals // List of withdrawals to include in block.
noUncle bool // Flag whether the uncle block inclusion is allowed
noTxs bool // Flag whether an empty block without any transaction is expected
}
// prepareWork constructs the sealing task according to the given parameters,
// either based on the last chain head or specified parent. In this function
// the pending transactions are not filled yet, only the empty task returned.
func (w *worker) prepareWork(genParams *generateParams) (*environment, error) {
w.mu.RLock()
defer w.mu.RUnlock()
// Find the parent block for sealing task
parent := w.chain.CurrentBlock()
if genParams.parentHash != (common.Hash{}) {
block := w.chain.GetBlockByHash(genParams.parentHash)
if block == nil {
return nil, fmt.Errorf("missing parent")
}
parent = block.Header()
}
// Sanity check the timestamp correctness, recap the timestamp
// to parent+1 if the mutation is allowed.
timestamp := genParams.timestamp
if parent.Time >= timestamp {
if genParams.forceTime {
return nil, fmt.Errorf("invalid timestamp, parent %d given %d", parent.Time, timestamp)
}
timestamp = parent.Time + 1
}
// Construct the sealing block header.
header := &types.Header{
ParentHash: parent.Hash(),
Number: new(big.Int).Add(parent.Number, common.Big1),
GasLimit: core.CalcGasLimit(parent.GasLimit, w.config.GasCeil),
Time: timestamp,
Coinbase: genParams.coinbase,
}
// Set the extra field.
if len(w.extra) != 0 {
header.Extra = w.extra
}
// Set the randomness field from the beacon chain if it's available.
if genParams.random != (common.Hash{}) {
header.MixDigest = genParams.random
}
// Set baseFee and GasLimit if we are on an EIP-1559 chain
if w.chainConfig.IsLondon(header.Number) {
header.BaseFee = misc.CalcBaseFee(w.chainConfig, parent)
if !w.chainConfig.IsLondon(parent.Number) {
parentGasLimit := parent.GasLimit * w.chainConfig.ElasticityMultiplier()
header.GasLimit = core.CalcGasLimit(parentGasLimit, w.config.GasCeil)
}
}
// Run the consensus preparation with the default or customized consensus engine.
if err := w.engine.Prepare(w.chain, header); err != nil {
log.Error("Failed to prepare header for sealing", "err", err)
return nil, err
}
// Could potentially happen if starting to mine in an odd state.
// Note genParams.coinbase can be different with header.Coinbase
// since clique algorithm can modify the coinbase field in header.
env, err := w.makeEnv(parent, header, genParams.coinbase)
if err != nil {
log.Error("Failed to create sealing context", "err", err)
return nil, err
}
// Accumulate the uncles for the sealing work only if it's allowed.
if !genParams.noUncle {
commitUncles := func(blocks map[common.Hash]*types.Block) {
for hash, uncle := range blocks {
if len(env.uncles) == 2 {
break
}
if err := w.commitUncle(env, uncle.Header()); err != nil {
log.Trace("Possible uncle rejected", "hash", hash, "reason", err)
} else {
log.Debug("Committing new uncle to block", "hash", hash)
}
}
}
// Prefer to locally generated uncle
commitUncles(w.localUncles)
commitUncles(w.remoteUncles)
}
return env, nil
}
// fillTransactions retrieves the pending transactions from the txpool and fills them
// into the given sealing block. The transaction selection and ordering strategy can
// be customized with the plugin in the future.
func (w *worker) fillTransactions(interrupt *atomic.Int32, env *environment) error {
// Split the pending transactions into locals and remotes
// Fill the block with all available pending transactions.
