go-ethereum/core/txpool/list.go

661 lines
22 KiB
Go

// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package txpool
import (
"container/heap"
"math"
"math/big"
"sort"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
)
// nonceHeap is a heap.Interface implementation over 64bit unsigned integers for
// retrieving sorted transactions from the possibly gapped future queue.
type nonceHeap []uint64
func (h nonceHeap) Len() int { return len(h) }
func (h nonceHeap) Less(i, j int) bool { return h[i] < h[j] }
func (h nonceHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *nonceHeap) Push(x interface{}) {
*h = append(*h, x.(uint64))
}
func (h *nonceHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
old[n-1] = 0
*h = old[0 : n-1]
return x
}
// sortedMap is a nonce->transaction hash map with a heap based index to allow
// iterating over the contents in a nonce-incrementing way.
type sortedMap struct {
items map[uint64]*types.Transaction // Hash map storing the transaction data
index *nonceHeap // Heap of nonces of all the stored transactions (non-strict mode)
cache types.Transactions // Cache of the transactions already sorted
}
// newSortedMap creates a new nonce-sorted transaction map.
func newSortedMap() *sortedMap {
return &sortedMap{
items: make(map[uint64]*types.Transaction),
index: new(nonceHeap),
}
}
// Get retrieves the current transactions associated with the given nonce.
func (m *sortedMap) Get(nonce uint64) *types.Transaction {
return m.items[nonce]
}
// Put inserts a new transaction into the map, also updating the map's nonce
// index. If a transaction already exists with the same nonce, it's overwritten.
func (m *sortedMap) Put(tx *types.Transaction) {
nonce := tx.Nonce()
if m.items[nonce] == nil {
heap.Push(m.index, nonce)
}
m.items[nonce], m.cache = tx, nil
}
// Forward removes all transactions from the map with a nonce lower than the
// provided threshold. Every removed transaction is returned for any post-removal
// maintenance.
func (m *sortedMap) Forward(threshold uint64) types.Transactions {
var removed types.Transactions
// Pop off heap items until the threshold is reached
for m.index.Len() > 0 && (*m.index)[0] < threshold {
nonce := heap.Pop(m.index).(uint64)
removed = append(removed, m.items[nonce])
delete(m.items, nonce)
}
// If we had a cached order, shift the front
if m.cache != nil {
m.cache = m.cache[len(removed):]
}
return removed
}
// Filter iterates over the list of transactions and removes all of them for which
// the specified function evaluates to true.
// Filter, as opposed to 'filter', re-initialises the heap after the operation is done.
// If you want to do several consecutive filterings, it's therefore better to first
// do a .filter(func1) followed by .Filter(func2) or reheap()
func (m *sortedMap) Filter(filter func(*types.Transaction) bool) types.Transactions {
removed := m.filter(filter)
// If transactions were removed, the heap and cache are ruined
if len(removed) > 0 {
m.reheap()
}
return removed
}
func (m *sortedMap) reheap() {
*m.index = make([]uint64, 0, len(m.items))
for nonce := range m.items {
*m.index = append(*m.index, nonce)
}
heap.Init(m.index)
m.cache = nil
}
// filter is identical to Filter, but **does not** regenerate the heap. This method
// should only be used if followed immediately by a call to Filter or reheap()
func (m *sortedMap) filter(filter func(*types.Transaction) bool) types.Transactions {
var removed types.Transactions
// Collect all the transactions to filter out
for nonce, tx := range m.items {
if filter(tx) {
removed = append(removed, tx)
delete(m.items, nonce)
}
}
if len(removed) > 0 {
m.cache = nil
}
return removed
}
// Cap places a hard limit on the number of items, returning all transactions
// exceeding that limit.
func (m *sortedMap) Cap(threshold int) types.Transactions {
// Short circuit if the number of items is under the limit
if len(m.items) <= threshold {
return nil
}
// Otherwise gather and drop the highest nonce'd transactions
var drops types.Transactions
sort.Sort(*m.index)
for size := len(m.items); size > threshold; size-- {
drops = append(drops, m.items[(*m.index)[size-1]])
delete(m.items, (*m.index)[size-1])
}
*m.index = (*m.index)[:threshold]
heap.Init(m.index)
// If we had a cache, shift the back
if m.cache != nil {
m.cache = m.cache[:len(m.cache)-len(drops)]
}
return drops
}
// Remove deletes a transaction from the maintained map, returning whether the
// transaction was found.
