go-ethereum/core/blockchain.go

2550 lines
100 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package core implements the Ethereum consensus protocol.
package core
import (
"errors"
"fmt"
"io"
"math/big"
"runtime"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/lru"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/common/prque"
"github.com/ethereum/go-ethereum/consensus"
"github.com/ethereum/go-ethereum/consensus/misc/eip4844"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/state/snapshot"
"github.com/ethereum/go-ethereum/core/tracing"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/internal/syncx"
"github.com/ethereum/go-ethereum/internal/version"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/triedb"
"github.com/ethereum/go-ethereum/triedb/hashdb"
"github.com/ethereum/go-ethereum/triedb/pathdb"
)
var (
headBlockGauge = metrics.NewRegisteredGauge("chain/head/block", nil)
headHeaderGauge = metrics.NewRegisteredGauge("chain/head/header", nil)
headFastBlockGauge = metrics.NewRegisteredGauge("chain/head/receipt", nil)
headFinalizedBlockGauge = metrics.NewRegisteredGauge("chain/head/finalized", nil)
headSafeBlockGauge = metrics.NewRegisteredGauge("chain/head/safe", nil)
chainInfoGauge = metrics.NewRegisteredGaugeInfo("chain/info", nil)
accountReadTimer = metrics.NewRegisteredResettingTimer("chain/account/reads", nil)
accountHashTimer = metrics.NewRegisteredResettingTimer("chain/account/hashes", nil)
accountUpdateTimer = metrics.NewRegisteredResettingTimer("chain/account/updates", nil)
accountCommitTimer = metrics.NewRegisteredResettingTimer("chain/account/commits", nil)
storageReadTimer = metrics.NewRegisteredResettingTimer("chain/storage/reads", nil)
storageHashTimer = metrics.NewRegisteredResettingTimer("chain/storage/hashes", nil)
storageUpdateTimer = metrics.NewRegisteredResettingTimer("chain/storage/updates", nil)
storageCommitTimer = metrics.NewRegisteredResettingTimer("chain/storage/commits", nil)
snapshotAccountReadTimer = metrics.NewRegisteredResettingTimer("chain/snapshot/account/reads", nil)
snapshotStorageReadTimer = metrics.NewRegisteredResettingTimer("chain/snapshot/storage/reads", nil)
snapshotCommitTimer = metrics.NewRegisteredResettingTimer("chain/snapshot/commits", nil)
triedbCommitTimer = metrics.NewRegisteredResettingTimer("chain/triedb/commits", nil)
blockInsertTimer = metrics.NewRegisteredResettingTimer("chain/inserts", nil)
blockValidationTimer = metrics.NewRegisteredResettingTimer("chain/validation", nil)
blockExecutionTimer = metrics.NewRegisteredResettingTimer("chain/execution", nil)
blockWriteTimer = metrics.NewRegisteredResettingTimer("chain/write", nil)
blockReorgMeter = metrics.NewRegisteredMeter("chain/reorg/executes", nil)
blockReorgAddMeter = metrics.NewRegisteredMeter("chain/reorg/add", nil)
blockReorgDropMeter = metrics.NewRegisteredMeter("chain/reorg/drop", nil)
blockPrefetchExecuteTimer = metrics.NewRegisteredTimer("chain/prefetch/executes", nil)
blockPrefetchInterruptMeter = metrics.NewRegisteredMeter("chain/prefetch/interrupts", nil)
errInsertionInterrupted = errors.New("insertion is interrupted")
errChainStopped = errors.New("blockchain is stopped")
errInvalidOldChain = errors.New("invalid old chain")
errInvalidNewChain = errors.New("invalid new chain")
)
const (
bodyCacheLimit = 256
blockCacheLimit = 256
receiptsCacheLimit = 32
txLookupCacheLimit = 1024
TriesInMemory = 128
// BlockChainVersion ensures that an incompatible database forces a resync from scratch.
//
// Changelog:
//
// - Version 4
// The following incompatible database changes were added:
// * the `BlockNumber`, `TxHash`, `TxIndex`, `BlockHash` and `Index` fields of log are deleted
// * the `Bloom` field of receipt is deleted
// * the `BlockIndex` and `TxIndex` fields of txlookup are deleted
// - Version 5
// The following incompatible database changes were added:
// * the `TxHash`, `GasCost`, and `ContractAddress` fields are no longer stored for a receipt
// * the `TxHash`, `GasCost`, and `ContractAddress` fields are computed by looking up the
// receipts' corresponding block
// - Version 6
// The following incompatible database changes were added:
// * Transaction lookup information stores the corresponding block number instead of block hash
// - Version 7
// The following incompatible database changes were added:
// * Use freezer as the ancient database to maintain all ancient data
// - Version 8
// The following incompatible database changes were added:
// * New scheme for contract code in order to separate the codes and trie nodes
BlockChainVersion uint64 = 8
)
// CacheConfig contains the configuration values for the trie database
// and state snapshot these are resident in a blockchain.
type CacheConfig struct {
TrieCleanLimit int // Memory allowance (MB) to use for caching trie nodes in memory
TrieCleanNoPrefetch bool // Whether to disable heuristic state prefetching for followup blocks
TrieDirtyLimit int // Memory limit (MB) at which to start flushing dirty trie nodes to disk
TrieDirtyDisabled bool // Whether to disable trie write caching and GC altogether (archive node)
TrieTimeLimit time.Duration // Time limit after which to flush the current in-memory trie to disk
SnapshotLimit int // Memory allowance (MB) to use for caching snapshot entries in memory
Preimages bool // Whether to store preimage of trie key to the disk
StateHistory uint64 // Number of blocks from head whose state histories are reserved.
StateScheme string // Scheme used to store ethereum states and merkle tree nodes on top
SnapshotNoBuild bool // Whether the background generation is allowed
SnapshotWait bool // Wait for snapshot construction on startup. TODO(karalabe): This is a dirty hack for testing, nuke it
}
// triedbConfig derives the configures for trie database.
func (c *CacheConfig) triedbConfig(isVerkle bool) *triedb.Config {
config := &triedb.Config{
Preimages: c.Preimages,
IsVerkle: isVerkle,
}
if c.StateScheme == rawdb.HashScheme {
config.HashDB = &hashdb.Config{
CleanCacheSize: c.TrieCleanLimit * 1024 * 1024,
}
}
if c.StateScheme == rawdb.PathScheme {
config.PathDB = &pathdb.Config{
StateHistory: c.StateHistory,
CleanCacheSize: c.TrieCleanLimit * 1024 * 1024,
DirtyCacheSize: c.TrieDirtyLimit * 1024 * 1024,
}
}
return config
}
// defaultCacheConfig are the default caching values if none are specified by the
// user (also used during testing).
var defaultCacheConfig = &CacheConfig{
TrieCleanLimit: 256,
TrieDirtyLimit: 256,
TrieTimeLimit: 5 * time.Minute,
SnapshotLimit: 256,
SnapshotWait: true,
StateScheme: rawdb.HashScheme,
}
// DefaultCacheConfigWithScheme returns a deep copied default cache config with
// a provided trie node scheme.
func DefaultCacheConfigWithScheme(scheme string) *CacheConfig {
config := *defaultCacheConfig
config.StateScheme = scheme
return &config
}
// txLookup is wrapper over transaction lookup along with the corresponding
// transaction object.
type txLookup struct {
lookup *rawdb.LegacyTxLookupEntry
transaction *types.Transaction
}
// BlockChain represents the canonical chain given a database with a genesis
// block. The Blockchain manages chain imports, reverts, chain reorganisations.
//
// Importing blocks in to the block chain happens according to the set of rules
// defined by the two stage Validator. Processing of blocks is done using the
// Processor which processes the included transaction. The validation of the state
// is done in the second part of the Validator. Failing results in aborting of
// the import.
//
// The BlockChain also helps in returning blocks from **any** chain included
// in the database as well as blocks that represents the canonical chain. It's
// important to note that GetBlock can return any block and does not need to be
// included in the canonical one where as GetBlockByNumber always represents the
// canonical chain.
type BlockChain struct {
chainConfig *params.ChainConfig // Chain & network configuration
cacheConfig *CacheConfig // Cache configuration for pruning
db ethdb.Database // Low level persistent database to store final content in
snaps *snapshot.Tree // Snapshot tree for fast trie leaf access
triegc *prque.Prque[int64, common.Hash] // Priority queue mapping block numbers to tries to gc
gcproc time.Duration // Accumulates canonical block processing for trie dumping
lastWrite uint64 // Last block when the state was flushed
flushInterval atomic.Int64 // Time interval (processing time) after which to flush a state
triedb *triedb.Database // The database handler for maintaining trie nodes.
stateCache state.Database // State database to reuse between imports (contains state cache)
txIndexer *txIndexer // Transaction indexer, might be nil if not enabled
hc *HeaderChain
rmLogsFeed event.Feed
chainFeed event.Feed
chainSideFeed event.Feed
chainHeadFeed event.Feed
logsFeed event.Feed
blockProcFeed event.Feed
scope event.SubscriptionScope
genesisBlock *types.Block
// This mutex synchronizes chain write operations.
// Readers don't need to take it, they can just read the database.
chainmu *syncx.ClosableMutex
currentBlock atomic.Pointer[types.Header] // Current head of the chain
currentSnapBlock atomic.Pointer[types.Header] // Current head of snap-sync
currentFinalBlock atomic.Pointer[types.Header] // Latest (consensus) finalized block
currentSafeBlock atomic.Pointer[types.Header] // Latest (consensus) safe block
bodyCache *lru.Cache[common.Hash, *types.Body]
bodyRLPCache *lru.Cache[common.Hash, rlp.RawValue]
receiptsCache *lru.Cache[common.Hash, []*types.Receipt]
blockCache *lru.Cache[common.Hash, *types.Block]
txLookupCache *lru.Cache[common.Hash, txLookup]
wg sync.WaitGroup
quit chan struct{} // shutdown signal, closed in Stop.
stopping atomic.Bool // false if chain is running, true when stopped
procInterrupt atomic.Bool // interrupt signaler for block processing
engine consensus.Engine
validator Validator // Block and state validator interface
prefetcher Prefetcher
processor Processor // Block transaction processor interface
forker *ForkChoice
vmConfig vm.Config
logger *tracing.Hooks
}
// NewBlockChain returns a fully initialised block chain using information
// available in the database. It initialises the default Ethereum Validator
// and Processor.
func NewBlockChain(db ethdb.Database, cacheConfig *CacheConfig, genesis *Genesis, overrides *ChainOverrides, engine consensus.Engine, vmConfig vm.Config, shouldPreserve func(header *types.Header) bool, txLookupLimit *uint64) (*BlockChain, error) {
if cacheConfig == nil {
cacheConfig = defaultCacheConfig
}
// Open trie database with provided config
triedb := triedb.NewDatabase(db, cacheConfig.triedbConfig(genesis != nil && genesis.IsVerkle()))
// Setup the genesis block, commit the provided genesis specification
// to database if the genesis block is not present yet, or load the
// stored one from database.
chainConfig, genesisHash, genesisErr := SetupGenesisBlockWithOverride(db, triedb, genesis, overrides)
if _, ok := genesisErr.(*params.ConfigCompatError); genesisErr != nil && !ok {
return nil, genesisErr
}
log.Info("")
log.Info(strings.Repeat("-", 153))
for _, line := range strings.Split(chainConfig.Description(), "\n") {
log.Info(line)
}
log.Info(strings.Repeat("-", 153))
log.Info("")
bc := &BlockChain{
chainConfig: chainConfig,
cacheConfig: cacheConfig,
db: db,
triedb: triedb,
triegc: prque.New[int64, common.Hash](nil),
quit: make(chan struct{}),
chainmu: syncx.NewClosableMutex(),
bodyCache: lru.NewCache[common.Hash, *types.Body](bodyCacheLimit),
bodyRLPCache: lru.NewCache[common.Hash, rlp.RawValue](bodyCacheLimit),
receiptsCache: lru.NewCache[common.Hash, []*types.Receipt](receiptsCacheLimit),
blockCache: lru.NewCache[common.Hash, *types.Block](blockCacheLimit),
txLookupCache: lru.NewCache[common.Hash, txLookup](txLookupCacheLimit),
engine: engine,
vmConfig: vmConfig,
logger: vmConfig.Tracer,
}
bc.flushInterval.Store(int64(cacheConfig.TrieTimeLimit))
bc.forker = NewForkChoice(bc, shouldPreserve)
bc.stateCache = state.NewDatabaseWithNodeDB(bc.db, bc.triedb)
bc.validator = NewBlockValidator(chainConfig, bc, engine)
bc.prefetcher = newStatePrefetcher(chainConfig, bc, engine)
bc.processor = NewStateProcessor(chainConfig, bc, engine)
var err error
bc.hc, err = NewHeaderChain(db, chainConfig, engine, bc.insertStopped)
if err != nil {
return nil, err
}
bc.genesisBlock = bc.GetBlockByNumber(0)
if bc.genesisBlock == nil {
return nil, ErrNoGenesis
}
bc.currentBlock.Store(nil)
bc.currentSnapBlock.Store(nil)
bc.currentFinalBlock.Store(nil)
bc.currentSafeBlock.Store(nil)
// Update chain info data metrics
chainInfoGauge.Update(metrics.GaugeInfoValue{"chain_id": bc.chainConfig.ChainID.String()})
// If Geth is initialized with an external ancient store, re-initialize the
// missing chain indexes and chain flags. This procedure can survive crash
// and can be resumed in next restart since chain flags are updated in last step.
if bc.empty() {
rawdb.InitDatabaseFromFreezer(bc.db)
}
// Load blockchain states from disk
if err := bc.loadLastState(); err != nil {
return nil, err
}
// Make sure the state associated with the block is available, or log out
// if there is no available state, waiting for state sync.
head := bc.CurrentBlock()
if !bc.HasState(head.Root) {
if head.Number.Uint64() == 0 {
// The genesis state is missing, which is only possible in the path-based
// scheme. This situation occurs when the initial state sync is not finished
// yet, or the chain head is rewound below the pivot point. In both scenarios,
// there is no possible recovery approach except for rerunning a snap sync.