pending := w.eth.TxPool().Pending(true)
localTxs, remoteTxs := make(map[common.Address]types.Transactions), pending
for _, account := range w.eth.TxPool().Locals() {
if txs := remoteTxs[account]; len(txs) > 0 {
delete(remoteTxs, account)
localTxs[account] = txs
}
}
if len(localTxs) > 0 {
txs := types.NewTransactionsByPriceAndNonce(env.signer, localTxs, env.header.BaseFee)
if err := w.commitTransactions(env, txs, interrupt); err != nil {
return err
}
}
if len(remoteTxs) > 0 {
txs := types.NewTransactionsByPriceAndNonce(env.signer, remoteTxs, env.header.BaseFee)
if err := w.commitTransactions(env, txs, interrupt); err != nil {
return err
}
}
return nil
}
// generateWork generates a sealing block based on the given parameters.
func (w *worker) generateWork(params *generateParams) (*types.Block, *big.Int, error) {
work, err := w.prepareWork(params)
if err != nil {
return nil, nil, err
}
defer work.discard()
if !params.noTxs {
interrupt := new(atomic.Int32)
timer := time.AfterFunc(w.newpayloadTimeout, func() {
interrupt.Store(commitInterruptTimeout)
})
defer timer.Stop()
err := w.fillTransactions(interrupt, work)
if errors.Is(err, errBlockInterruptedByTimeout) {
log.Warn("Block building is interrupted", "allowance", common.PrettyDuration(w.newpayloadTimeout))
}
}
block, err := w.engine.FinalizeAndAssemble(w.chain, work.header, work.state, work.txs, work.unclelist(), work.receipts, params.withdrawals)
if err != nil {
return nil, nil, err
}
return block, totalFees(block, work.receipts), nil
}
// commitWork generates several new sealing tasks based on the parent block
// and submit them to the sealer.
func (w *worker) commitWork(interrupt *atomic.Int32, noempty bool, timestamp int64) {
start := time.Now()
// Set the coinbase if the worker is running or it's required
var coinbase common.Address
if w.isRunning() {
coinbase = w.etherbase()
if coinbase == (common.Address{}) {
log.Error("Refusing to mine without etherbase")
return
}
}
work, err := w.prepareWork(&generateParams{
timestamp: uint64(timestamp),
coinbase: coinbase,
})
if err != nil {
return
}
// Create an empty block based on temporary copied state for
// sealing in advance without waiting block execution finished.
if !noempty && !w.noempty.Load() {
w.commit(work.copy(), nil, false, start)
}
// Fill pending transactions from the txpool into the block.
err = w.fillTransactions(interrupt, work)
switch {
case err == nil:
// The entire block is filled, decrease resubmit interval in case
// of current interval is larger than the user-specified one.
w.resubmitAdjustCh <- &intervalAdjust{inc: false}
case errors.Is(err, errBlockInterruptedByRecommit):
// Notify resubmit loop to increase resubmitting interval if the
// interruption is due to frequent commits.
gaslimit := work.header.GasLimit
ratio := float64(gaslimit-work.gasPool.Gas()) / float64(gaslimit)
if ratio < 0.1 {
ratio = 0.1
}
w.resubmitAdjustCh <- &intervalAdjust{
ratio: ratio,
inc: true,
}
case errors.Is(err, errBlockInterruptedByNewHead):
// If the block building is interrupted by newhead event, discard it
// totally. Committing the interrupted block introduces unnecessary
// delay, and possibly causes miner to mine on the previous head,
// which could result in higher uncle rate.
work.discard()
return
}
// Submit the generated block for consensus sealing.
w.commit(work.copy(), w.fullTaskHook, true, start)
// Swap out the old work with the new one, terminating any leftover
// prefetcher processes in the mean time and starting a new one.
if w.current != nil {
w.current.discard()
}
w.current = work
}
// commit runs any post-transaction state modifications, assembles the final block
// and commits new work if consensus engine is running.
// Note the assumption is held that the mutation is allowed to the passed env, do
// the deep copy first.
func (w *worker) commit(env *environment, interval func(), update bool, start time.Time) error {
if w.isRunning() {
if interval != nil {
interval()
}
// Create a local environment copy, avoid the data race with snapshot state.