func (m *sortedMap) Remove(nonce uint64) bool {
// Short circuit if no transaction is present
_, ok := m.items[nonce]
if !ok {
return false
}
// Otherwise delete the transaction and fix the heap index
for i := 0; i < m.index.Len(); i++ {
if (*m.index)[i] == nonce {
heap.Remove(m.index, i)
break
}
}
delete(m.items, nonce)
m.cache = nil
return true
}
// Ready retrieves a sequentially increasing list of transactions starting at the
// provided nonce that is ready for processing. The returned transactions will be
// removed from the list.
//
// Note, all transactions with nonces lower than start will also be returned to
// prevent getting into and invalid state. This is not something that should ever
// happen but better to be self correcting than failing!
func (m *sortedMap) Ready(start uint64) types.Transactions {
// Short circuit if no transactions are available
if m.index.Len() == 0 || (*m.index)[0] > start {
return nil
}
// Otherwise start accumulating incremental transactions
var ready types.Transactions
for next := (*m.index)[0]; m.index.Len() > 0 && (*m.index)[0] == next; next++ {
ready = append(ready, m.items[next])
delete(m.items, next)
heap.Pop(m.index)
}
m.cache = nil
return ready
}
// Len returns the length of the transaction map.
func (m *sortedMap) Len() int {
return len(m.items)
}
func (m *sortedMap) flatten() types.Transactions {
// If the sorting was not cached yet, create and cache it
if m.cache == nil {
m.cache = make(types.Transactions, 0, len(m.items))
for _, tx := range m.items {
m.cache = append(m.cache, tx)
}
sort.Sort(types.TxByNonce(m.cache))
}
return m.cache
}
// Flatten creates a nonce-sorted slice of transactions based on the loosely
// sorted internal representation. The result of the sorting is cached in case
// it's requested again before any modifications are made to the contents.
func (m *sortedMap) Flatten() types.Transactions {
// Copy the cache to prevent accidental modifications
cache := m.flatten()
txs := make(types.Transactions, len(cache))
copy(txs, cache)
return txs
}
// LastElement returns the last element of a flattened list, thus, the
// transaction with the highest nonce
func (m *sortedMap) LastElement() *types.Transaction {
cache := m.flatten()
return cache[len(cache)-1]
}
// list is a "list" of transactions belonging to an account, sorted by account
// nonce. The same type can be used both for storing contiguous transactions for
// the executable/pending queue; and for storing gapped transactions for the non-
// executable/future queue, with minor behavioral changes.
type list struct {
strict bool // Whether nonces are strictly continuous or not
txs *sortedMap // Heap indexed sorted hash map of the transactions
costcap *big.Int // Price of the highest costing transaction (reset only if exceeds balance)
gascap uint64 // Gas limit of the highest spending transaction (reset only if exceeds block limit)
totalcost *big.Int // Total cost of all transactions in the list
}
// newList create a new transaction list for maintaining nonce-indexable fast,
// gapped, sortable transaction lists.
func newList(strict bool) *list {
return &list{
strict: strict,
txs: newSortedMap(),
costcap: new(big.Int),
totalcost: new(big.Int),
}
}
// Contains returns whether the list contains a transaction
// with the provided nonce.
func (l *list) Contains(nonce uint64) bool {
return l.txs.Get(nonce) != nil
}
// Add tries to insert a new transaction into the list, returning whether the
// transaction was accepted, and if yes, any previous transaction it replaced.
//
// If the new transaction is accepted into the list, the lists' cost and gas
// thresholds are also potentially updated.
func (l *list) Add(tx *types.Transaction, priceBump uint64) (bool, *types.Transaction) {
// If there's an older better transaction, abort
old := l.txs.Get(tx.Nonce())
if old != nil {
if old.GasFeeCapCmp(tx) >= 0 || old.GasTipCapCmp(tx) >= 0 {
return false, nil
}
// thresholdFeeCap = oldFC * (100 + priceBump) / 100
a := big.NewInt(100 + int64(priceBump))
aFeeCap := new(big.Int).Mul(a, old.GasFeeCap())
aTip := a.Mul(a, old.GasTipCap())
// thresholdTip = oldTip * (100 + priceBump) / 100
b := big.NewInt(100)
thresholdFeeCap := aFeeCap.Div(aFeeCap, b)
thresholdTip := aTip.Div(aTip, b)
// We have to ensure that both the new fee cap and tip are higher than the
// old ones as well as checking the percentage threshold to ensure that
// this is accurate for low (Wei-level) gas price replacements.