// Do nothing here until the state syncer picks it up.
log.Info("Genesis state is missing, wait state sync")
} else {
// Head state is missing, before the state recovery, find out the
// disk layer point of snapshot(if it's enabled). Make sure the
// rewound point is lower than disk layer.
var diskRoot common.Hash
if bc.cacheConfig.SnapshotLimit > 0 {
diskRoot = rawdb.ReadSnapshotRoot(bc.db)
}
if diskRoot != (common.Hash{}) {
log.Warn("Head state missing, repairing", "number", head.Number, "hash", head.Hash(), "snaproot", diskRoot)
snapDisk, err := bc.setHeadBeyondRoot(head.Number.Uint64(), 0, diskRoot, true)
if err != nil {
return nil, err
}
// Chain rewound, persist old snapshot number to indicate recovery procedure
if snapDisk != 0 {
rawdb.WriteSnapshotRecoveryNumber(bc.db, snapDisk)
}
} else {
log.Warn("Head state missing, repairing", "number", head.Number, "hash", head.Hash())
if _, err := bc.setHeadBeyondRoot(head.Number.Uint64(), 0, common.Hash{}, true); err != nil {
return nil, err
}
}
}
}
// Ensure that a previous crash in SetHead doesn't leave extra ancients
if frozen, err := bc.db.Ancients(); err == nil && frozen > 0 {
var (
needRewind bool
low uint64
)
// The head full block may be rolled back to a very low height due to
// blockchain repair. If the head full block is even lower than the ancient
// chain, truncate the ancient store.
fullBlock := bc.CurrentBlock()
if fullBlock != nil && fullBlock.Hash() != bc.genesisBlock.Hash() && fullBlock.Number.Uint64() < frozen-1 {
needRewind = true
low = fullBlock.Number.Uint64()
}
// In snap sync, it may happen that ancient data has been written to the
// ancient store, but the LastFastBlock has not been updated, truncate the
// extra data here.
snapBlock := bc.CurrentSnapBlock()
if snapBlock != nil && snapBlock.Number.Uint64() < frozen-1 {
needRewind = true
if snapBlock.Number.Uint64() < low || low == 0 {
low = snapBlock.Number.Uint64()
}
}
if needRewind {
log.Error("Truncating ancient chain", "from", bc.CurrentHeader().Number.Uint64(), "to", low)
if err := bc.SetHead(low); err != nil {
return nil, err
}
}
}
// The first thing the node will do is reconstruct the verification data for
// the head block (ethash cache or clique voting snapshot). Might as well do
// it in advance.
bc.engine.VerifyHeader(bc, bc.CurrentHeader())
// Check the current state of the block hashes and make sure that we do not have any of the bad blocks in our chain
for hash := range BadHashes {
if header := bc.GetHeaderByHash(hash); header != nil {
// get the canonical block corresponding to the offending header's number
headerByNumber := bc.GetHeaderByNumber(header.Number.Uint64())
// make sure the headerByNumber (if present) is in our current canonical chain
if headerByNumber != nil && headerByNumber.Hash() == header.Hash() {
log.Error("Found bad hash, rewinding chain", "number", header.Number, "hash", header.ParentHash)
if err := bc.SetHead(header.Number.Uint64() - 1); err != nil {
return nil, err
}
log.Error("Chain rewind was successful, resuming normal operation")
}
}
}
if bc.logger != nil && bc.logger.OnBlockchainInit != nil {
bc.logger.OnBlockchainInit(chainConfig)
}
if bc.logger != nil && bc.logger.OnGenesisBlock != nil {
if block := bc.CurrentBlock(); block.Number.Uint64() == 0 {
alloc, err := getGenesisState(bc.db, block.Hash())
if err != nil {
return nil, fmt.Errorf("failed to get genesis state: %w", err)
}
if alloc == nil {
return nil, fmt.Errorf("live blockchain tracer requires genesis alloc to be set")
}
bc.logger.OnGenesisBlock(bc.genesisBlock, alloc)
}
}
// Load any existing snapshot, regenerating it if loading failed
if bc.cacheConfig.SnapshotLimit > 0 {
// If the chain was rewound past the snapshot persistent layer (causing
// a recovery block number to be persisted to disk), check if we're still
// in recovery mode and in that case, don't invalidate the snapshot on a
// head mismatch.
var recover bool
head := bc.CurrentBlock()
if layer := rawdb.ReadSnapshotRecoveryNumber(bc.db); layer != nil && *layer >= head.Number.Uint64() {
log.Warn("Enabling snapshot recovery", "chainhead", head.Number, "diskbase", *layer)
recover = true
}
snapconfig := snapshot.Config{
CacheSize: bc.cacheConfig.SnapshotLimit,
Recovery: recover,
NoBuild: bc.cacheConfig.SnapshotNoBuild,
AsyncBuild: !bc.cacheConfig.SnapshotWait,
}
bc.snaps, _ = snapshot.New(snapconfig, bc.db, bc.triedb, head.Root)
}
// Rewind the chain in case of an incompatible config upgrade.
if compat, ok := genesisErr.(*params.ConfigCompatError); ok {
log.Warn("Rewinding chain to upgrade configuration", "err", compat)
if compat.RewindToTime > 0 {
bc.SetHeadWithTimestamp(compat.RewindToTime)
} else {
bc.SetHead(compat.RewindToBlock)
}
rawdb.WriteChainConfig(db, genesisHash, chainConfig)
}
// Start tx indexer if it's enabled.
if txLookupLimit != nil {
bc.txIndexer = newTxIndexer(*txLookupLimit, bc)
}
return bc, nil
}
// empty returns an indicator whether the blockchain is empty.
// Note, it's a special case that we connect a non-empty ancient
// database with an empty node, so that we can plugin the ancient
// into node seamlessly.
func (bc *BlockChain) empty() bool {
genesis := bc.genesisBlock.Hash()
for _, hash := range []common.Hash{rawdb.ReadHeadBlockHash(bc.db), rawdb.ReadHeadHeaderHash(bc.db), rawdb.ReadHeadFastBlockHash(bc.db)} {
if hash != genesis {
return false
}
}
return true
}
// loadLastState loads the last known chain state from the database. This method
// assumes that the chain manager mutex is held.
func (bc *BlockChain) loadLastState() error {
// Restore the last known head block
head := rawdb.ReadHeadBlockHash(bc.db)
if head == (common.Hash{}) {
// Corrupt or empty database, init from scratch
log.Warn("Empty database, resetting chain")
return bc.Reset()
}
// Make sure the entire head block is available
headBlock := bc.GetBlockByHash(head)
if headBlock == nil {
// Corrupt or empty database, init from scratch
log.Warn("Head block missing, resetting chain", "hash", head)
return bc.Reset()
}
// Everything seems to be fine, set as the head block
bc.currentBlock.Store(headBlock.Header())
headBlockGauge.Update(int64(headBlock.NumberU64()))
// Restore the last known head header
headHeader := headBlock.Header()
if head := rawdb.ReadHeadHeaderHash(bc.db); head != (common.Hash{}) {
if header := bc.GetHeaderByHash(head); header != nil {
headHeader = header
}
}
bc.hc.SetCurrentHeader(headHeader)
// Restore the last known head snap block
bc.currentSnapBlock.Store(headBlock.Header())
headFastBlockGauge.Update(int64(headBlock.NumberU64()))
if head := rawdb.ReadHeadFastBlockHash(bc.db); head != (common.Hash{}) {
if block := bc.GetBlockByHash(head); block != nil {
bc.currentSnapBlock.Store(block.Header())
headFastBlockGauge.Update(int64(block.NumberU64()))
}
}
// Restore the last known finalized block and safe block
// Note: the safe block is not stored on disk and it is set to the last
// known finalized block on startup
if head := rawdb.ReadFinalizedBlockHash(bc.db); head != (common.Hash{}) {
if block := bc.GetBlockByHash(head); block != nil {
bc.currentFinalBlock.Store(block.Header())
headFinalizedBlockGauge.Update(int64(block.NumberU64()))
bc.currentSafeBlock.Store(block.Header())
headSafeBlockGauge.Update(int64(block.NumberU64()))
}
}
// Issue a status log for the user
var (
currentSnapBlock = bc.CurrentSnapBlock()
currentFinalBlock = bc.CurrentFinalBlock()
headerTd = bc.GetTd(headHeader.Hash(), headHeader.Number.Uint64())
blockTd = bc.GetTd(headBlock.Hash(), headBlock.NumberU64())
)
if headHeader.Hash() != headBlock.Hash() {
log.Info("Loaded most recent local header", "number", headHeader.Number, "hash", headHeader.Hash(), "td", headerTd, "age", common.PrettyAge(time.Unix(int64(headHeader.Time), 0)))
}
log.Info("Loaded most recent local block", "number", headBlock.Number(), "hash", headBlock.Hash(), "td", blockTd, "age", common.PrettyAge(time.Unix(int64(headBlock.Time()), 0)))
if headBlock.Hash() != currentSnapBlock.Hash() {
snapTd := bc.GetTd(currentSnapBlock.Hash(), currentSnapBlock.Number.Uint64())
log.Info("Loaded most recent local snap block", "number", currentSnapBlock.Number, "hash", currentSnapBlock.Hash(), "td", snapTd, "age", common.PrettyAge(time.Unix(int64(currentSnapBlock.Time), 0)))
}
if currentFinalBlock != nil {
finalTd := bc.GetTd(currentFinalBlock.Hash(), currentFinalBlock.Number.Uint64())
log.Info("Loaded most recent local finalized block", "number", currentFinalBlock.Number, "hash", currentFinalBlock.Hash(), "td", finalTd, "age", common.PrettyAge(time.Unix(int64(currentFinalBlock.Time), 0)))
}
if pivot := rawdb.ReadLastPivotNumber(bc.db); pivot != nil {
log.Info("Loaded last snap-sync pivot marker", "number", *pivot)
}
return nil
}
// SetHead rewinds the local chain to a new head. Depending on whether the node
// was snap synced or full synced and in which state, the method will try to
// delete minimal data from disk whilst retaining chain consistency.
func (bc *BlockChain) SetHead(head uint64) error {
if _, err := bc.setHeadBeyondRoot(head, 0, common.Hash{}, false); err != nil {
return err
}
// Send chain head event to update the transaction pool
header := bc.CurrentBlock()
block := bc.GetBlock(header.Hash(), header.Number.Uint64())
if block == nil {
// This should never happen. In practice, previously currentBlock
// contained the entire block whereas now only a "marker", so there
// is an ever so slight chance for a race we should handle.
