go-ethereum/les/distributor.go

314 lines
8.7 KiB
Go

// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package les
import (
"container/list"
"sync"
"time"
"github.com/ethereum/go-ethereum/common/mclock"
)
// requestDistributor implements a mechanism that distributes requests to
// suitable peers, obeying flow control rules and prioritizing them in creation
// order (even when a resend is necessary).
type requestDistributor struct {
clock mclock.Clock
reqQueue *list.List
lastReqOrder uint64
peers map[distPeer]struct{}
peerLock sync.RWMutex
loopChn chan struct{}
loopNextSent bool
lock sync.Mutex
closeCh chan struct{}
wg sync.WaitGroup
}
// distPeer is an LES server peer interface for the request distributor.
// waitBefore returns either the necessary waiting time before sending a request
// with the given upper estimated cost or the estimated remaining relative buffer
// value after sending such a request (in which case the request can be sent
// immediately). At least one of these values is always zero.
type distPeer interface {
waitBefore(uint64) (time.Duration, float64)
canQueue() bool
queueSend(f func()) bool
}
// distReq is the request abstraction used by the distributor. It is based on
// three callback functions:
// - getCost returns the upper estimate of the cost of sending the request to a given peer
// - canSend tells if the server peer is suitable to serve the request
// - request prepares sending the request to the given peer and returns a function that
// does the actual sending. Request order should be preserved but the callback itself should not
// block until it is sent because other peers might still be able to receive requests while
// one of them is blocking. Instead, the returned function is put in the peer's send queue.
type distReq struct {
getCost func(distPeer) uint64
canSend func(distPeer) bool
request func(distPeer) func()
reqOrder uint64
sentChn chan distPeer
element *list.Element
waitForPeers mclock.AbsTime
enterQueue mclock.AbsTime
}
// newRequestDistributor creates a new request distributor
func newRequestDistributor(peers *serverPeerSet, clock mclock.Clock) *requestDistributor {
d := &requestDistributor{
clock: clock,
reqQueue: list.New(),
loopChn: make(chan struct{}, 2),
closeCh: make(chan struct{}),
peers: make(map[distPeer]struct{}),
}
if peers != nil {
peers.subscribe(d)
}
d.wg.Add(1)
go d.loop()
return d
}
// registerPeer implements peerSetNotify
func (d *requestDistributor) registerPeer(p *serverPeer) {
d.peerLock.Lock()
d.peers[p] = struct{}{}
d.peerLock.Unlock()
}
// unregisterPeer implements peerSetNotify
func (d *requestDistributor) unregisterPeer(p *serverPeer) {
d.peerLock.Lock()
delete(d.peers, p)
d.peerLock.Unlock()
}
// registerTestPeer adds a new test peer
func (d *requestDistributor) registerTestPeer(p distPeer) {
d.peerLock.Lock()
d.peers[p] = struct{}{}
d.peerLock.Unlock()
}
var (
// distMaxWait is the maximum waiting time after which further necessary waiting
// times are recalculated based on new feedback from the servers
distMaxWait = time.Millisecond * 50
// waitForPeers is the time window in which a request does not fail even if it
// has no suitable peers to send to at the moment
waitForPeers = time.Second * 3
)
// main event loop
func (d *requestDistributor) loop() {
defer d.wg.Done()
for {
select {
case <-d.closeCh:
d.lock.Lock()
elem := d.reqQueue.Front()
for elem != nil {
req := elem.Value.(*distReq)
close(req.sentChn)
req.sentChn = nil
elem = elem.Next()
}
d.lock.Unlock()
return
case <-d.loopChn:
d.lock.Lock()
d.loopNextSent = false
loop:
for {
peer, req, wait := d.nextRequest()
if req != nil && wait == 0 {
chn := req.sentChn // save sentChn because remove sets it to nil
d.remove(req)
send := req.request(peer)
if send != nil {
peer.queueSend(send)
requestSendDelay.Update(time.Duration(d.clock.Now() - req.enterQueue))
