349 lines
9.5 KiB
Go
349 lines
9.5 KiB
Go
// Copyright 2015 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package abi
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"reflect"
|
|
"regexp"
|
|
"strconv"
|
|
"strings"
|
|
)
|
|
|
|
// Type enumerator
|
|
const (
|
|
IntTy byte = iota
|
|
UintTy
|
|
BoolTy
|
|
StringTy
|
|
SliceTy
|
|
ArrayTy
|
|
TupleTy
|
|
AddressTy
|
|
FixedBytesTy
|
|
BytesTy
|
|
HashTy
|
|
FixedPointTy
|
|
FunctionTy
|
|
)
|
|
|
|
// Type is the reflection of the supported argument type
|
|
type Type struct {
|
|
Elem *Type
|
|
Kind reflect.Kind
|
|
Type reflect.Type
|
|
Size int
|
|
T byte // Our own type checking
|
|
|
|
stringKind string // holds the unparsed string for deriving signatures
|
|
|
|
// Tuple relative fields
|
|
TupleElems []*Type // Type information of all tuple fields
|
|
TupleRawNames []string // Raw field name of all tuple fields
|
|
}
|
|
|
|
var (
|
|
// typeRegex parses the abi sub types
|
|
typeRegex = regexp.MustCompile("([a-zA-Z]+)(([0-9]+)(x([0-9]+))?)?")
|
|
)
|
|
|
|
// NewType creates a new reflection type of abi type given in t.
|
|
func NewType(t string, components []ArgumentMarshaling) (typ Type, err error) {
|
|
// check that array brackets are equal if they exist
|
|
if strings.Count(t, "[") != strings.Count(t, "]") {
|
|
return Type{}, fmt.Errorf("invalid arg type in abi")
|
|
}
|
|
typ.stringKind = t
|
|
|
|
// if there are brackets, get ready to go into slice/array mode and
|
|
// recursively create the type
|
|
if strings.Count(t, "[") != 0 {
|
|
i := strings.LastIndex(t, "[")
|
|
// recursively embed the type
|
|
embeddedType, err := NewType(t[:i], components)
|
|
if err != nil {
|
|
return Type{}, err
|
|
}
|
|
// grab the last cell and create a type from there
|
|
sliced := t[i:]
|
|
// grab the slice size with regexp
|
|
re := regexp.MustCompile("[0-9]+")
|
|
intz := re.FindAllString(sliced, -1)
|
|
|
|
if len(intz) == 0 {
|
|
// is a slice
|
|
typ.T = SliceTy
|
|
typ.Kind = reflect.Slice
|
|
typ.Elem = &embeddedType
|
|
typ.Type = reflect.SliceOf(embeddedType.Type)
|
|
typ.stringKind = embeddedType.stringKind + sliced
|
|
} else if len(intz) == 1 {
|
|
// is a array
|
|
typ.T = ArrayTy
|
|
typ.Kind = reflect.Array
|
|
typ.Elem = &embeddedType
|
|
typ.Size, err = strconv.Atoi(intz[0])
|
|
if err != nil {
|
|
return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err)
|
|
}
|
|
typ.Type = reflect.ArrayOf(typ.Size, embeddedType.Type)
|
|
typ.stringKind = embeddedType.stringKind + sliced
|
|
} else {
|
|
return Type{}, fmt.Errorf("invalid formatting of array type")
|
|
}
|
|
return typ, err
|
|
}
|
|
// parse the type and size of the abi-type.