log.Error("Current block not found in database", "block", header.Number, "hash", header.Hash())
return fmt.Errorf("current block missing: #%d [%x..]", header.Number, header.Hash().Bytes()[:4])
}
bc.chainHeadFeed.Send(ChainHeadEvent{Block: block})
return nil
}
// SetHeadWithTimestamp rewinds the local chain to a new head that has at max
// the given timestamp. Depending on whether the node was snap synced or full
// synced and in which state, the method will try to delete minimal data from
// disk whilst retaining chain consistency.
func (bc *BlockChain) SetHeadWithTimestamp(timestamp uint64) error {
if _, err := bc.setHeadBeyondRoot(0, timestamp, common.Hash{}, false); err != nil {
return err
}
// Send chain head event to update the transaction pool
header := bc.CurrentBlock()
block := bc.GetBlock(header.Hash(), header.Number.Uint64())
if block == nil {
// This should never happen. In practice, previously currentBlock
// contained the entire block whereas now only a "marker", so there
// is an ever so slight chance for a race we should handle.
log.Error("Current block not found in database", "block", header.Number, "hash", header.Hash())
return fmt.Errorf("current block missing: #%d [%x..]", header.Number, header.Hash().Bytes()[:4])
}
bc.chainHeadFeed.Send(ChainHeadEvent{Block: block})
return nil
}
// SetFinalized sets the finalized block.
func (bc *BlockChain) SetFinalized(header *types.Header) {
bc.currentFinalBlock.Store(header)
if header != nil {
rawdb.WriteFinalizedBlockHash(bc.db, header.Hash())
headFinalizedBlockGauge.Update(int64(header.Number.Uint64()))
} else {
rawdb.WriteFinalizedBlockHash(bc.db, common.Hash{})
headFinalizedBlockGauge.Update(0)
}
}
// SetSafe sets the safe block.
func (bc *BlockChain) SetSafe(header *types.Header) {
bc.currentSafeBlock.Store(header)
if header != nil {
headSafeBlockGauge.Update(int64(header.Number.Uint64()))
} else {
headSafeBlockGauge.Update(0)
}
}
// rewindHashHead implements the logic of rewindHead in the context of hash scheme.
func (bc *BlockChain) rewindHashHead(head *types.Header, root common.Hash) (*types.Header, uint64) {
var (
limit uint64 // The oldest block that will be searched for this rewinding
beyondRoot = root == common.Hash{} // Flag whether we're beyond the requested root (no root, always true)
pivot = rawdb.ReadLastPivotNumber(bc.db) // Associated block number of pivot point state
rootNumber uint64 // Associated block number of requested root
start = time.Now() // Timestamp the rewinding is restarted
logged = time.Now() // Timestamp last progress log was printed
)
// The oldest block to be searched is determined by the pivot block or a constant
// searching threshold. The rationale behind this is as follows:
//
// - Snap sync is selected if the pivot block is available. The earliest available
// state is the pivot block itself, so there is no sense in going further back.
//
// - Full sync is selected if the pivot block does not exist. The hash database
// periodically flushes the state to disk, and the used searching threshold is
// considered sufficient to find a persistent state, even for the testnet. It
// might be not enough for a chain that is nearly empty. In the worst case,
// the entire chain is reset to genesis, and snap sync is re-enabled on top,
// which is still acceptable.
if pivot != nil {
limit = *pivot
} else if head.Number.Uint64() > params.FullImmutabilityThreshold {
limit = head.Number.Uint64() - params.FullImmutabilityThreshold
}
for {
logger := log.Trace
if time.Since(logged) > time.Second*8 {
logged = time.Now()
logger = log.Info
}
logger("Block state missing, rewinding further", "number", head.Number, "hash", head.Hash(), "elapsed", common.PrettyDuration(time.Since(start)))
// If a root threshold was requested but not yet crossed, check
if !beyondRoot && head.Root == root {
beyondRoot, rootNumber = true, head.Number.Uint64()
}
// If search limit is reached, return the genesis block as the
// new chain head.
if head.Number.Uint64() < limit {
log.Info("Rewinding limit reached, resetting to genesis", "number", head.Number, "hash", head.Hash(), "limit", limit)
return bc.genesisBlock.Header(), rootNumber
}
// If the associated state is not reachable, continue searching
// backwards until an available state is found.
if !bc.HasState(head.Root) {
// If the chain is gapped in the middle, return the genesis
// block as the new chain head.
parent := bc.GetHeader(head.ParentHash, head.Number.Uint64()-1)
if parent == nil {
log.Error("Missing block in the middle, resetting to genesis", "number", head.Number.Uint64()-1, "hash", head.ParentHash)
return bc.genesisBlock.Header(), rootNumber
}
head = parent
// If the genesis block is reached, stop searching.
if head.Number.Uint64() == 0 {
log.Info("Genesis block reached", "number", head.Number, "hash", head.Hash())
return head, rootNumber
}
continue // keep rewinding
}
// Once the available state is found, ensure that the requested root
// has already been crossed. If not, continue rewinding.
if beyondRoot || head.Number.Uint64() == 0 {
log.Info("Rewound to block with state", "number", head.Number, "hash", head.Hash())
return head, rootNumber
}
log.Debug("Skipping block with threshold state", "number", head.Number, "hash", head.Hash(), "root", head.Root)
head = bc.GetHeader(head.ParentHash, head.Number.Uint64()-1) // Keep rewinding
}
}
// rewindPathHead implements the logic of rewindHead in the context of path scheme.
func (bc *BlockChain) rewindPathHead(head *types.Header, root common.Hash) (*types.Header, uint64) {
var (
pivot = rawdb.ReadLastPivotNumber(bc.db) // Associated block number of pivot block
rootNumber uint64 // Associated block number of requested root
// BeyondRoot represents whether the requested root is already
// crossed. The flag value is set to true if the root is empty.
beyondRoot = root == common.Hash{}
// noState represents if the target state requested for search
// is unavailable and impossible to be recovered.
noState = !bc.HasState(root) && !bc.stateRecoverable(root)
start = time.Now() // Timestamp the rewinding is restarted
logged = time.Now() // Timestamp last progress log was printed
)
// Rewind the head block tag until an available state is found.
for {
logger := log.Trace
if time.Since(logged) > time.Second*8 {
logged = time.Now()
logger = log.Info
}
logger("Block state missing, rewinding further", "number", head.Number, "hash", head.Hash(), "elapsed", common.PrettyDuration(time.Since(start)))
// If a root threshold was requested but not yet crossed, check
if !beyondRoot && head.Root == root {
beyondRoot, rootNumber = true, head.Number.Uint64()
}
// If the root threshold hasn't been crossed but the available
// state is reached, quickly determine if the target state is
// possible to be reached or not.
if !beyondRoot && noState && bc.HasState(head.Root) {
beyondRoot = true
log.Info("Disable the search for unattainable state", "root", root)
}
// Check if the associated state is available or recoverable if
// the requested root has already been crossed.
if beyondRoot && (bc.HasState(head.Root) || bc.stateRecoverable(head.Root)) {
break
}
// If pivot block is reached, return the genesis block as the
// new chain head. Theoretically there must be a persistent
// state before or at the pivot block, prevent endless rewinding
// towards the genesis just in case.
if pivot != nil && *pivot >= head.Number.Uint64() {
log.Info("Pivot block reached, resetting to genesis", "number", head.Number, "hash", head.Hash())
return bc.genesisBlock.Header(), rootNumber
}
// If the chain is gapped in the middle, return the genesis
// block as the new chain head
parent := bc.GetHeader(head.ParentHash, head.Number.Uint64()-1) // Keep rewinding
if parent == nil {
log.Error("Missing block in the middle, resetting to genesis", "number", head.Number.Uint64()-1, "hash", head.ParentHash)
return bc.genesisBlock.Header(), rootNumber
}
head = parent
// If the genesis block is reached, stop searching.
if head.Number.Uint64() == 0 {
log.Info("Genesis block reached", "number", head.Number, "hash", head.Hash())
return head, rootNumber
}
}
// Recover if the target state if it's not available yet.
if !bc.HasState(head.Root) {
if err := bc.triedb.Recover(head.Root); err != nil {
log.Crit("Failed to rollback state", "err", err)
}
}
log.Info("Rewound to block with state", "number", head.Number, "hash", head.Hash())
return head, rootNumber
}
// rewindHead searches the available states in the database and returns the associated
// block as the new head block.
//
// If the given root is not empty, then the rewind should attempt to pass the specified
// state root and return the associated block number as well. If the root, typically
// representing the state corresponding to snapshot disk layer, is deemed impassable,
// then block number zero is returned, indicating that snapshot recovery is disabled
// and the whole snapshot should be auto-generated in case of head mismatch.
func (bc *BlockChain) rewindHead(head *types.Header, root common.Hash) (*types.Header, uint64) {
if bc.triedb.Scheme() == rawdb.PathScheme {
return bc.rewindPathHead(head, root)
}
return bc.rewindHashHead(head, root)
}
// setHeadBeyondRoot rewinds the local chain to a new head with the extra condition
// that the rewind must pass the specified state root. This method is meant to be
// used when rewinding with snapshots enabled to ensure that we go back further than
// persistent disk layer. Depending on whether the node was snap synced or full, and
// in which state, the method will try to delete minimal data from disk whilst
// retaining chain consistency.
//
// The method also works in timestamp mode if `head == 0` but `time != 0`. In that
// case blocks are rolled back until the new head becomes older or equal to the
// requested time. If both `head` and `time` is 0, the chain is rewound to genesis.
//
// The method returns the block number where the requested root cap was found.
func (bc *BlockChain) setHeadBeyondRoot(head uint64, time uint64, root common.Hash, repair bool) (uint64, error) {
if !bc.chainmu.TryLock() {
return 0, errChainStopped
}
defer bc.chainmu.Unlock()
var (
// Track the block number of the requested root hash
rootNumber uint64 // (no root == always 0)
// Retrieve the last pivot block to short circuit rollbacks beyond it
// and the current freezer limit to start nuking it's underflown.
pivot = rawdb.ReadLastPivotNumber(bc.db)
)
updateFn := func(db ethdb.KeyValueWriter, header *types.Header) (*types.Header, bool) {
// Rewind the blockchain, ensuring we don't end up with a stateless head
// block. Note, depth equality is permitted to allow using SetHead as a
// chain reparation mechanism without deleting any data!
if currentBlock := bc.CurrentBlock(); currentBlock != nil && header.Number.Uint64() <= currentBlock.Number.Uint64() {
var newHeadBlock *types.Header
newHeadBlock, rootNumber = bc.rewindHead(header, root)
rawdb.WriteHeadBlockHash(db, newHeadBlock.Hash())
// Degrade the chain markers if they are explicitly reverted.
// In theory we should update all in-memory markers in the
// last step, however the direction of SetHead is from high
// to low, so it's safe to update in-memory markers directly.
bc.currentBlock.Store(newHeadBlock)
headBlockGauge.Update(int64(newHeadBlock.Number.Uint64()))
// The head state is missing, which is only possible in the path-based
// scheme. This situation occurs when the chain head is rewound below
// the pivot point. In this scenario, there is no possible recovery
// approach except for rerunning a snap sync. Do nothing here until the
// state syncer picks it up.
if !bc.HasState(newHeadBlock.Root) {
if newHeadBlock.Number.Uint64() != 0 {
log.Crit("Chain is stateless at a non-genesis block")
}
log.Info("Chain is stateless, wait state sync", "number", newHeadBlock.Number, "hash", newHeadBlock.Hash())
}
}
// Rewind the snap block in a simpleton way to the target head
if currentSnapBlock := bc.CurrentSnapBlock(); currentSnapBlock != nil && header.Number.Uint64() < currentSnapBlock.Number.Uint64() {
newHeadSnapBlock := bc.GetBlock(header.Hash(), header.Number.Uint64())
// If either blocks reached nil, reset to the genesis state
if newHeadSnapBlock == nil {
newHeadSnapBlock = bc.genesisBlock
}
rawdb.WriteHeadFastBlockHash(db, newHeadSnapBlock.Hash())
// Degrade the chain markers if they are explicitly reverted.
