go-ethereum/eth/downloader/queue_test.go

475 lines
14 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package downloader
import (
"fmt"
"math/big"
"math/rand"
"os"
"sync"
"testing"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/consensus/ethash"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/trie"
"golang.org/x/exp/slog"
)
// makeChain creates a chain of n blocks starting at and including parent.
// the returned hash chain is ordered head->parent. In addition, every 3rd block
// contains a transaction and every 5th an uncle to allow testing correct block
// reassembly.
func makeChain(n int, seed byte, parent *types.Block, empty bool) ([]*types.Block, []types.Receipts) {
blocks, receipts := core.GenerateChain(params.TestChainConfig, parent, ethash.NewFaker(), testDB, n, func(i int, block *core.BlockGen) {
block.SetCoinbase(common.Address{seed})
// Add one tx to every secondblock
if !empty && i%2 == 0 {
signer := types.MakeSigner(params.TestChainConfig, block.Number(), block.Timestamp())
tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testAddress), common.Address{seed}, big.NewInt(1000), params.TxGas, block.BaseFee(), nil), signer, testKey)
if err != nil {
panic(err)
}
block.AddTx(tx)
}
})
return blocks, receipts
}
type chainData struct {
blocks []*types.Block
offset int
}
var chain *chainData
var emptyChain *chainData
func init() {
// Create a chain of blocks to import
targetBlocks := 128
blocks, _ := makeChain(targetBlocks, 0, testGenesis, false)
chain = &chainData{blocks, 0}
blocks, _ = makeChain(targetBlocks, 0, testGenesis, true)
emptyChain = &chainData{blocks, 0}
}
func (chain *chainData) headers() []*types.Header {
hdrs := make([]*types.Header, len(chain.blocks))
for i, b := range chain.blocks {
hdrs[i] = b.Header()
}
return hdrs
}
func (chain *chainData) Len() int {
return len(chain.blocks)
}
func dummyPeer(id string) *peerConnection {
p := &peerConnection{
id: id,
lacking: make(map[common.Hash]struct{}),
}
return p
}
func TestBasics(t *testing.T) {
numOfBlocks := len(emptyChain.blocks)
numOfReceipts := len(emptyChain.blocks) / 2
q := newQueue(10, 10)
if !q.Idle() {
t.Errorf("new queue should be idle")
}
q.Prepare(1, SnapSync)
if res := q.Results(false); len(res) != 0 {
t.Fatal("new queue should have 0 results")
}
// Schedule a batch of headers
headers := chain.headers()
hashes := make([]common.Hash, len(headers))
for i, header := range headers {
hashes[i] = header.Hash()
}
q.Schedule(headers, hashes, 1)
if q.Idle() {
t.Errorf("queue should not be idle")
}
if got, exp := q.PendingBodies(), chain.Len(); got != exp {
t.Errorf("wrong pending block count, got %d, exp %d", got, exp)
}
// Only non-empty receipts get added to task-queue
if got, exp := q.PendingReceipts(), 64; got != exp {
t.Errorf("wrong pending receipt count, got %d, exp %d", got, exp)
}
// Items are now queued for downloading, next step is that we tell the
// queue that a certain peer will deliver them for us
{
peer := dummyPeer("peer-1")
fetchReq, _, throttle := q.ReserveBodies(peer, 50)
if !throttle {
// queue size is only 10, so throttling should occur
t.Fatal("should throttle")
}
// But we should still get the first things to fetch
if got, exp := len(fetchReq.Headers), 5; got != exp {
t.Fatalf("expected %d requests, got %d", exp, got)
}
if got, exp := fetchReq.Headers[0].Number.Uint64(), uint64(1); got != exp {
t.Fatalf("expected header %d, got %d", exp, got)
}
}
if exp, got := q.blockTaskQueue.Size(), numOfBlocks-10; exp != got {
t.Errorf("expected block task queue to be %d, got %d", exp, got)
}
if exp, got := q.receiptTaskQueue.Size(), numOfReceipts; exp != got {
t.Errorf("expected receipt task queue to be %d, got %d", exp, got)
}
{
peer := dummyPeer("peer-2")
fetchReq, _, throttle := q.ReserveBodies(peer, 50)