if tx.GasFeeCapIntCmp(thresholdFeeCap) < 0 || tx.GasTipCapIntCmp(thresholdTip) < 0 {
return false, nil
}
// Old is being replaced, subtract old cost
l.subTotalCost([]*types.Transaction{old})
}
// Add new tx cost to totalcost
l.totalcost.Add(l.totalcost, tx.Cost())
// Otherwise overwrite the old transaction with the current one
l.txs.Put(tx)
if cost := tx.Cost(); l.costcap.Cmp(cost) < 0 {
l.costcap = cost
}
if gas := tx.Gas(); l.gascap < gas {
l.gascap = gas
}
return true, old
}
// Forward removes all transactions from the list with a nonce lower than the
// provided threshold. Every removed transaction is returned for any post-removal
// maintenance.
func (l *list) Forward(threshold uint64) types.Transactions {
txs := l.txs.Forward(threshold)
l.subTotalCost(txs)
return txs
}
// Filter removes all transactions from the list with a cost or gas limit higher
// than the provided thresholds. Every removed transaction is returned for any
// post-removal maintenance. Strict-mode invalidated transactions are also
// returned.
//
// This method uses the cached costcap and gascap to quickly decide if there's even
// a point in calculating all the costs or if the balance covers all. If the threshold
// is lower than the costgas cap, the caps will be reset to a new high after removing
// the newly invalidated transactions.
func (l *list) Filter(costLimit *big.Int, gasLimit uint64) (types.Transactions, types.Transactions) {
// If all transactions are below the threshold, short circuit
if l.costcap.Cmp(costLimit) <= 0 && l.gascap <= gasLimit {
return nil, nil
}
l.costcap = new(big.Int).Set(costLimit) // Lower the caps to the thresholds
l.gascap = gasLimit
// Filter out all the transactions above the account's funds
removed := l.txs.Filter(func(tx *types.Transaction) bool {
return tx.Gas() > gasLimit || tx.Cost().Cmp(costLimit) > 0
})
if len(removed) == 0 {
return nil, nil
}
var invalids types.Transactions
// If the list was strict, filter anything above the lowest nonce
if l.strict {
lowest := uint64(math.MaxUint64)
for _, tx := range removed {
if nonce := tx.Nonce(); lowest > nonce {
lowest = nonce
}
}
invalids = l.txs.filter(func(tx *types.Transaction) bool { return tx.Nonce() > lowest })
}
// Reset total cost
l.subTotalCost(removed)
l.subTotalCost(invalids)
l.txs.reheap()
return removed, invalids
}
// Cap places a hard limit on the number of items, returning all transactions
// exceeding that limit.
func (l *list) Cap(threshold int) types.Transactions {
txs := l.txs.Cap(threshold)
l.subTotalCost(txs)
return txs
}
// Remove deletes a transaction from the maintained list, returning whether the
// transaction was found, and also returning any transaction invalidated due to
// the deletion (strict mode only).
func (l *list) Remove(tx *types.Transaction) (bool, types.Transactions) {
// Remove the transaction from the set
nonce := tx.Nonce()
if removed := l.txs.Remove(nonce); !removed {
return false, nil
}
l.subTotalCost([]*types.Transaction{tx})
// In strict mode, filter out non-executable transactions
if l.strict {
txs := l.txs.Filter(func(tx *types.Transaction) bool { return tx.Nonce() > nonce })
l.subTotalCost(txs)
return true, txs
}
return true, nil
}
// Ready retrieves a sequentially increasing list of transactions starting at the
// provided nonce that is ready for processing. The returned transactions will be
// removed from the list.