// In theory we should update all in-memory markers in the
// last step, however the direction of SetHead is from high
// to low, so it's safe the update in-memory markers directly.
bc.currentSnapBlock.Store(newHeadSnapBlock.Header())
headFastBlockGauge.Update(int64(newHeadSnapBlock.NumberU64()))
}
var (
headHeader = bc.CurrentBlock()
headNumber = headHeader.Number.Uint64()
)
// If setHead underflown the freezer threshold and the block processing
// intent afterwards is full block importing, delete the chain segment
// between the stateful-block and the sethead target.
var wipe bool
frozen, _ := bc.db.Ancients()
if headNumber+1 < frozen {
wipe = pivot == nil || headNumber >= *pivot
}
return headHeader, wipe // Only force wipe if full synced
}
// Rewind the header chain, deleting all block bodies until then
delFn := func(db ethdb.KeyValueWriter, hash common.Hash, num uint64) {
// Ignore the error here since light client won't hit this path
frozen, _ := bc.db.Ancients()
if num+1 <= frozen {
// Truncate all relative data(header, total difficulty, body, receipt
// and canonical hash) from ancient store.
if _, err := bc.db.TruncateHead(num); err != nil {
log.Crit("Failed to truncate ancient data", "number", num, "err", err)
}
// Remove the hash <-> number mapping from the active store.
rawdb.DeleteHeaderNumber(db, hash)
} else {
// Remove relative body and receipts from the active store.
// The header, total difficulty and canonical hash will be
// removed in the hc.SetHead function.
rawdb.DeleteBody(db, hash, num)
rawdb.DeleteReceipts(db, hash, num)
}
// Todo(rjl493456442) txlookup, bloombits, etc
}
// If SetHead was only called as a chain reparation method, try to skip
// touching the header chain altogether, unless the freezer is broken
if repair {
if target, force := updateFn(bc.db, bc.CurrentBlock()); force {
bc.hc.SetHead(target.Number.Uint64(), nil, delFn)
}
} else {
// Rewind the chain to the requested head and keep going backwards until a
// block with a state is found or snap sync pivot is passed
if time > 0 {
log.Warn("Rewinding blockchain to timestamp", "target", time)
bc.hc.SetHeadWithTimestamp(time, updateFn, delFn)
} else {
log.Warn("Rewinding blockchain to block", "target", head)
bc.hc.SetHead(head, updateFn, delFn)
}
}
// Clear out any stale content from the caches
bc.bodyCache.Purge()
bc.bodyRLPCache.Purge()
bc.receiptsCache.Purge()
bc.blockCache.Purge()
bc.txLookupCache.Purge()
// Clear safe block, finalized block if needed
if safe := bc.CurrentSafeBlock(); safe != nil && head < safe.Number.Uint64() {
log.Warn("SetHead invalidated safe block")
bc.SetSafe(nil)
}
if finalized := bc.CurrentFinalBlock(); finalized != nil && head < finalized.Number.Uint64() {
log.Error("SetHead invalidated finalized block")
bc.SetFinalized(nil)
}
return rootNumber, bc.loadLastState()
}
// SnapSyncCommitHead sets the current head block to the one defined by the hash
// irrelevant what the chain contents were prior.
func (bc *BlockChain) SnapSyncCommitHead(hash common.Hash) error {
// Make sure that both the block as well at its state trie exists
block := bc.GetBlockByHash(hash)
if block == nil {
return fmt.Errorf("non existent block [%x..]", hash[:4])
}
// Reset the trie database with the fresh snap synced state.
root := block.Root()
if bc.triedb.Scheme() == rawdb.PathScheme {
if err := bc.triedb.Enable(root); err != nil {
return err
}
}
if !bc.HasState(root) {
return fmt.Errorf("non existent state [%x..]", root[:4])
}
// If all checks out, manually set the head block.
if !bc.chainmu.TryLock() {
return errChainStopped
}
bc.currentBlock.Store(block.Header())
headBlockGauge.Update(int64(block.NumberU64()))
bc.chainmu.Unlock()
// Destroy any existing state snapshot and regenerate it in the background,
// also resuming the normal maintenance of any previously paused snapshot.
if bc.snaps != nil {
bc.snaps.Rebuild(root)
}
log.Info("Committed new head block", "number", block.Number(), "hash", hash)
return nil
}
// Reset purges the entire blockchain, restoring it to its genesis state.
func (bc *BlockChain) Reset() error {
return bc.ResetWithGenesisBlock(bc.genesisBlock)
}
// ResetWithGenesisBlock purges the entire blockchain, restoring it to the
// specified genesis state.
func (bc *BlockChain) ResetWithGenesisBlock(genesis *types.Block) error {
// Dump the entire block chain and purge the caches
if err := bc.SetHead(0); err != nil {
return err
}
if !bc.chainmu.TryLock() {
return errChainStopped
}
defer bc.chainmu.Unlock()
// Prepare the genesis block and reinitialise the chain
batch := bc.db.NewBatch()
rawdb.WriteTd(batch, genesis.Hash(), genesis.NumberU64(), genesis.Difficulty())
rawdb.WriteBlock(batch, genesis)
if err := batch.Write(); err != nil {
log.Crit("Failed to write genesis block", "err", err)
}
bc.writeHeadBlock(genesis)
// Last update all in-memory chain markers
bc.genesisBlock = genesis
bc.currentBlock.Store(bc.genesisBlock.Header())
headBlockGauge.Update(int64(bc.genesisBlock.NumberU64()))
bc.hc.SetGenesis(bc.genesisBlock.Header())
bc.hc.SetCurrentHeader(bc.genesisBlock.Header())
bc.currentSnapBlock.Store(bc.genesisBlock.Header())
headFastBlockGauge.Update(int64(bc.genesisBlock.NumberU64()))
return nil
}
// Export writes the active chain to the given writer.
func (bc *BlockChain) Export(w io.Writer) error {
return bc.ExportN(w, uint64(0), bc.CurrentBlock().Number.Uint64())
}
// ExportN writes a subset of the active chain to the given writer.
func (bc *BlockChain) ExportN(w io.Writer, first uint64, last uint64) error {
if first > last {
return fmt.Errorf("export failed: first (%d) is greater than last (%d)", first, last)
}
log.Info("Exporting batch of blocks", "count", last-first+1)
var (
parentHash common.Hash
start = time.Now()
reported = time.Now()
)
for nr := first; nr <= last; nr++ {
block := bc.GetBlockByNumber(nr)
if block == nil {
return fmt.Errorf("export failed on #%d: not found", nr)
}
if nr > first && block.ParentHash() != parentHash {
return errors.New("export failed: chain reorg during export")
}
parentHash = block.Hash()
if err := block.EncodeRLP(w); err != nil {
return err
}
if time.Since(reported) >= statsReportLimit {
log.Info("Exporting blocks", "exported", block.NumberU64()-first, "elapsed", common.PrettyDuration(time.Since(start)))
reported = time.Now()
}
}
return nil
}
// writeHeadBlock injects a new head block into the current block chain. This method
// assumes that the block is indeed a true head. It will also reset the head
// header and the head snap sync block to this very same block if they are older
// or if they are on a different side chain.
//
// Note, this function assumes that the `mu` mutex is held!
func (bc *BlockChain) writeHeadBlock(block *types.Block) {
// Add the block to the canonical chain number scheme and mark as the head
batch := bc.db.NewBatch()
rawdb.WriteHeadHeaderHash(batch, block.Hash())
rawdb.WriteHeadFastBlockHash(batch, block.Hash())
rawdb.WriteCanonicalHash(batch, block.Hash(), block.NumberU64())
rawdb.WriteTxLookupEntriesByBlock(batch, block)
rawdb.WriteHeadBlockHash(batch, block.Hash())
// Flush the whole batch into the disk, exit the node if failed
if err := batch.Write(); err != nil {
log.Crit("Failed to update chain indexes and markers", "err", err)
}
// Update all in-memory chain markers in the last step
bc.hc.SetCurrentHeader(block.Header())
bc.currentSnapBlock.Store(block.Header())
headFastBlockGauge.Update(int64(block.NumberU64()))
bc.currentBlock.Store(block.Header())
headBlockGauge.Update(int64(block.NumberU64()))
}
// stopWithoutSaving stops the blockchain service. If any imports are currently in progress
// it will abort them using the procInterrupt. This method stops all running
// goroutines, but does not do all the post-stop work of persisting data.
// OBS! It is generally recommended to use the Stop method!
// This method has been exposed to allow tests to stop the blockchain while simulating
// a crash.
func (bc *BlockChain) stopWithoutSaving() {
if !bc.stopping.CompareAndSwap(false, true) {
return
}
// Signal shutdown tx indexer.
if bc.txIndexer != nil {
bc.txIndexer.close()
}
// Unsubscribe all subscriptions registered from blockchain.
bc.scope.Close()
// Signal shutdown to all goroutines.
close(bc.quit)
bc.StopInsert()
// Now wait for all chain modifications to end and persistent goroutines to exit.
//
// Note: Close waits for the mutex to become available, i.e. any running chain
// modification will have exited when Close returns. Since we also called StopInsert,
// the mutex should become available quickly. It cannot be taken again after Close has
// returned.
bc.chainmu.Close()
bc.wg.Wait()
}
// Stop stops the blockchain service. If any imports are currently in progress
// it will abort them using the procInterrupt.
func (bc *BlockChain) Stop() {
bc.stopWithoutSaving()
// Ensure that the entirety of the state snapshot is journaled to disk.
var snapBase common.Hash
if bc.snaps != nil {
var err error
if snapBase, err = bc.snaps.Journal(bc.CurrentBlock().Root); err != nil {
log.Error("Failed to journal state snapshot", "err", err)
}
bc.snaps.Release()
}
if bc.triedb.Scheme() == rawdb.PathScheme {
// Ensure that the in-memory trie nodes are journaled to disk properly.
if err := bc.triedb.Journal(bc.CurrentBlock().Root); err != nil {
log.Info("Failed to journal in-memory trie nodes", "err", err)
}
} else {
// Ensure the state of a recent block is also stored to disk before exiting.
// We're writing three different states to catch different restart scenarios:
// - HEAD: So we don't need to reprocess any blocks in the general case
// - HEAD-1: So we don't do large reorgs if our HEAD becomes an uncle
// - HEAD-127: So we have a hard limit on the number of blocks reexecuted
if !bc.cacheConfig.TrieDirtyDisabled {
triedb := bc.triedb
for _, offset := range []uint64{0, 1, TriesInMemory - 1} {
if number := bc.CurrentBlock().Number.Uint64(); number > offset {
recent := bc.GetBlockByNumber(number - offset)
log.Info("Writing cached state to disk", "block", recent.Number(), "hash", recent.Hash(), "root", recent.Root())
if err := triedb.Commit(recent.Root(), true); err != nil {
log.Error("Failed to commit recent state trie", "err", err)
}
}
}
if snapBase != (common.Hash{}) {
log.Info("Writing snapshot state to disk", "root", snapBase)
if err := triedb.Commit(snapBase, true); err != nil {
log.Error("Failed to commit recent state trie", "err", err)
}
}
for !bc.triegc.Empty() {
triedb.Dereference(bc.triegc.PopItem())
}
if _, nodes, _ := triedb.Size(); nodes != 0 { // all memory is contained within the nodes return for hashdb
log.Error("Dangling trie nodes after full cleanup")
}
}
}
// Close the trie database, release all the held resources as the last step.
if err := bc.triedb.Close(); err != nil {
log.Error("Failed to close trie database", "err", err)
}
log.Info("Blockchain stopped")
}
// StopInsert interrupts all insertion methods, causing them to return
// errInsertionInterrupted as soon as possible. Insertion is permanently disabled after
// calling this method.
func (bc *BlockChain) StopInsert() {
bc.procInterrupt.Store(true)
}
// insertStopped returns true after StopInsert has been called.
func (bc *BlockChain) insertStopped() bool {
return bc.procInterrupt.Load()
}
// WriteStatus status of write
type WriteStatus byte
const (
NonStatTy WriteStatus = iota
CanonStatTy
SideStatTy
)
// InsertReceiptChain attempts to complete an already existing header chain with
// transaction and receipt data.
func (bc *BlockChain) InsertReceiptChain(blockChain types.Blocks, receiptChain []types.Receipts, ancientLimit uint64) (int, error) {
// We don't require the chainMu here since we want to maximize the
// concurrency of header insertion and receipt insertion.
bc.wg.Add(1)
defer bc.wg.Done()
var (
ancientBlocks, liveBlocks types.Blocks
ancientReceipts, liveReceipts []types.Receipts
)
// Do a sanity check that the provided chain is actually ordered and linked
for i, block := range blockChain {
if i != 0 {
prev := blockChain[i-1]
if block.NumberU64() != prev.NumberU64()+1 || block.ParentHash() != prev.Hash() {
log.Error("Non contiguous receipt insert",
"number", block.Number(), "hash", block.Hash(), "parent", block.ParentHash(),
"prevnumber", prev.Number(), "prevhash", prev.Hash())
return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x..], item %d is #%d [%x..] (parent [%x..])",
i-1, prev.NumberU64(), prev.Hash().Bytes()[:4],
i, block.NumberU64(), block.Hash().Bytes()[:4], block.ParentHash().Bytes()[:4])
}
}
if block.NumberU64() <= ancientLimit {
ancientBlocks, ancientReceipts = append(ancientBlocks, block), append(ancientReceipts, receiptChain[i])
} else {
liveBlocks, liveReceipts = append(liveBlocks, block), append(liveReceipts, receiptChain[i])
}
// Here we also validate that blob transactions in the block do not contain a sidecar.