// The second peer should hit throttling
if !throttle {
t.Fatalf("should throttle")
}
// And not get any fetches at all, since it was throttled to begin with
if fetchReq != nil {
t.Fatalf("should have no fetches, got %d", len(fetchReq.Headers))
}
}
if exp, got := q.blockTaskQueue.Size(), numOfBlocks-10; exp != got {
t.Errorf("expected block task queue to be %d, got %d", exp, got)
}
if exp, got := q.receiptTaskQueue.Size(), numOfReceipts; exp != got {
t.Errorf("expected receipt task queue to be %d, got %d", exp, got)
}
{
// The receipt delivering peer should not be affected
// by the throttling of body deliveries
peer := dummyPeer("peer-3")
fetchReq, _, throttle := q.ReserveReceipts(peer, 50)
if !throttle {
// queue size is only 10, so throttling should occur
t.Fatal("should throttle")
}
// But we should still get the first things to fetch
if got, exp := len(fetchReq.Headers), 5; got != exp {
t.Fatalf("expected %d requests, got %d", exp, got)
}
if got, exp := fetchReq.Headers[0].Number.Uint64(), uint64(1); got != exp {
t.Fatalf("expected header %d, got %d", exp, got)
}
}
if exp, got := q.blockTaskQueue.Size(), numOfBlocks-10; exp != got {
t.Errorf("expected block task queue to be %d, got %d", exp, got)
}
if exp, got := q.receiptTaskQueue.Size(), numOfReceipts-5; exp != got {
t.Errorf("expected receipt task queue to be %d, got %d", exp, got)
}
if got, exp := q.resultCache.countCompleted(), 0; got != exp {
t.Errorf("wrong processable count, got %d, exp %d", got, exp)
}
}
func TestEmptyBlocks(t *testing.T) {
numOfBlocks := len(emptyChain.blocks)
q := newQueue(10, 10)
q.Prepare(1, SnapSync)
// Schedule a batch of headers
headers := emptyChain.headers()
hashes := make([]common.Hash, len(headers))
for i, header := range headers {
hashes[i] = header.Hash()
}
q.Schedule(headers, hashes, 1)
if q.Idle() {
t.Errorf("queue should not be idle")
}
if got, exp := q.PendingBodies(), len(emptyChain.blocks); got != exp {
t.Errorf("wrong pending block count, got %d, exp %d", got, exp)
}
if got, exp := q.PendingReceipts(), 0; got != exp {
t.Errorf("wrong pending receipt count, got %d, exp %d", got, exp)
}
// They won't be processable, because the fetchresults haven't been
// created yet
if got, exp := q.resultCache.countCompleted(), 0; got != exp {
t.Errorf("wrong processable count, got %d, exp %d", got, exp)
}
// Items are now queued for downloading, next step is that we tell the
// queue that a certain peer will deliver them for us
// That should trigger all of them to suddenly become 'done'
{
// Reserve blocks
peer := dummyPeer("peer-1")
fetchReq, _, _ := q.ReserveBodies(peer, 50)
// there should be nothing to fetch, blocks are empty
if fetchReq != nil {
t.Fatal("there should be no body fetch tasks remaining")
}
}
if q.blockTaskQueue.Size() != numOfBlocks-10 {
t.Errorf("expected block task queue to be %d, got %d", numOfBlocks-10, q.blockTaskQueue.Size())
}
if q.receiptTaskQueue.Size() != 0 {
t.Errorf("expected receipt task queue to be %d, got %d", 0, q.receiptTaskQueue.Size())
}
{
peer := dummyPeer("peer-3")
fetchReq, _, _ := q.ReserveReceipts(peer, 50)
// there should be nothing to fetch, blocks are empty
if fetchReq != nil {
t.Fatal("there should be no receipt fetch tasks remaining")
}
}
if q.blockTaskQueue.Size() != numOfBlocks-10 {
t.Errorf("expected block task queue to be %d, got %d", numOfBlocks-10, q.blockTaskQueue.Size())
}
if q.receiptTaskQueue.Size() != 0 {
t.Errorf("expected receipt task queue to be %d, got %d", 0, q.receiptTaskQueue.Size())
}
if got, exp := q.resultCache.countCompleted(), 10; got != exp {
t.Errorf("wrong processable count, got %d, exp %d", got, exp)
}
}
// XTestDelivery does some more extensive testing of events that happen,
// blocks that become known and peers that make reservations and deliveries.