|
|
matches := typeRegex.FindAllStringSubmatch(t, -1)
|
|
if len(matches) == 0 {
|
|
return Type{}, fmt.Errorf("invalid type '%v'", t)
|
|
}
|
|
parsedType := matches[0]
|
|
|
|
// varSize is the size of the variable
|
|
var varSize int
|
|
if len(parsedType[3]) > 0 {
|
|
var err error
|
|
varSize, err = strconv.Atoi(parsedType[2])
|
|
if err != nil {
|
|
return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err)
|
|
}
|
|
} else {
|
|
if parsedType[0] == "uint" || parsedType[0] == "int" {
|
|
// this should fail because it means that there's something wrong with
|
|
// the abi type (the compiler should always format it to the size...always)
|
|
return Type{}, fmt.Errorf("unsupported arg type: %s", t)
|
|
}
|
|
}
|
|
// varType is the parsed abi type
|
|
switch varType := parsedType[1]; varType {
|
|
case "int":
|
|
typ.Kind, typ.Type = reflectIntKindAndType(false, varSize)
|
|
typ.Size = varSize
|
|
typ.T = IntTy
|
|
case "uint":
|
|
typ.Kind, typ.Type = reflectIntKindAndType(true, varSize)
|
|
typ.Size = varSize
|
|
typ.T = UintTy
|
|
case "bool":
|
|
typ.Kind = reflect.Bool
|
|
typ.T = BoolTy
|
|
typ.Type = reflect.TypeOf(bool(false))
|
|
case "address":
|
|
typ.Kind = reflect.Array
|
|
typ.Type = addressT
|
|
typ.Size = 20
|
|
typ.T = AddressTy
|
|
case "string":
|
|
typ.Kind = reflect.String
|
|
typ.Type = reflect.TypeOf("")
|
|
typ.T = StringTy
|
|
case "bytes":
|
|
if varSize == 0 {
|
|
typ.T = BytesTy
|
|
typ.Kind = reflect.Slice
|
|
typ.Type = reflect.SliceOf(reflect.TypeOf(byte(0)))
|
|
} else {
|
|
typ.T = FixedBytesTy
|
|
typ.Kind = reflect.Array
|
|
typ.Size = varSize
|
|
typ.Type = reflect.ArrayOf(varSize, reflect.TypeOf(byte(0)))
|
|
}
|
|
case "tuple":
|
|
var (
|
|
fields []reflect.StructField
|
|
elems []*Type
|
|
names []string
|
|
expression string // canonical parameter expression
|
|
)
|
|
expression += "("
|
|
for idx, c := range components {
|
|
cType, err := NewType(c.Type, c.Components)
|
|
if err != nil {
|
|
return Type{}, err
|
|
}
|
|
if ToCamelCase(c.Name) == "" {
|
|
return Type{}, errors.New("abi: purely anonymous or underscored field is not supported")
|
|
}
|
|
fields = append(fields, reflect.StructField{
|
|
Name: ToCamelCase(c.Name), // reflect.StructOf will panic for any exported field.
|
|
Type: cType.Type,
|
|
Tag: reflect.StructTag("json:\"" + c.Name + "\""),
|
|
})
|
|
elems = append(elems, &cType)
|
|
names = append(names, c.Name)
|
|
expression += cType.stringKind
|
|
if idx != len(components)-1 {
|
|
expression += ","
|
|
}
|
|
}
|
|
expression += ")"
|
|
typ.Kind = reflect.Struct
|
|
typ.Type = reflect.StructOf(fields)
|
|
typ.TupleElems = elems
|
|
typ.TupleRawNames = names
|
|
typ.T = TupleTy
|
|
typ.stringKind = expression
|
|
case "function":
|
|
typ.Kind = reflect.Array
|
|
typ.T = FunctionTy
|
|
typ.Size = 24
|
|
typ.Type = reflect.ArrayOf(24, reflect.TypeOf(byte(0)))
|
|
default:
|
|
return Type{}, fmt.Errorf("unsupported arg type: %s", t)
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// String implements Stringer
|
|
func (t Type) String() (out string) {
|
|
return t.stringKind
|
|
}
|
|
|
|
func (t Type) pack(v reflect.Value) ([]byte, error) {
|
|
// dereference pointer first if it's a pointer
|
|
v = indirect(v)
|
|
if err := typeCheck(t, v); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
switch t.T {
|
|
case SliceTy, ArrayTy:
|
|
var ret []byte
|
|
|
|
if t.requiresLengthPrefix() {
|
|
// append length
|
|
ret = append(ret, packNum(reflect.ValueOf(v.Len()))...)
|
|
}
|
|
|
|
// calculate offset if any
|
|
offset := 0
|
|
offsetReq := isDynamicType(*t.Elem)
|
|
if offsetReq {
|
|
offset = getTypeSize(*t.Elem) * v.Len()
|
|
}
|
|
var tail []byte
|
|
for i := 0; i < v.Len(); i++ {
|
|
val, err := t.Elem.pack(v.Index(i))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if !offsetReq {
|
|
ret = append(ret, val...)