// While the sidecar does not affect the block hash / tx hash, sending blobs within a block is not allowed.
for txIndex, tx := range block.Transactions() {
if tx.Type() == types.BlobTxType && tx.BlobTxSidecar() != nil {
return 0, fmt.Errorf("block #%d contains unexpected blob sidecar in tx at index %d", block.NumberU64(), txIndex)
}
}
}
var (
stats = struct{ processed, ignored int32 }{}
start = time.Now()
size = int64(0)
)
// updateHead updates the head snap sync block if the inserted blocks are better
// and returns an indicator whether the inserted blocks are canonical.
updateHead := func(head *types.Block) bool {
if !bc.chainmu.TryLock() {
return false
}
defer bc.chainmu.Unlock()
// Rewind may have occurred, skip in that case.
if bc.CurrentHeader().Number.Cmp(head.Number()) >= 0 {
reorg, err := bc.forker.ReorgNeeded(bc.CurrentSnapBlock(), head.Header())
if err != nil {
log.Warn("Reorg failed", "err", err)
return false
} else if !reorg {
return false
}
rawdb.WriteHeadFastBlockHash(bc.db, head.Hash())
bc.currentSnapBlock.Store(head.Header())
headFastBlockGauge.Update(int64(head.NumberU64()))
return true
}
return false
}
// writeAncient writes blockchain and corresponding receipt chain into ancient store.
//
// this function only accepts canonical chain data. All side chain will be reverted
// eventually.
writeAncient := func(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) {
first := blockChain[0]
last := blockChain[len(blockChain)-1]
// Ensure genesis is in ancients.
if first.NumberU64() == 1 {
if frozen, _ := bc.db.Ancients(); frozen == 0 {
td := bc.genesisBlock.Difficulty()
writeSize, err := rawdb.WriteAncientBlocks(bc.db, []*types.Block{bc.genesisBlock}, []types.Receipts{nil}, td)
if err != nil {
log.Error("Error writing genesis to ancients", "err", err)
return 0, err
}
size += writeSize
log.Info("Wrote genesis to ancients")
}
}
// Before writing the blocks to the ancients, we need to ensure that
// they correspond to the what the headerchain 'expects'.
// We only check the last block/header, since it's a contiguous chain.
if !bc.HasHeader(last.Hash(), last.NumberU64()) {
return 0, fmt.Errorf("containing header #%d [%x..] unknown", last.Number(), last.Hash().Bytes()[:4])
}
// Write all chain data to ancients.
td := bc.GetTd(first.Hash(), first.NumberU64())
writeSize, err := rawdb.WriteAncientBlocks(bc.db, blockChain, receiptChain, td)
if err != nil {
log.Error("Error importing chain data to ancients", "err", err)
return 0, err
}
size += writeSize
// Sync the ancient store explicitly to ensure all data has been flushed to disk.
if err := bc.db.Sync(); err != nil {
return 0, err
}
// Update the current snap block because all block data is now present in DB.
previousSnapBlock := bc.CurrentSnapBlock().Number.Uint64()
if !updateHead(blockChain[len(blockChain)-1]) {
// We end up here if the header chain has reorg'ed, and the blocks/receipts
// don't match the canonical chain.
if _, err := bc.db.TruncateHead(previousSnapBlock + 1); err != nil {
log.Error("Can't truncate ancient store after failed insert", "err", err)
}
return 0, errSideChainReceipts
}
// Delete block data from the main database.
var (
batch = bc.db.NewBatch()
canonHashes = make(map[common.Hash]struct{})
)
for _, block := range blockChain {
canonHashes[block.Hash()] = struct{}{}
if block.NumberU64() == 0 {
continue
}
rawdb.DeleteCanonicalHash(batch, block.NumberU64())
rawdb.DeleteBlockWithoutNumber(batch, block.Hash(), block.NumberU64())
}
// Delete side chain hash-to-number mappings.
for _, nh := range rawdb.ReadAllHashesInRange(bc.db, first.NumberU64(), last.NumberU64()) {
if _, canon := canonHashes[nh.Hash]; !canon {
rawdb.DeleteHeader(batch, nh.Hash, nh.Number)
}
}
if err := batch.Write(); err != nil {
return 0, err
}
stats.processed += int32(len(blockChain))
return 0, nil
}
// writeLive writes blockchain and corresponding receipt chain into active store.
writeLive := func(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) {
var (
skipPresenceCheck = false
batch = bc.db.NewBatch()
)
for i, block := range blockChain {
// Short circuit insertion if shutting down or processing failed
if bc.insertStopped() {
return 0, errInsertionInterrupted
}
// Short circuit if the owner header is unknown
if !bc.HasHeader(block.Hash(), block.NumberU64()) {
return i, fmt.Errorf("containing header #%d [%x..] unknown", block.Number(), block.Hash().Bytes()[:4])
}
if !skipPresenceCheck {
// Ignore if the entire data is already known
if bc.HasBlock(block.Hash(), block.NumberU64()) {
stats.ignored++
continue
} else {
// If block N is not present, neither are the later blocks.
// This should be true, but if we are mistaken, the shortcut
// here will only cause overwriting of some existing data
skipPresenceCheck = true
}
}
// Write all the data out into the database
rawdb.WriteBody(batch, block.Hash(), block.NumberU64(), block.Body())
rawdb.WriteReceipts(batch, block.Hash(), block.NumberU64(), receiptChain[i])
// Write everything belongs to the blocks into the database. So that
// we can ensure all components of body is completed(body, receipts)
// except transaction indexes(will be created once sync is finished).
if batch.ValueSize() >= ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
return 0, err
}
size += int64(batch.ValueSize())
batch.Reset()
}
stats.processed++
}
// Write everything belongs to the blocks into the database. So that
// we can ensure all components of body is completed(body, receipts,
// tx indexes)
if batch.ValueSize() > 0 {
size += int64(batch.ValueSize())
if err := batch.Write(); err != nil {
return 0, err
}
}
updateHead(blockChain[len(blockChain)-1])
return 0, nil
}
// Write downloaded chain data and corresponding receipt chain data
if len(ancientBlocks) > 0 {
if n, err := writeAncient(ancientBlocks, ancientReceipts); err != nil {
if err == errInsertionInterrupted {
return 0, nil
}
return n, err
}
}
if len(liveBlocks) > 0 {
if n, err := writeLive(liveBlocks, liveReceipts); err != nil {
if err == errInsertionInterrupted {
return 0, nil
}
return n, err
}
}
var (
head = blockChain[len(blockChain)-1]
context = []interface{}{
"count", stats.processed, "elapsed", common.PrettyDuration(time.Since(start)),
"number", head.Number(), "hash", head.Hash(), "age", common.PrettyAge(time.Unix(int64(head.Time()), 0)),
"size", common.StorageSize(size),
}
)
if stats.ignored > 0 {
context = append(context, []interface{}{"ignored", stats.ignored}...)
}
log.Debug("Imported new block receipts", context...)
return 0, nil
}
// writeBlockWithoutState writes only the block and its metadata to the database,
// but does not write any state. This is used to construct competing side forks
// up to the point where they exceed the canonical total difficulty.
func (bc *BlockChain) writeBlockWithoutState(block *types.Block, td *big.Int) (err error) {
if bc.insertStopped() {
return errInsertionInterrupted
}
batch := bc.db.NewBatch()
rawdb.WriteTd(batch, block.Hash(), block.NumberU64(), td)
rawdb.WriteBlock(batch, block)
if err := batch.Write(); err != nil {
log.Crit("Failed to write block into disk", "err", err)
}
return nil
}
// writeKnownBlock updates the head block flag with a known block
// and introduces chain reorg if necessary.
func (bc *BlockChain) writeKnownBlock(block *types.Block) error {
current := bc.CurrentBlock()
if block.ParentHash() != current.Hash() {
if err := bc.reorg(current, block); err != nil {
return err
}
}
bc.writeHeadBlock(block)
return nil
}
// writeBlockWithState writes block, metadata and corresponding state data to the
// database.
func (bc *BlockChain) writeBlockWithState(block *types.Block, receipts []*types.Receipt, state *state.StateDB) error {
// Calculate the total difficulty of the block
ptd := bc.GetTd(block.ParentHash(), block.NumberU64()-1)
if ptd == nil {
return consensus.ErrUnknownAncestor
}
// Make sure no inconsistent state is leaked during insertion
externTd := new(big.Int).Add(block.Difficulty(), ptd)
// Irrelevant of the canonical status, write the block itself to the database.
//
// Note all the components of block(td, hash->number map, header, body, receipts)
// should be written atomically. BlockBatch is used for containing all components.
blockBatch := bc.db.NewBatch()
rawdb.WriteTd(blockBatch, block.Hash(), block.NumberU64(), externTd)
rawdb.WriteBlock(blockBatch, block)
rawdb.WriteReceipts(blockBatch, block.Hash(), block.NumberU64(), receipts)
rawdb.WritePreimages(blockBatch, state.Preimages())
if err := blockBatch.Write(); err != nil {
log.Crit("Failed to write block into disk", "err", err)
}
// Commit all cached state changes into underlying memory database.
root, err := state.Commit(block.NumberU64(), bc.chainConfig.IsEIP158(block.Number()))
if err != nil {
return err
}
// If node is running in path mode, skip explicit gc operation
// which is unnecessary in this mode.
if bc.triedb.Scheme() == rawdb.PathScheme {
return nil
}
// If we're running an archive node, always flush
if bc.cacheConfig.TrieDirtyDisabled {
return bc.triedb.Commit(root, false)
}
// Full but not archive node, do proper garbage collection
bc.triedb.Reference(root, common.Hash{}) // metadata reference to keep trie alive
bc.triegc.Push(root, -int64(block.NumberU64()))
// Flush limits are not considered for the first TriesInMemory blocks.
current := block.NumberU64()
if current <= TriesInMemory {
return nil
}
// If we exceeded our memory allowance, flush matured singleton nodes to disk
var (
_, nodes, imgs = bc.triedb.Size() // all memory is contained within the nodes return for hashdb
limit = common.StorageSize(bc.cacheConfig.TrieDirtyLimit) * 1024 * 1024
)
if nodes > limit || imgs > 4*1024*1024 {
bc.triedb.Cap(limit - ethdb.IdealBatchSize)
}
// Find the next state trie we need to commit
chosen := current - TriesInMemory
flushInterval := time.Duration(bc.flushInterval.Load())
// If we exceeded time allowance, flush an entire trie to disk
if bc.gcproc > flushInterval {
// If the header is missing (canonical chain behind), we're reorging a low
// diff sidechain. Suspend committing until this operation is completed.
header := bc.GetHeaderByNumber(chosen)
if header == nil {
log.Warn("Reorg in progress, trie commit postponed", "number", chosen)
} else {
// If we're exceeding limits but haven't reached a large enough memory gap,
// warn the user that the system is becoming unstable.
if chosen < bc.lastWrite+TriesInMemory && bc.gcproc >= 2*flushInterval {
log.Info("State in memory for too long, committing", "time", bc.gcproc, "allowance", flushInterval, "optimum", float64(chosen-bc.lastWrite)/TriesInMemory)
}
// Flush an entire trie and restart the counters
bc.triedb.Commit(header.Root, true)
bc.lastWrite = chosen
bc.gcproc = 0
}
}
// Garbage collect anything below our required write retention
for !bc.triegc.Empty() {
root, number := bc.triegc.Pop()
if uint64(-number) > chosen {
bc.triegc.Push(root, number)
break
}
bc.triedb.Dereference(root)
}
return nil
}
// writeBlockAndSetHead is the internal implementation of WriteBlockAndSetHead.