// https://github.com/ethereum/go-ethereum/issues/24299
env := env.copy()
// Withdrawals are set to nil here, because this is only called in PoW.
block, err := w.engine.FinalizeAndAssemble(w.chain, env.header, env.state, env.txs, env.unclelist(), env.receipts, nil)
if err != nil {
return err
}
// If we're post merge, just ignore
if !w.isTTDReached(block.Header()) {
select {
case w.taskCh <- &task{receipts: env.receipts, state: env.state, block: block, createdAt: time.Now()}:
w.unconfirmed.Shift(block.NumberU64() - 1)
fees := totalFees(block, env.receipts)
feesInEther := new(big.Float).Quo(new(big.Float).SetInt(fees), big.NewFloat(params.Ether))
log.Info("Commit new sealing work", "number", block.Number(), "sealhash", w.engine.SealHash(block.Header()),
"uncles", len(env.uncles), "txs", env.tcount,
"gas", block.GasUsed(), "fees", feesInEther,
"elapsed", common.PrettyDuration(time.Since(start)))
case <-w.exitCh:
log.Info("Worker has exited")
}
}
}
if update {
w.updateSnapshot(env)
}
return nil
}
// getSealingBlock generates the sealing block based on the given parameters.
// The generation result will be passed back via the given channel no matter
// the generation itself succeeds or not.
func (w *worker) getSealingBlock(parent common.Hash, timestamp uint64, coinbase common.Address, random common.Hash, withdrawals types.Withdrawals, noTxs bool) (*types.Block, *big.Int, error) {
req := &getWorkReq{
params: &generateParams{
timestamp: timestamp,
forceTime: true,
parentHash: parent,
coinbase: coinbase,
random: random,
withdrawals: withdrawals,
noUncle: true,
noTxs: noTxs,
},
result: make(chan *newPayloadResult, 1),
}
select {
case w.getWorkCh <- req:
result := <-req.result
if result.err != nil {
return nil, nil, result.err
}
return result.block, result.fees, nil
case <-w.exitCh:
return nil, nil, errors.New("miner closed")
}
}
// isTTDReached returns the indicator if the given block has reached the total
// terminal difficulty for The Merge transition.
func (w *worker) isTTDReached(header *types.Header) bool {
td, ttd := w.chain.GetTd(header.ParentHash, header.Number.Uint64()-1), w.chain.Config().TerminalTotalDifficulty
return td != nil && ttd != nil && td.Cmp(ttd) >= 0
}
// copyReceipts makes a deep copy of the given receipts.
func copyReceipts(receipts []*types.Receipt) []*types.Receipt {
result := make([]*types.Receipt, len(receipts))
for i, l := range receipts {
cpy := *l
result[i] = &cpy
}
return result
}
// postSideBlock fires a side chain event, only use it for testing.
func (w *worker) postSideBlock(event core.ChainSideEvent) {
select {
case w.chainSideCh <- event:
case <-w.exitCh:
}
}
// totalFees computes total consumed miner fees in Wei. Block transactions and receipts have to have the same order.
func totalFees(block *types.Block, receipts []*types.Receipt) *big.Int {
feesWei := new(big.Int)
for i, tx := range block.Transactions() {
minerFee, _ := tx.EffectiveGasTip(block.BaseFee())
feesWei.Add(feesWei, new(big.Int).Mul(new(big.Int).SetUint64(receipts[i].GasUsed), minerFee))
}
return feesWei
}
// signalToErr converts the interruption signal to a concrete error type for return.
// The given signal must be a valid interruption signal.
func signalToErr(signal int32) error {
switch signal {
case commitInterruptNewHead:
return errBlockInterruptedByNewHead
case commitInterruptResubmit:
return errBlockInterruptedByRecommit
case commitInterruptTimeout:
return errBlockInterruptedByTimeout
default:
panic(fmt.Errorf("undefined signal %d", signal))
}
}