//
// Note, all transactions with nonces lower than start will also be returned to
// prevent getting into and invalid state. This is not something that should ever
// happen but better to be self correcting than failing!
func (l *list) Ready(start uint64) types.Transactions {
txs := l.txs.Ready(start)
l.subTotalCost(txs)
return txs
}
// Len returns the length of the transaction list.
func (l *list) Len() int {
return l.txs.Len()
}
// Empty returns whether the list of transactions is empty or not.
func (l *list) Empty() bool {
return l.Len() == 0
}
// Flatten creates a nonce-sorted slice of transactions based on the loosely
// sorted internal representation. The result of the sorting is cached in case
// it's requested again before any modifications are made to the contents.
func (l *list) Flatten() types.Transactions {
return l.txs.Flatten()
}
// LastElement returns the last element of a flattened list, thus, the
// transaction with the highest nonce
func (l *list) LastElement() *types.Transaction {
return l.txs.LastElement()
}
// subTotalCost subtracts the cost of the given transactions from the
// total cost of all transactions.
func (l *list) subTotalCost(txs []*types.Transaction) {
for _, tx := range txs {
l.totalcost.Sub(l.totalcost, tx.Cost())
}
}
// priceHeap is a heap.Interface implementation over transactions for retrieving
// price-sorted transactions to discard when the pool fills up. If baseFee is set
// then the heap is sorted based on the effective tip based on the given base fee.
// If baseFee is nil then the sorting is based on gasFeeCap.
type priceHeap struct {
baseFee *big.Int // heap should always be re-sorted after baseFee is changed
list []*types.Transaction
}
func (h *priceHeap) Len() int { return len(h.list) }
func (h *priceHeap) Swap(i, j int) { h.list[i], h.list[j] = h.list[j], h.list[i] }
func (h *priceHeap) Less(i, j int) bool {
switch h.cmp(h.list[i], h.list[j]) {
case -1:
return true
case 1:
return false
default:
return h.list[i].Nonce() > h.list[j].Nonce()
}
}
func (h *priceHeap) cmp(a, b *types.Transaction) int {
if h.baseFee != nil {
// Compare effective tips if baseFee is specified
if c := a.EffectiveGasTipCmp(b, h.baseFee); c != 0 {
return c
}
}
// Compare fee caps if baseFee is not specified or effective tips are equal
if c := a.GasFeeCapCmp(b); c != 0 {
return c
}
// Compare tips if effective tips and fee caps are equal
return a.GasTipCapCmp(b)
}
func (h *priceHeap) Push(x interface{}) {
tx := x.(*types.Transaction)
h.list = append(h.list, tx)
}
func (h *priceHeap) Pop() interface{} {
old := h.list
n := len(old)
x := old[n-1]
old[n-1] = nil
h.list = old[0 : n-1]
return x
}
// pricedList is a price-sorted heap to allow operating on transactions pool
// contents in a price-incrementing way. It's built upon the all transactions
// in txpool but only interested in the remote part. It means only remote transactions
// will be considered for tracking, sorting, eviction, etc.
//
// Two heaps are used for sorting: the urgent heap (based on effective tip in the next
// block) and the floating heap (based on gasFeeCap). Always the bigger heap is chosen for
// eviction. Transactions evicted from the urgent heap are first demoted into the floating heap.
// In some cases (during a congestion, when blocks are full) the urgent heap can provide
// better candidates for inclusion while in other cases (at the top of the baseFee peak)
// the floating heap is better. When baseFee is decreasing they behave similarly.
type pricedList struct {
// Number of stale price points to (re-heap trigger).
stales atomic.Int64
all *lookup // Pointer to the map of all transactions
urgent, floating priceHeap // Heaps of prices of all the stored **remote** transactions
reheapMu sync.Mutex // Mutex asserts that only one routine is reheaping the list
}
const (
// urgentRatio : floatingRatio is the capacity ratio of the two queues
urgentRatio = 4
floatingRatio = 1
)
// newPricedList creates a new price-sorted transaction heap.
func newPricedList(all *lookup) *pricedList {
return &pricedList{
all: all,
}
}
// Put inserts a new transaction into the heap.
func (l *pricedList) Put(tx *types.Transaction, local bool) {
if local {
return
}
// Insert every new transaction to the urgent heap first; Discard will balance the heaps
heap.Push(&l.urgent, tx)
}
// Removed notifies the prices transaction list that an old transaction dropped
// from the pool. The list will just keep a counter of stale objects and update
// the heap if a large enough ratio of transactions go stale.
func (l *pricedList) Removed(count int) {
// Bump the stale counter, but exit if still too low (< 25%)
stales := l.stales.Add(int64(count))
if int(stales) <= (len(l.urgent.list)+len(l.floating.list))/4 {
return
}
// Seems we've reached a critical number of stale transactions, reheap
l.Reheap()
}
// Underpriced checks whether a transaction is cheaper than (or as cheap as) the
// lowest priced (remote) transaction currently being tracked.