// This function expects the chain mutex to be held.
func (bc *BlockChain) writeBlockAndSetHead(block *types.Block, receipts []*types.Receipt, logs []*types.Log, state *state.StateDB, emitHeadEvent bool) (status WriteStatus, err error) {
if err := bc.writeBlockWithState(block, receipts, state); err != nil {
return NonStatTy, err
}
currentBlock := bc.CurrentBlock()
reorg, err := bc.forker.ReorgNeeded(currentBlock, block.Header())
if err != nil {
return NonStatTy, err
}
if reorg {
// Reorganise the chain if the parent is not the head block
if block.ParentHash() != currentBlock.Hash() {
if err := bc.reorg(currentBlock, block); err != nil {
return NonStatTy, err
}
}
status = CanonStatTy
} else {
status = SideStatTy
}
// Set new head.
if status == CanonStatTy {
bc.writeHeadBlock(block)
}
if status == CanonStatTy {
bc.chainFeed.Send(ChainEvent{Block: block, Hash: block.Hash(), Logs: logs})
if len(logs) > 0 {
bc.logsFeed.Send(logs)
}
// In theory, we should fire a ChainHeadEvent when we inject
// a canonical block, but sometimes we can insert a batch of
// canonical blocks. Avoid firing too many ChainHeadEvents,
// we will fire an accumulated ChainHeadEvent and disable fire
// event here.
if emitHeadEvent {
bc.chainHeadFeed.Send(ChainHeadEvent{Block: block})
}
} else {
bc.chainSideFeed.Send(ChainSideEvent{Block: block})
}
return status, nil
}
// InsertChain attempts to insert the given batch of blocks in to the canonical
// chain or, otherwise, create a fork. If an error is returned it will return
// the index number of the failing block as well an error describing what went
// wrong. After insertion is done, all accumulated events will be fired.
func (bc *BlockChain) InsertChain(chain types.Blocks) (int, error) {
// Sanity check that we have something meaningful to import
if len(chain) == 0 {
return 0, nil
}
bc.blockProcFeed.Send(true)
defer bc.blockProcFeed.Send(false)
// Do a sanity check that the provided chain is actually ordered and linked.
for i := 1; i < len(chain); i++ {
block, prev := chain[i], chain[i-1]
if block.NumberU64() != prev.NumberU64()+1 || block.ParentHash() != prev.Hash() {
log.Error("Non contiguous block insert",
"number", block.Number(),
"hash", block.Hash(),
"parent", block.ParentHash(),
"prevnumber", prev.Number(),
"prevhash", prev.Hash(),
)
return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x..], item %d is #%d [%x..] (parent [%x..])", i-1, prev.NumberU64(),
prev.Hash().Bytes()[:4], i, block.NumberU64(), block.Hash().Bytes()[:4], block.ParentHash().Bytes()[:4])
}
}
// Pre-checks passed, start the full block imports
if !bc.chainmu.TryLock() {
return 0, errChainStopped
}
defer bc.chainmu.Unlock()
return bc.insertChain(chain, true)
}
// insertChain is the internal implementation of InsertChain, which assumes that
// 1) chains are contiguous, and 2) The chain mutex is held.
//
// This method is split out so that import batches that require re-injecting
// historical blocks can do so without releasing the lock, which could lead to
// racey behaviour. If a sidechain import is in progress, and the historic state
// is imported, but then new canon-head is added before the actual sidechain
// completes, then the historic state could be pruned again
func (bc *BlockChain) insertChain(chain types.Blocks, setHead bool) (int, error) {
// If the chain is terminating, don't even bother starting up.
if bc.insertStopped() {
return 0, nil
}
// Start a parallel signature recovery (signer will fluke on fork transition, minimal perf loss)
SenderCacher.RecoverFromBlocks(types.MakeSigner(bc.chainConfig, chain[0].Number(), chain[0].Time()), chain)
var (
stats = insertStats{startTime: mclock.Now()}
lastCanon *types.Block
)
// Fire a single chain head event if we've progressed the chain
defer func() {
if lastCanon != nil && bc.CurrentBlock().Hash() == lastCanon.Hash() {
bc.chainHeadFeed.Send(ChainHeadEvent{lastCanon})
}
}()
// Start the parallel header verifier
headers := make([]*types.Header, len(chain))
for i, block := range chain {
headers[i] = block.Header()
}
abort, results := bc.engine.VerifyHeaders(bc, headers)
defer close(abort)
// Peek the error for the first block to decide the directing import logic
it := newInsertIterator(chain, results, bc.validator)
block, err := it.next()
// Left-trim all the known blocks that don't need to build snapshot
if bc.skipBlock(err, it) {
// First block (and state) is known
// 1. We did a roll-back, and should now do a re-import
// 2. The block is stored as a sidechain, and is lying about it's stateroot, and passes a stateroot
// from the canonical chain, which has not been verified.
// Skip all known blocks that are behind us.
var (
reorg bool
current = bc.CurrentBlock()
)
for block != nil && bc.skipBlock(err, it) {
reorg, err = bc.forker.ReorgNeeded(current, block.Header())
if err != nil {
return it.index, err
}
if reorg {
// Switch to import mode if the forker says the reorg is necessary
// and also the block is not on the canonical chain.
// In eth2 the forker always returns true for reorg decision (blindly trusting
// the external consensus engine), but in order to prevent the unnecessary
// reorgs when importing known blocks, the special case is handled here.
if block.NumberU64() > current.Number.Uint64() || bc.GetCanonicalHash(block.NumberU64()) != block.Hash() {
break
}
}
log.Debug("Ignoring already known block", "number", block.Number(), "hash", block.Hash())
stats.ignored++
block, err = it.next()
}
// The remaining blocks are still known blocks, the only scenario here is:
// During the snap sync, the pivot point is already submitted but rollback
// happens. Then node resets the head full block to a lower height via `rollback`
// and leaves a few known blocks in the database.
//
// When node runs a snap sync again, it can re-import a batch of known blocks via
// `insertChain` while a part of them have higher total difficulty than current
// head full block(new pivot point).
for block != nil && bc.skipBlock(err, it) {
log.Debug("Writing previously known block", "number", block.Number(), "hash", block.Hash())
if err := bc.writeKnownBlock(block); err != nil {
return it.index, err
}
lastCanon = block
block, err = it.next()
}
// Falls through to the block import
}
switch {
// First block is pruned
case errors.Is(err, consensus.ErrPrunedAncestor):
if setHead {
// First block is pruned, insert as sidechain and reorg only if TD grows enough
log.Debug("Pruned ancestor, inserting as sidechain", "number", block.Number(), "hash", block.Hash())
return bc.insertSideChain(block, it)
} else {
// We're post-merge and the parent is pruned, try to recover the parent state
log.Debug("Pruned ancestor", "number", block.Number(), "hash", block.Hash())
_, err := bc.recoverAncestors(block)
return it.index, err
}
// Some other error(except ErrKnownBlock) occurred, abort.
// ErrKnownBlock is allowed here since some known blocks
// still need re-execution to generate snapshots that are missing
case err != nil && !errors.Is(err, ErrKnownBlock):
stats.ignored += len(it.chain)
bc.reportBlock(block, nil, err)
return it.index, err
}
// No validation errors for the first block (or chain prefix skipped)
var activeState *state.StateDB
defer func() {
// The chain importer is starting and stopping trie prefetchers. If a bad
// block or other error is hit however, an early return may not properly
// terminate the background threads. This defer ensures that we clean up
// and dangling prefetcher, without deferring each and holding on live refs.
if activeState != nil {
activeState.StopPrefetcher()
}
}()
for ; block != nil && err == nil || errors.Is(err, ErrKnownBlock); block, err = it.next() {
// If the chain is terminating, stop processing blocks
if bc.insertStopped() {
log.Debug("Abort during block processing")
break
}
// If the header is a banned one, straight out abort
if BadHashes[block.Hash()] {
bc.reportBlock(block, nil, ErrBannedHash)
return it.index, ErrBannedHash
}
// If the block is known (in the middle of the chain), it's a special case for
// Clique blocks where they can share state among each other, so importing an
// older block might complete the state of the subsequent one. In this case,
// just skip the block (we already validated it once fully (and crashed), since
// its header and body was already in the database). But if the corresponding
// snapshot layer is missing, forcibly rerun the execution to build it.
if bc.skipBlock(err, it) {
logger := log.Debug
if bc.chainConfig.Clique == nil {
logger = log.Warn
}
logger("Inserted known block", "number", block.Number(), "hash", block.Hash(),
"uncles", len(block.Uncles()), "txs", len(block.Transactions()), "gas", block.GasUsed(),
"root", block.Root())
// Special case. Commit the empty receipt slice if we meet the known
// block in the middle. It can only happen in the clique chain. Whenever
// we insert blocks via `insertSideChain`, we only commit `td`, `header`
// and `body` if it's non-existent. Since we don't have receipts without
// reexecution, so nothing to commit. But if the sidechain will be adopted
// as the canonical chain eventually, it needs to be reexecuted for missing
// state, but if it's this special case here(skip reexecution) we will lose
// the empty receipt entry.
if len(block.Transactions()) == 0 {
rawdb.WriteReceipts(bc.db, block.Hash(), block.NumberU64(), nil)
} else {
log.Error("Please file an issue, skip known block execution without receipt",
"hash", block.Hash(), "number", block.NumberU64())
}
if err := bc.writeKnownBlock(block); err != nil {
return it.index, err
}
stats.processed++
if bc.logger != nil && bc.logger.OnSkippedBlock != nil {
bc.logger.OnSkippedBlock(tracing.BlockEvent{
Block: block,
TD: bc.GetTd(block.ParentHash(), block.NumberU64()-1),
Finalized: bc.CurrentFinalBlock(),
Safe: bc.CurrentSafeBlock(),
})
}
// We can assume that logs are empty here, since the only way for consecutive
// Clique blocks to have the same state is if there are no transactions.
lastCanon = block
continue
}
// Retrieve the parent block and it's state to execute on top
start := time.Now()
parent := it.previous()
if parent == nil {
parent = bc.GetHeader(block.ParentHash(), block.NumberU64()-1)
}
statedb, err := state.New(parent.Root, bc.stateCache, bc.snaps)
if err != nil {
return it.index, err
}
statedb.SetLogger(bc.logger)
// Enable prefetching to pull in trie node paths while processing transactions
statedb.StartPrefetcher("chain")
activeState = statedb
// If we have a followup block, run that against the current state to pre-cache
// transactions and probabilistically some of the account/storage trie nodes.
var followupInterrupt atomic.Bool
if !bc.cacheConfig.TrieCleanNoPrefetch {
if followup, err := it.peek(); followup != nil && err == nil {
throwaway, _ := state.New(parent.Root, bc.stateCache, bc.snaps)
go func(start time.Time, followup *types.Block, throwaway *state.StateDB) {
// Disable tracing for prefetcher executions.
vmCfg := bc.vmConfig
vmCfg.Tracer = nil
bc.prefetcher.Prefetch(followup, throwaway, vmCfg, &followupInterrupt)
blockPrefetchExecuteTimer.Update(time.Since(start))
if followupInterrupt.Load() {
blockPrefetchInterruptMeter.Mark(1)
}
}(time.Now(), followup, throwaway)
}
}
// The traced section of block import.
res, err := bc.processBlock(block, statedb, start, setHead)
followupInterrupt.Store(true)
if err != nil {
return it.index, err
}
// Report the import stats before returning the various results
stats.processed++
stats.usedGas += res.usedGas
var snapDiffItems, snapBufItems common.StorageSize
if bc.snaps != nil {
snapDiffItems, snapBufItems = bc.snaps.Size()
}
trieDiffNodes, trieBufNodes, _ := bc.triedb.Size()
stats.report(chain, it.index, snapDiffItems, snapBufItems, trieDiffNodes, trieBufNodes, setHead)
if !setHead {
// After merge we expect few side chains. Simply count
// all blocks the CL gives us for GC processing time
bc.gcproc += res.procTime
return it.index, nil // Direct block insertion of a single block
}
switch res.status {
case CanonStatTy:
log.Debug("Inserted new block", "number", block.Number(), "hash", block.Hash(),
"uncles", len(block.Uncles()), "txs", len(block.Transactions()), "gas", block.GasUsed(),
"elapsed", common.PrettyDuration(time.Since(start)),
"root", block.Root())
lastCanon = block
// Only count canonical blocks for GC processing time
bc.gcproc += res.procTime
case SideStatTy:
log.Debug("Inserted forked block", "number", block.Number(), "hash", block.Hash(),
"diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)),
"txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()),
"root", block.Root())
default:
// This in theory is impossible, but lets be nice to our future selves and leave
// a log, instead of trying to track down blocks imports that don't emit logs.