// disabled since it's not really a unit-test, but can be executed to test
// some more advanced scenarios
func XTestDelivery(t *testing.T) {
// the outside network, holding blocks
blo, rec := makeChain(128, 0, testGenesis, false)
world := newNetwork()
world.receipts = rec
world.chain = blo
world.progress(10)
if false {
log.SetDefault(log.NewLogger(slog.NewTextHandler(os.Stdout, nil)))
}
q := newQueue(10, 10)
var wg sync.WaitGroup
q.Prepare(1, SnapSync)
wg.Add(1)
go func() {
// deliver headers
defer wg.Done()
c := 1
for {
//fmt.Printf("getting headers from %d\n", c)
headers := world.headers(c)
hashes := make([]common.Hash, len(headers))
for i, header := range headers {
hashes[i] = header.Hash()
}
l := len(headers)
//fmt.Printf("scheduling %d headers, first %d last %d\n",
// l, headers[0].Number.Uint64(), headers[len(headers)-1].Number.Uint64())
q.Schedule(headers, hashes, uint64(c))
c += l
}
}()
wg.Add(1)
go func() {
// collect results
defer wg.Done()
tot := 0
for {
res := q.Results(true)
tot += len(res)
fmt.Printf("got %d results, %d tot\n", len(res), tot)
// Now we can forget about these
world.forget(res[len(res)-1].Header.Number.Uint64())
}
}()
wg.Add(1)
go func() {
defer wg.Done()
// reserve body fetch
i := 4
for {
peer := dummyPeer(fmt.Sprintf("peer-%d", i))
f, _, _ := q.ReserveBodies(peer, rand.Intn(30))
if f != nil {
var (
emptyList []*types.Header
txset [][]*types.Transaction
uncleset [][]*types.Header
)
numToSkip := rand.Intn(len(f.Headers))
for _, hdr := range f.Headers[0 : len(f.Headers)-numToSkip] {
txset = append(txset, world.getTransactions(hdr.Number.Uint64()))
uncleset = append(uncleset, emptyList)
}
var (
txsHashes = make([]common.Hash, len(txset))
uncleHashes = make([]common.Hash, len(uncleset))
)
hasher := trie.NewStackTrie(nil)
for i, txs := range txset {
txsHashes[i] = types.DeriveSha(types.Transactions(txs), hasher)
}
for i, uncles := range uncleset {
uncleHashes[i] = types.CalcUncleHash(uncles)
}
time.Sleep(100 * time.Millisecond)
_, err := q.DeliverBodies(peer.id, txset, txsHashes, uncleset, uncleHashes, nil, nil)
if err != nil {
fmt.Printf("delivered %d bodies %v\n", len(txset), err)
}
} else {
i++
time.Sleep(200 * time.Millisecond)
}
}
}()
go func() {
defer wg.Done()
// reserve receiptfetch
peer := dummyPeer("peer-3")
for {
f, _, _ := q.ReserveReceipts(peer, rand.Intn(50))
if f != nil {
var rcs [][]*types.Receipt
for _, hdr := range f.Headers {
rcs = append(rcs, world.getReceipts(hdr.Number.Uint64()))
}
hasher := trie.NewStackTrie(nil)
hashes := make([]common.Hash, len(rcs))
for i, receipt := range rcs {
hashes[i] = types.DeriveSha(types.Receipts(receipt), hasher)
}
_, err := q.DeliverReceipts(peer.id, rcs, hashes)
if err != nil {
fmt.Printf("delivered %d receipts %v\n", len(rcs), err)
}
time.Sleep(100 * time.Millisecond)
} else {
time.Sleep(200 * time.Millisecond)
}
}
}()
wg.Add(1)
go func() {
defer wg.Done()
for i := 0; i < 50; i++ {
time.Sleep(300 * time.Millisecond)
//world.tick()
//fmt.Printf("trying to progress\n")
world.progress(rand.Intn(100))
}
for i := 0; i < 50; i++ {
time.Sleep(2990 * time.Millisecond)
}
}()
wg.Add(1)
go func() {
defer wg.Done()
for {
time.Sleep(990 * time.Millisecond)
fmt.Printf("world block tip is %d\n",
world.chain[len(world.chain)-1].Header().Number.Uint64())
fmt.Println(q.Stats())
}
}()
wg.Wait()
}
func newNetwork() *network {
var l sync.RWMutex
return &network{
cond: sync.NewCond(&l),
offset: 1, // block 1 is at blocks[0]
}
}
// represents the network
type network struct {
offset int
chain []*types.Block
receipts []types.Receipts
lock sync.RWMutex
cond *sync.Cond
}
func (n *network) getTransactions(blocknum uint64) types.Transactions {
index := blocknum - uint64(n.offset)
return n.chain[index].Transactions()
}
func (n *network) getReceipts(blocknum uint64) types.Receipts {
index := blocknum - uint64(n.offset)
if got := n.chain[index].Header().Number.Uint64(); got != blocknum {
fmt.Printf("Err, got %d exp %d\n", got, blocknum)
panic("sd")
}
return n.receipts[index]
}
func (n *network) forget(blocknum uint64) {
index := blocknum - uint64(n.offset)
n.chain = n.chain[index:]
n.receipts = n.receipts[index:]
n.offset = int(blocknum)
}
func (n *network) progress(numBlocks int) {
n.lock.Lock()
defer n.lock.Unlock()
//fmt.Printf("progressing...\n")
newBlocks, newR := makeChain(numBlocks, 0, n.chain[len(n.chain)-1], false)
n.chain = append(n.chain, newBlocks...)
n.receipts = append(n.receipts, newR...)
n.cond.Broadcast()
}
func (n *network) headers(from int) []*types.Header {
numHeaders := 128
var hdrs []*types.Header
index := from - n.offset
for index >= len(n.chain) {
// wait for progress
n.cond.L.Lock()
//fmt.Printf("header going into wait\n")
n.cond.Wait()
index = from - n.offset
n.cond.L.Unlock()
}
n.lock.RLock()
defer n.lock.RUnlock()
for i, b := range n.chain[index:] {
hdrs = append(hdrs, b.Header())
if i >= numHeaders {
break
}
}
return hdrs
}