func (l *pricedList) Underpriced(tx *types.Transaction) bool {
// Note: with two queues, being underpriced is defined as being worse than the worst item
// in all non-empty queues if there is any. If both queues are empty then nothing is underpriced.
return (l.underpricedFor(&l.urgent, tx) || len(l.urgent.list) == 0) &&
(l.underpricedFor(&l.floating, tx) || len(l.floating.list) == 0) &&
(len(l.urgent.list) != 0 || len(l.floating.list) != 0)
}
// underpricedFor checks whether a transaction is cheaper than (or as cheap as) the
// lowest priced (remote) transaction in the given heap.
func (l *pricedList) underpricedFor(h *priceHeap, tx *types.Transaction) bool {
// Discard stale price points if found at the heap start
for len(h.list) > 0 {
head := h.list[0]
if l.all.GetRemote(head.Hash()) == nil { // Removed or migrated
l.stales.Add(-1)
heap.Pop(h)
continue
}
break
}
// Check if the transaction is underpriced or not
if len(h.list) == 0 {
return false // There is no remote transaction at all.
}
// If the remote transaction is even cheaper than the
// cheapest one tracked locally, reject it.
return h.cmp(h.list[0], tx) >= 0
}
// Discard finds a number of most underpriced transactions, removes them from the
// priced list and returns them for further removal from the entire pool.
// If noPending is set to true, we will only consider the floating list
//
// Note local transaction won't be considered for eviction.
func (l *pricedList) Discard(slots int, force bool) (types.Transactions, bool) {
drop := make(types.Transactions, 0, slots) // Remote underpriced transactions to drop
for slots > 0 {
if len(l.urgent.list)*floatingRatio > len(l.floating.list)*urgentRatio || floatingRatio == 0 {
// Discard stale transactions if found during cleanup
tx := heap.Pop(&l.urgent).(*types.Transaction)
if l.all.GetRemote(tx.Hash()) == nil { // Removed or migrated
l.stales.Add(-1)
continue
}
// Non stale transaction found, move to floating heap
heap.Push(&l.floating, tx)
} else {
if len(l.floating.list) == 0 {
// Stop if both heaps are empty
break
}
// Discard stale transactions if found during cleanup
tx := heap.Pop(&l.floating).(*types.Transaction)
if l.all.GetRemote(tx.Hash()) == nil { // Removed or migrated
l.stales.Add(-1)
continue
}
// Non stale transaction found, discard it
drop = append(drop, tx)
slots -= numSlots(tx)
}
}
// If we still can't make enough room for the new transaction
if slots > 0 && !force {
for _, tx := range drop {
heap.Push(&l.urgent, tx)
}
return nil, false
}
return drop, true
}
// Reheap forcibly rebuilds the heap based on the current remote transaction set.
func (l *pricedList) Reheap() {
l.reheapMu.Lock()
defer l.reheapMu.Unlock()
start := time.Now()
l.stales.Store(0)
l.urgent.list = make([]*types.Transaction, 0, l.all.RemoteCount())
l.all.Range(func(hash common.Hash, tx *types.Transaction, local bool) bool {
l.urgent.list = append(l.urgent.list, tx)
return true
}, false, true) // Only iterate remotes
heap.Init(&l.urgent)
// balance out the two heaps by moving the worse half of transactions into the
// floating heap
// Note: Discard would also do this before the first eviction but Reheap can do
// is more efficiently. Also, Underpriced would work suboptimally the first time
// if the floating queue was empty.
floatingCount := len(l.urgent.list) * floatingRatio / (urgentRatio + floatingRatio)
l.floating.list = make([]*types.Transaction, floatingCount)
for i := 0; i < floatingCount; i++ {
l.floating.list[i] = heap.Pop(&l.urgent).(*types.Transaction)
}
heap.Init(&l.floating)
reheapTimer.Update(time.Since(start))
}
// SetBaseFee updates the base fee and triggers a re-heap. Note that Removed is not
// necessary to call right before SetBaseFee when processing a new block.
func (l *pricedList) SetBaseFee(baseFee *big.Int) {
l.urgent.baseFee = baseFee
l.Reheap()
}