log.Warn("Inserted block with unknown status", "number", block.Number(), "hash", block.Hash(),
"diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)),
"txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()),
"root", block.Root())
}
}
stats.ignored += it.remaining()
return it.index, err
}
// blockProcessingResult is a summary of block processing
// used for updating the stats.
type blockProcessingResult struct {
usedGas uint64
procTime time.Duration
status WriteStatus
}
// processBlock executes and validates the given block. If there was no error
// it writes the block and associated state to database.
func (bc *BlockChain) processBlock(block *types.Block, statedb *state.StateDB, start time.Time, setHead bool) (_ *blockProcessingResult, blockEndErr error) {
if bc.logger != nil && bc.logger.OnBlockStart != nil {
td := bc.GetTd(block.ParentHash(), block.NumberU64()-1)
bc.logger.OnBlockStart(tracing.BlockEvent{
Block: block,
TD: td,
Finalized: bc.CurrentFinalBlock(),
Safe: bc.CurrentSafeBlock(),
})
}
if bc.logger != nil && bc.logger.OnBlockEnd != nil {
defer func() {
bc.logger.OnBlockEnd(blockEndErr)
}()
}
// Process block using the parent state as reference point
pstart := time.Now()
receipts, logs, usedGas, err := bc.processor.Process(block, statedb, bc.vmConfig)
if err != nil {
bc.reportBlock(block, receipts, err)
return nil, err
}
ptime := time.Since(pstart)
vstart := time.Now()
if err := bc.validator.ValidateState(block, statedb, receipts, usedGas); err != nil {
bc.reportBlock(block, receipts, err)
return nil, err
}
vtime := time.Since(vstart)
proctime := time.Since(start) // processing + validation
// Update the metrics touched during block processing and validation
accountReadTimer.Update(statedb.AccountReads) // Account reads are complete(in processing)
storageReadTimer.Update(statedb.StorageReads) // Storage reads are complete(in processing)
snapshotAccountReadTimer.Update(statedb.SnapshotAccountReads) // Account reads are complete(in processing)
snapshotStorageReadTimer.Update(statedb.SnapshotStorageReads) // Storage reads are complete(in processing)
accountUpdateTimer.Update(statedb.AccountUpdates) // Account updates are complete(in validation)
storageUpdateTimer.Update(statedb.StorageUpdates) // Storage updates are complete(in validation)
accountHashTimer.Update(statedb.AccountHashes) // Account hashes are complete(in validation)
storageHashTimer.Update(statedb.StorageHashes) // Storage hashes are complete(in validation)
triehash := statedb.AccountHashes + statedb.StorageHashes // The time spent on tries hashing
trieUpdate := statedb.AccountUpdates + statedb.StorageUpdates // The time spent on tries update
trieRead := statedb.SnapshotAccountReads + statedb.AccountReads // The time spent on account read
trieRead += statedb.SnapshotStorageReads + statedb.StorageReads // The time spent on storage read
blockExecutionTimer.Update(ptime - trieRead) // The time spent on EVM processing
blockValidationTimer.Update(vtime - (triehash + trieUpdate)) // The time spent on block validation
// Write the block to the chain and get the status.
var (
wstart = time.Now()
status WriteStatus
)
if !setHead {
// Don't set the head, only insert the block
err = bc.writeBlockWithState(block, receipts, statedb)
} else {
status, err = bc.writeBlockAndSetHead(block, receipts, logs, statedb, false)
}
if err != nil {
return nil, err
}
// Update the metrics touched during block commit
accountCommitTimer.Update(statedb.AccountCommits) // Account commits are complete, we can mark them
storageCommitTimer.Update(statedb.StorageCommits) // Storage commits are complete, we can mark them
snapshotCommitTimer.Update(statedb.SnapshotCommits) // Snapshot commits are complete, we can mark them
triedbCommitTimer.Update(statedb.TrieDBCommits) // Trie database commits are complete, we can mark them
blockWriteTimer.Update(time.Since(wstart) - statedb.AccountCommits - statedb.StorageCommits - statedb.SnapshotCommits - statedb.TrieDBCommits)
blockInsertTimer.UpdateSince(start)
return &blockProcessingResult{usedGas: usedGas, procTime: proctime, status: status}, nil
}
// insertSideChain is called when an import batch hits upon a pruned ancestor
// error, which happens when a sidechain with a sufficiently old fork-block is
// found.
//
// The method writes all (header-and-body-valid) blocks to disk, then tries to
// switch over to the new chain if the TD exceeded the current chain.
// insertSideChain is only used pre-merge.
func (bc *BlockChain) insertSideChain(block *types.Block, it *insertIterator) (int, error) {
var (
externTd *big.Int
lastBlock = block
current = bc.CurrentBlock()
)
// The first sidechain block error is already verified to be ErrPrunedAncestor.
// Since we don't import them here, we expect ErrUnknownAncestor for the remaining
// ones. Any other errors means that the block is invalid, and should not be written
// to disk.
err := consensus.ErrPrunedAncestor
for ; block != nil && errors.Is(err, consensus.ErrPrunedAncestor); block, err = it.next() {
// Check the canonical state root for that number
if number := block.NumberU64(); current.Number.Uint64() >= number {
canonical := bc.GetBlockByNumber(number)
if canonical != nil && canonical.Hash() == block.Hash() {
// Not a sidechain block, this is a re-import of a canon block which has it's state pruned
// Collect the TD of the block. Since we know it's a canon one,
// we can get it directly, and not (like further below) use
// the parent and then add the block on top
externTd = bc.GetTd(block.Hash(), block.NumberU64())
continue
}
if canonical != nil && canonical.Root() == block.Root() {
// This is most likely a shadow-state attack. When a fork is imported into the
// database, and it eventually reaches a block height which is not pruned, we
// just found that the state already exist! This means that the sidechain block
// refers to a state which already exists in our canon chain.
//
// If left unchecked, we would now proceed importing the blocks, without actually
// having verified the state of the previous blocks.
log.Warn("Sidechain ghost-state attack detected", "number", block.NumberU64(), "sideroot", block.Root(), "canonroot", canonical.Root())
// If someone legitimately side-mines blocks, they would still be imported as usual. However,
// we cannot risk writing unverified blocks to disk when they obviously target the pruning
// mechanism.
return it.index, errors.New("sidechain ghost-state attack")
}
}
if externTd == nil {
externTd = bc.GetTd(block.ParentHash(), block.NumberU64()-1)
}
externTd = new(big.Int).Add(externTd, block.Difficulty())
if !bc.HasBlock(block.Hash(), block.NumberU64()) {
start := time.Now()
if err := bc.writeBlockWithoutState(block, externTd); err != nil {
return it.index, err
}
log.Debug("Injected sidechain block", "number", block.Number(), "hash", block.Hash(),
"diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)),
"txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()),
"root", block.Root())
}
lastBlock = block
}
// At this point, we've written all sidechain blocks to database. Loop ended
// either on some other error or all were processed. If there was some other
// error, we can ignore the rest of those blocks.
//
// If the externTd was larger than our local TD, we now need to reimport the previous
// blocks to regenerate the required state
reorg, err := bc.forker.ReorgNeeded(current, lastBlock.Header())
if err != nil {
return it.index, err
}
if !reorg {
localTd := bc.GetTd(current.Hash(), current.Number.Uint64())
log.Info("Sidechain written to disk", "start", it.first().NumberU64(), "end", it.previous().Number, "sidetd", externTd, "localtd", localTd)
return it.index, err
}
// Gather all the sidechain hashes (full blocks may be memory heavy)
var (
hashes []common.Hash
numbers []uint64
)
parent := it.previous()
for parent != nil && !bc.HasState(parent.Root) {
if bc.stateRecoverable(parent.Root) {
if err := bc.triedb.Recover(parent.Root); err != nil {
return 0, err
}
break
}
hashes = append(hashes, parent.Hash())
numbers = append(numbers, parent.Number.Uint64())
parent = bc.GetHeader(parent.ParentHash, parent.Number.Uint64()-1)
}
if parent == nil {
return it.index, errors.New("missing parent")
}
// Import all the pruned blocks to make the state available
var (
blocks []*types.Block
memory uint64
)
for i := len(hashes) - 1; i >= 0; i-- {
// Append the next block to our batch
block := bc.GetBlock(hashes[i], numbers[i])
blocks = append(blocks, block)
memory += block.Size()
// If memory use grew too large, import and continue. Sadly we need to discard
// all raised events and logs from notifications since we're too heavy on the
// memory here.
if len(blocks) >= 2048 || memory > 64*1024*1024 {
log.Info("Importing heavy sidechain segment", "blocks", len(blocks), "start", blocks[0].NumberU64(), "end", block.NumberU64())
if _, err := bc.insertChain(blocks, true); err != nil {
return 0, err
}
blocks, memory = blocks[:0], 0
// If the chain is terminating, stop processing blocks
if bc.insertStopped() {
log.Debug("Abort during blocks processing")
return 0, nil
}
}
}
if len(blocks) > 0 {
log.Info("Importing sidechain segment", "start", blocks[0].NumberU64(), "end", blocks[len(blocks)-1].NumberU64())
return bc.insertChain(blocks, true)
}
return 0, nil
}
// recoverAncestors finds the closest ancestor with available state and re-execute
// all the ancestor blocks since that.
// recoverAncestors is only used post-merge.
// We return the hash of the latest block that we could correctly validate.
func (bc *BlockChain) recoverAncestors(block *types.Block) (common.Hash, error) {
// Gather all the sidechain hashes (full blocks may be memory heavy)
var (
hashes []common.Hash
numbers []uint64
parent = block
)
for parent != nil && !bc.HasState(parent.Root()) {
if bc.stateRecoverable(parent.Root()) {
if err := bc.triedb.Recover(parent.Root()); err != nil {
return common.Hash{}, err
}
break
}
hashes = append(hashes, parent.Hash())
numbers = append(numbers, parent.NumberU64())
parent = bc.GetBlock(parent.ParentHash(), parent.NumberU64()-1)
// If the chain is terminating, stop iteration
if bc.insertStopped() {
log.Debug("Abort during blocks iteration")
return common.Hash{}, errInsertionInterrupted
}
}
if parent == nil {
return common.Hash{}, errors.New("missing parent")
}
// Import all the pruned blocks to make the state available
for i := len(hashes) - 1; i >= 0; i-- {
// If the chain is terminating, stop processing blocks
if bc.insertStopped() {
log.Debug("Abort during blocks processing")
return common.Hash{}, errInsertionInterrupted
}
var b *types.Block
if i == 0 {
b = block
} else {
b = bc.GetBlock(hashes[i], numbers[i])
}
if _, err := bc.insertChain(types.Blocks{b}, false); err != nil {
return b.ParentHash(), err
}
}
return block.Hash(), nil
}
// collectLogs collects the logs that were generated or removed during
// the processing of a block. These logs are later announced as deleted or reborn.
func (bc *BlockChain) collectLogs(b *types.Block, removed bool) []*types.Log {
var blobGasPrice *big.Int
excessBlobGas := b.ExcessBlobGas()
if excessBlobGas != nil {
blobGasPrice = eip4844.CalcBlobFee(*excessBlobGas)
}
receipts := rawdb.ReadRawReceipts(bc.db, b.Hash(), b.NumberU64())
if err := receipts.DeriveFields(bc.chainConfig, b.Hash(), b.NumberU64(), b.Time(), b.BaseFee(), blobGasPrice, b.Transactions()); err != nil {
log.Error("Failed to derive block receipts fields", "hash", b.Hash(), "number", b.NumberU64(), "err", err)
}
var logs []*types.Log
for _, receipt := range receipts {
for _, log := range receipt.Logs {
if removed {
log.Removed = true
}
logs = append(logs, log)
}
}
return logs
}
// reorg takes two blocks, an old chain and a new chain and will reconstruct the
// blocks and inserts them to be part of the new canonical chain and accumulates
// potential missing transactions and post an event about them.