|
|
continue
|
|
}
|
|
ret = append(ret, packNum(reflect.ValueOf(offset))...)
|
|
offset += len(val)
|
|
tail = append(tail, val...)
|
|
}
|
|
return append(ret, tail...), nil
|
|
case TupleTy:
|
|
// (T1,...,Tk) for k >= 0 and any types T1, …, Tk
|
|
// enc(X) = head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(k))
|
|
// where X = (X(1), ..., X(k)) and head and tail are defined for Ti being a static
|
|
// type as
|
|
// head(X(i)) = enc(X(i)) and tail(X(i)) = "" (the empty string)
|
|
// and as
|
|
// head(X(i)) = enc(len(head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(i-1))))
|
|
// tail(X(i)) = enc(X(i))
|
|
// otherwise, i.e. if Ti is a dynamic type.
|
|
fieldmap, err := mapArgNamesToStructFields(t.TupleRawNames, v)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// Calculate prefix occupied size.
|
|
offset := 0
|
|
for _, elem := range t.TupleElems {
|
|
offset += getTypeSize(*elem)
|
|
}
|
|
var ret, tail []byte
|
|
for i, elem := range t.TupleElems {
|
|
field := v.FieldByName(fieldmap[t.TupleRawNames[i]])
|
|
if !field.IsValid() {
|
|
return nil, fmt.Errorf("field %s for tuple not found in the given struct", t.TupleRawNames[i])
|
|
}
|
|
val, err := elem.pack(field)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if isDynamicType(*elem) {
|
|
ret = append(ret, packNum(reflect.ValueOf(offset))...)
|
|
tail = append(tail, val...)
|
|
offset += len(val)
|
|
} else {
|
|
ret = append(ret, val...)
|
|
}
|
|
}
|
|
return append(ret, tail...), nil
|
|
|
|
default:
|
|
return packElement(t, v), nil
|
|
}
|
|
}
|
|
|
|
// requireLengthPrefix returns whether the type requires any sort of length
|
|
// prefixing.
|
|
func (t Type) requiresLengthPrefix() bool {
|
|
return t.T == StringTy || t.T == BytesTy || t.T == SliceTy
|
|
}
|
|
|
|
// isDynamicType returns true if the type is dynamic.
|
|
// The following types are called “dynamic”:
|
|
// * bytes
|
|
// * string
|
|
// * T[] for any T
|
|
// * T[k] for any dynamic T and any k >= 0
|
|
// * (T1,...,Tk) if Ti is dynamic for some 1 <= i <= k
|
|
func isDynamicType(t Type) bool {
|
|
if t.T == TupleTy {
|
|
for _, elem := range t.TupleElems {
|
|
if isDynamicType(*elem) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
return t.T == StringTy || t.T == BytesTy || t.T == SliceTy || (t.T == ArrayTy && isDynamicType(*t.Elem))
|
|
}
|
|
|
|
// getTypeSize returns the size that this type needs to occupy.
|
|
// We distinguish static and dynamic types. Static types are encoded in-place
|
|
// and dynamic types are encoded at a separately allocated location after the
|
|
// current block.
|
|
// So for a static variable, the size returned represents the size that the
|
|
// variable actually occupies.
|
|
// For a dynamic variable, the returned size is fixed 32 bytes, which is used
|
|
// to store the location reference for actual value storage.
|
|
func getTypeSize(t Type) int {
|
|
if t.T == ArrayTy && !isDynamicType(*t.Elem) {
|
|
// Recursively calculate type size if it is a nested array
|
|
if t.Elem.T == ArrayTy {
|
|
return t.Size * getTypeSize(*t.Elem)
|
|
}
|
|
return t.Size * 32
|
|
} else if t.T == TupleTy && !isDynamicType(t) {
|
|
total := 0
|
|
for _, elem := range t.TupleElems {
|
|
total += getTypeSize(*elem)
|
|
}
|
|
return total
|
|
}
|
|
return 32
|
|
}
|