}
chn <- peer
close(chn)
} else {
if wait == 0 {
// no request to send and nothing to wait for; the next
// queued request will wake up the loop
break loop
}
d.loopNextSent = true // a "next" signal has been sent, do not send another one until this one has been received
if wait > distMaxWait {
// waiting times may be reduced by incoming request replies, if it is too long, recalculate it periodically
wait = distMaxWait
}
go func() {
d.clock.Sleep(wait)
d.loopChn <- struct{}{}
}()
break loop
}
}
d.lock.Unlock()
}
}
}
// selectPeerItem represents a peer to be selected for a request by weightedRandomSelect
type selectPeerItem struct {
peer distPeer
req *distReq
weight int64
}
// Weight implements wrsItem interface
func (sp selectPeerItem) Weight() int64 {
return sp.weight
}
// nextRequest returns the next possible request from any peer, along with the
// associated peer and necessary waiting time
func (d *requestDistributor) nextRequest() (distPeer, *distReq, time.Duration) {
checkedPeers := make(map[distPeer]struct{})
elem := d.reqQueue.Front()
var (
bestWait time.Duration
sel *weightedRandomSelect
)
d.peerLock.RLock()
defer d.peerLock.RUnlock()
peerCount := len(d.peers)
for (len(checkedPeers) < peerCount || elem == d.reqQueue.Front()) && elem != nil {
req := elem.Value.(*distReq)
canSend := false
now := d.clock.Now()
if req.waitForPeers > now {
canSend = true
wait := time.Duration(req.waitForPeers - now)
if bestWait == 0 || wait < bestWait {
bestWait = wait
}
}
for peer := range d.peers {
if _, ok := checkedPeers[peer]; !ok && peer.canQueue() && req.canSend(peer) {
canSend = true
cost := req.getCost(peer)
wait, bufRemain := peer.waitBefore(cost)
if wait == 0 {
if sel == nil {
sel = newWeightedRandomSelect()
}
sel.update(selectPeerItem{peer: peer, req: req, weight: int64(bufRemain*1000000) + 1})
} else {
if bestWait == 0 || wait < bestWait {
bestWait = wait
}
}
checkedPeers[peer] = struct{}{}
}
}
next := elem.Next()
if !canSend && elem == d.reqQueue.Front() {
close(req.sentChn)
d.remove(req)
}
elem = next
}
if sel != nil {
c := sel.choose().(selectPeerItem)
return c.peer, c.req, 0
}
return nil, nil, bestWait
}
// queue adds a request to the distribution queue, returns a channel where the
// receiving peer is sent once the request has been sent (request callback returned).
// If the request is cancelled or timed out without suitable peers, the channel is
// closed without sending any peer references to it.
func (d *requestDistributor) queue(r *distReq) chan distPeer {
d.lock.Lock()
defer d.lock.Unlock()
if r.reqOrder == 0 {
d.lastReqOrder++
r.reqOrder = d.lastReqOrder
r.waitForPeers = d.clock.Now() + mclock.AbsTime(waitForPeers)
}
// Assign the timestamp when the request is queued no matter it's
// a new one or re-queued one.
r.enterQueue = d.clock.Now()
back := d.reqQueue.Back()
if back == nil || r.reqOrder > back.Value.(*distReq).reqOrder {
r.element = d.reqQueue.PushBack(r)
} else {
before := d.reqQueue.Front()
for before.Value.(*distReq).reqOrder < r.reqOrder {
before = before.Next()
}
r.element = d.reqQueue.InsertBefore(r, before)
}
if !d.loopNextSent {
d.loopNextSent = true
d.loopChn <- struct{}{}
}
r.sentChn = make(chan distPeer, 1)
return r.sentChn
}
// cancel removes a request from the queue if it has not been sent yet (returns
// false if it has been sent already). It is guaranteed that the callback functions
// will not be called after cancel returns.
func (d *requestDistributor) cancel(r *distReq) bool {
d.lock.Lock()
defer d.lock.Unlock()
if r.sentChn == nil {
return false
}
close(r.sentChn)
d.remove(r)
return true
}
// remove removes a request from the queue
func (d *requestDistributor) remove(r *distReq) {
r.sentChn = nil
if r.element != nil {
d.reqQueue.Remove(r.element)
r.element = nil
}
}
func (d *requestDistributor) close() {
close(d.closeCh)
d.wg.Wait()
}