// Note the new head block won't be processed here, callers need to handle it
// externally.
func (bc *BlockChain) reorg(oldHead *types.Header, newHead *types.Block) error {
var (
newChain types.Blocks
oldChain types.Blocks
commonBlock *types.Block
deletedTxs []common.Hash
addedTxs []common.Hash
)
oldBlock := bc.GetBlock(oldHead.Hash(), oldHead.Number.Uint64())
if oldBlock == nil {
return errors.New("current head block missing")
}
newBlock := newHead
// Reduce the longer chain to the same number as the shorter one
if oldBlock.NumberU64() > newBlock.NumberU64() {
// Old chain is longer, gather all transactions and logs as deleted ones
for ; oldBlock != nil && oldBlock.NumberU64() != newBlock.NumberU64(); oldBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1) {
oldChain = append(oldChain, oldBlock)
for _, tx := range oldBlock.Transactions() {
deletedTxs = append(deletedTxs, tx.Hash())
}
}
} else {
// New chain is longer, stash all blocks away for subsequent insertion
for ; newBlock != nil && newBlock.NumberU64() != oldBlock.NumberU64(); newBlock = bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1) {
newChain = append(newChain, newBlock)
}
}
if oldBlock == nil {
return errInvalidOldChain
}
if newBlock == nil {
return errInvalidNewChain
}
// Both sides of the reorg are at the same number, reduce both until the common
// ancestor is found
for {
// If the common ancestor was found, bail out
if oldBlock.Hash() == newBlock.Hash() {
commonBlock = oldBlock
break
}
// Remove an old block as well as stash away a new block
oldChain = append(oldChain, oldBlock)
for _, tx := range oldBlock.Transactions() {
deletedTxs = append(deletedTxs, tx.Hash())
}
newChain = append(newChain, newBlock)
// Step back with both chains
oldBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1)
if oldBlock == nil {
return errInvalidOldChain
}
newBlock = bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1)
if newBlock == nil {
return errInvalidNewChain
}
}
// Ensure the user sees large reorgs
if len(oldChain) > 0 && len(newChain) > 0 {
logFn := log.Info
msg := "Chain reorg detected"
if len(oldChain) > 63 {
msg = "Large chain reorg detected"
logFn = log.Warn
}
logFn(msg, "number", commonBlock.Number(), "hash", commonBlock.Hash(),
"drop", len(oldChain), "dropfrom", oldChain[0].Hash(), "add", len(newChain), "addfrom", newChain[0].Hash())
blockReorgAddMeter.Mark(int64(len(newChain)))
blockReorgDropMeter.Mark(int64(len(oldChain)))
blockReorgMeter.Mark(1)
} else if len(newChain) > 0 {
// Special case happens in the post merge stage that current head is
// the ancestor of new head while these two blocks are not consecutive
log.Info("Extend chain", "add", len(newChain), "number", newChain[0].Number(), "hash", newChain[0].Hash())
blockReorgAddMeter.Mark(int64(len(newChain)))
} else {
// len(newChain) == 0 && len(oldChain) > 0
// rewind the canonical chain to a lower point.
log.Error("Impossible reorg, please file an issue", "oldnum", oldBlock.Number(), "oldhash", oldBlock.Hash(), "oldblocks", len(oldChain), "newnum", newBlock.Number(), "newhash", newBlock.Hash(), "newblocks", len(newChain))
}
// Reset the tx lookup cache in case to clear stale txlookups.
// This is done before writing any new chain data to avoid the
// weird scenario that canonical chain is changed while the
// stale lookups are still cached.
bc.txLookupCache.Purge()
// Insert the new chain(except the head block(reverse order)),
// taking care of the proper incremental order.
for i := len(newChain) - 1; i >= 1; i-- {
// Insert the block in the canonical way, re-writing history
bc.writeHeadBlock(newChain[i])
// Collect the new added transactions.
for _, tx := range newChain[i].Transactions() {
addedTxs = append(addedTxs, tx.Hash())
}
}
// Delete useless indexes right now which includes the non-canonical
// transaction indexes, canonical chain indexes which above the head.
var (
indexesBatch = bc.db.NewBatch()
diffs = types.HashDifference(deletedTxs, addedTxs)
)
for _, tx := range diffs {
rawdb.DeleteTxLookupEntry(indexesBatch, tx)
}
// Delete all hash markers that are not part of the new canonical chain.
// Because the reorg function does not handle new chain head, all hash
// markers greater than or equal to new chain head should be deleted.
number := commonBlock.NumberU64()
if len(newChain) > 1 {
number = newChain[1].NumberU64()
}
for i := number + 1; ; i++ {
hash := rawdb.ReadCanonicalHash(bc.db, i)
if hash == (common.Hash{}) {
break
}
rawdb.DeleteCanonicalHash(indexesBatch, i)
}
if err := indexesBatch.Write(); err != nil {
log.Crit("Failed to delete useless indexes", "err", err)
}
// Send out events for logs from the old canon chain, and 'reborn'
// logs from the new canon chain. The number of logs can be very
// high, so the events are sent in batches of size around 512.
// Deleted logs + blocks:
var deletedLogs []*types.Log
for i := len(oldChain) - 1; i >= 0; i-- {
// Also send event for blocks removed from the canon chain.
bc.chainSideFeed.Send(ChainSideEvent{Block: oldChain[i]})
// Collect deleted logs for notification
if logs := bc.collectLogs(oldChain[i], true); len(logs) > 0 {
deletedLogs = append(deletedLogs, logs...)
}
if len(deletedLogs) > 512 {
bc.rmLogsFeed.Send(RemovedLogsEvent{deletedLogs})
deletedLogs = nil
}
}
if len(deletedLogs) > 0 {
bc.rmLogsFeed.Send(RemovedLogsEvent{deletedLogs})
}
// New logs:
var rebirthLogs []*types.Log
for i := len(newChain) - 1; i >= 1; i-- {
if logs := bc.collectLogs(newChain[i], false); len(logs) > 0 {
rebirthLogs = append(rebirthLogs, logs...)
}
if len(rebirthLogs) > 512 {
bc.logsFeed.Send(rebirthLogs)
rebirthLogs = nil
}
}
if len(rebirthLogs) > 0 {
bc.logsFeed.Send(rebirthLogs)
}
return nil
}
// InsertBlockWithoutSetHead executes the block, runs the necessary verification
// upon it and then persist the block and the associate state into the database.
// The key difference between the InsertChain is it won't do the canonical chain
// updating. It relies on the additional SetCanonical call to finalize the entire
// procedure.
func (bc *BlockChain) InsertBlockWithoutSetHead(block *types.Block) error {
if !bc.chainmu.TryLock() {
return errChainStopped
}
defer bc.chainmu.Unlock()
_, err := bc.insertChain(types.Blocks{block}, false)
return err
}
// SetCanonical rewinds the chain to set the new head block as the specified
// block. It's possible that the state of the new head is missing, and it will
// be recovered in this function as well.
func (bc *BlockChain) SetCanonical(head *types.Block) (common.Hash, error) {
if !bc.chainmu.TryLock() {
return common.Hash{}, errChainStopped
}
defer bc.chainmu.Unlock()
// Re-execute the reorged chain in case the head state is missing.
if !bc.HasState(head.Root()) {
if latestValidHash, err := bc.recoverAncestors(head); err != nil {
return latestValidHash, err
}
log.Info("Recovered head state", "number", head.Number(), "hash", head.Hash())
}
// Run the reorg if necessary and set the given block as new head.
start := time.Now()
if head.ParentHash() != bc.CurrentBlock().Hash() {
if err := bc.reorg(bc.CurrentBlock(), head); err != nil {
return common.Hash{}, err
}
}
bc.writeHeadBlock(head)
// Emit events
logs := bc.collectLogs(head, false)
bc.chainFeed.Send(ChainEvent{Block: head, Hash: head.Hash(), Logs: logs})
if len(logs) > 0 {
bc.logsFeed.Send(logs)
}
bc.chainHeadFeed.Send(ChainHeadEvent{Block: head})
context := []interface{}{
"number", head.Number(),
"hash", head.Hash(),
"root", head.Root(),
"elapsed", time.Since(start),
}
if timestamp := time.Unix(int64(head.Time()), 0); time.Since(timestamp) > time.Minute {
context = append(context, []interface{}{"age", common.PrettyAge(timestamp)}...)
}
log.Info("Chain head was updated", context...)
return head.Hash(), nil
}
// skipBlock returns 'true', if the block being imported can be skipped over, meaning
// that the block does not need to be processed but can be considered already fully 'done'.
func (bc *BlockChain) skipBlock(err error, it *insertIterator) bool {
// We can only ever bypass processing if the only error returned by the validator
// is ErrKnownBlock, which means all checks passed, but we already have the block
// and state.
if !errors.Is(err, ErrKnownBlock) {
return false
}
// If we're not using snapshots, we can skip this, since we have both block
// and (trie-) state
if bc.snaps == nil {
return true
}
var (
header = it.current() // header can't be nil
parentRoot common.Hash
)
// If we also have the snapshot-state, we can skip the processing.
if bc.snaps.Snapshot(header.Root) != nil {
return true
}
// In this case, we have the trie-state but not snapshot-state. If the parent
// snapshot-state exists, we need to process this in order to not get a gap
// in the snapshot layers.
// Resolve parent block
if parent := it.previous(); parent != nil {
parentRoot = parent.Root
} else if parent = bc.GetHeaderByHash(header.ParentHash); parent != nil {
parentRoot = parent.Root
}
if parentRoot == (common.Hash{}) {
return false // Theoretically impossible case
}
// Parent is also missing snapshot: we can skip this. Otherwise process.
if bc.snaps.Snapshot(parentRoot) == nil {
return true
}
return false
}
// reportBlock logs a bad block error.
func (bc *BlockChain) reportBlock(block *types.Block, receipts types.Receipts, err error) {
rawdb.WriteBadBlock(bc.db, block)
log.Error(summarizeBadBlock(block, receipts, bc.Config(), err))
}
// summarizeBadBlock returns a string summarizing the bad block and other
// relevant information.
func summarizeBadBlock(block *types.Block, receipts []*types.Receipt, config *params.ChainConfig, err error) string {
var receiptString string
for i, receipt := range receipts {
receiptString += fmt.Sprintf("\n %d: cumulative: %v gas: %v contract: %v status: %v tx: %v logs: %v bloom: %x state: %x",
i, receipt.CumulativeGasUsed, receipt.GasUsed, receipt.ContractAddress.Hex(),
receipt.Status, receipt.TxHash.Hex(), receipt.Logs, receipt.Bloom, receipt.PostState)
}
version, vcs := version.Info()
platform := fmt.Sprintf("%s %s %s %s", version, runtime.Version(), runtime.GOARCH, runtime.GOOS)
if vcs != "" {
vcs = fmt.Sprintf("\nVCS: %s", vcs)
}
return fmt.Sprintf(`
########## BAD BLOCK #########
Block: %v (%#x)
Error: %v
Platform: %v%v
Chain config: %#v
Receipts: %v
##############################
`, block.Number(), block.Hash(), err, platform, vcs, config, receiptString)
}
// InsertHeaderChain attempts to insert the given header chain in to the local
// chain, possibly creating a reorg. If an error is returned, it will return the
// index number of the failing header as well an error describing what went wrong.
func (bc *BlockChain) InsertHeaderChain(chain []*types.Header) (int, error) {
if len(chain) == 0 {
return 0, nil
}
start := time.Now()
if i, err := bc.hc.ValidateHeaderChain(chain); err != nil {
return i, err
}
if !bc.chainmu.TryLock() {
return 0, errChainStopped
}
defer bc.chainmu.Unlock()
_, err := bc.hc.InsertHeaderChain(chain, start, bc.forker)
return 0, err
}
// SetBlockValidatorAndProcessorForTesting sets the current validator and processor.
// This method can be used to force an invalid blockchain to be verified for tests.
// This method is unsafe and should only be used before block import starts.
func (bc *BlockChain) SetBlockValidatorAndProcessorForTesting(v Validator, p Processor) {
bc.validator = v
bc.processor = p
}
// SetTrieFlushInterval configures how often in-memory tries are persisted to disk.
// The interval is in terms of block processing time, not wall clock.
// It is thread-safe and can be called repeatedly without side effects.
func (bc *BlockChain) SetTrieFlushInterval(interval time.Duration) {
bc.flushInterval.Store(int64(interval))
}
// GetTrieFlushInterval gets the in-memory tries flushAlloc interval
func (bc *BlockChain) GetTrieFlushInterval() time.Duration {
return time.Duration(bc.flushInterval.Load())
}