go-ethereum/triedb/pathdb/layertree.go

324 lines
9.3 KiB
Go

// Copyright 2023 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package pathdb
import (
"errors"
"fmt"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/trie/trienode"
)
// layerTree is a group of state layers identified by the state root.
// This structure defines a few basic operations for manipulating
// state layers linked with each other in a tree structure. It's
// thread-safe to use. However, callers need to ensure the thread-safety
// of the referenced layer by themselves.
type layerTree struct {
base *diskLayer
layers map[common.Hash]layer
descendants map[common.Hash]map[common.Hash]struct{}
lookup *lookup
lock sync.RWMutex
}
// newLayerTree constructs the layerTree with the given head layer.
func newLayerTree(head layer) *layerTree {
tree := new(layerTree)
tree.init(head)
return tree
}
// init initializes the layerTree by the given head layer.
func (tree *layerTree) init(head layer) {
tree.lock.Lock()
defer tree.lock.Unlock()
current := head
tree.layers = make(map[common.Hash]layer)
tree.descendants = make(map[common.Hash]map[common.Hash]struct{})
for {
tree.layers[current.rootHash()] = current
tree.fillAncestors(current)
parent := current.parentLayer()
if parent == nil {
break
}
current = parent
}
tree.base = current.(*diskLayer) // panic if it's not a disk layer
tree.lookup = newLookup(head, tree.isDescendant)
}
// get retrieves a layer belonging to the given state root.
func (tree *layerTree) get(root common.Hash) layer {
tree.lock.RLock()
defer tree.lock.RUnlock()
return tree.layers[root]
}
// isDescendant returns whether the specified layer with given root is a
// descendant of a specific ancestor.
//
// This function assumes the read lock has been held.
func (tree *layerTree) isDescendant(root common.Hash, ancestor common.Hash) bool {
subset := tree.descendants[ancestor]
if subset == nil {
return false
}
_, ok := subset[root]
return ok
}
// fillAncestors identifies the ancestors of the given layer and populates the
// descendants set. The ancestors include the diff layers below the supplied
// layer and also the disk layer.
//
// This function assumes the write lock has been held.
func (tree *layerTree) fillAncestors(layer layer) {
hash := layer.rootHash()
for {
parent := layer.parentLayer()
if parent == nil {
break
}
layer = parent
phash := parent.rootHash()
subset := tree.descendants[phash]
if subset == nil {
subset = make(map[common.Hash]struct{})
tree.descendants[phash] = subset
}
subset[hash] = struct{}{}
}
}
// forEach iterates the stored layers inside and applies the
// given callback on them.
func (tree *layerTree) forEach(onLayer func(layer)) {
tree.lock.RLock()
defer tree.lock.RUnlock()
for _, layer := range tree.layers {
onLayer(layer)
}
}
// len returns the number of layers cached.
func (tree *layerTree) len() int {
tree.lock.RLock()
defer tree.lock.RUnlock()
return len(tree.layers)
}
// add inserts a new layer into the tree if it can be linked to an existing old parent.
func (tree *layerTree) add(root common.Hash, parentRoot common.Hash, block uint64, nodes *trienode.MergedNodeSet, states *StateSetWithOrigin) error {
// Reject noop updates to avoid self-loops. This is a special case that can
// happen for clique networks and proof-of-stake networks where empty blocks
// don't modify the state (0 block subsidy).
//
// Although we could silently ignore this internally, it should be the caller's
// responsibility to avoid even attempting to insert such a layer.
if root == parentRoot {
return errors.New("layer cycle")
}
parent := tree.get(parentRoot)
if parent == nil {
return fmt.Errorf("triedb parent [%#x] layer missing", parentRoot)
}
l := parent.update(root, parent.stateID()+1, block, newNodeSet(nodes.Flatten()), states)
tree.lock.Lock()
defer tree.lock.Unlock()
tree.layers[l.rootHash()] = l
tree.fillAncestors(l)
tree.lookup.addLayer(l)
return nil
}
// cap traverses downwards the diff tree until the number of allowed diff layers
// are crossed. All diffs beyond the permitted number are flattened downwards.
func (tree *layerTree) cap(root common.Hash, layers int) error {
// Retrieve the head layer to cap from
l := tree.get(root)
if l == nil {
return fmt.Errorf("triedb layer [%#x] missing", root)
}
diff, ok := l.(*diffLayer)
if !ok {
return fmt.Errorf("triedb layer [%#x] is disk layer", root)
}
tree.lock.Lock()
defer tree.lock.Unlock()
// If full commit was requested, flatten the diffs and merge onto disk
if layers == 0 {
base, err := diff.persist(true)
if err != nil {
return err
}
tree.base = base
// Reset the layer tree with the single new disk layer
tree.layers = map[common.Hash]layer{
base.rootHash(): base,
}
tree.descendants = make(map[common.Hash]map[common.Hash]struct{})
tree.lookup = newLookup(base, tree.isDescendant)
return nil
}
// Dive until we run out of layers or reach the persistent database
for i := 0; i < layers-1; i++ {
// If we still have diff layers below, continue down
if parent, ok := diff.parentLayer().(*diffLayer); ok {
diff = parent
} else {
// Diff stack too shallow, return without modifications
return nil
}
}
// We're out of layers, flatten anything below, stopping if it's the disk or if
// the memory limit is not yet exceeded.
var (
err error
replaced layer
newBase *diskLayer
)
switch parent := diff.parentLayer().(type) {
case *diskLayer:
return nil
case *diffLayer:
// Hold the lock to prevent any read operations until the new
// parent is linked correctly.
diff.lock.Lock()
// Hold the reference of the original layer being replaced
replaced = parent
// Replace the original parent layer with new disk layer. The procedure
// can be illustrated as below:
//
// Before change:
// Chain:
// C1->C2->C3->C4 (HEAD)
// ->C2'->C3'->C4'
//
// After change:
// Chain:
// (a) C3->C4 (HEAD)
// (b) C1->C2
// ->C2'->C3'->C4'
// The original C3 is replaced by the new base (with root C3)
// Dangling layers in (b) will be removed later
newBase, err = parent.persist(false)
if err != nil {
diff.lock.Unlock()
return err
}
tree.layers[newBase.rootHash()] = newBase
// Link the new parent and release the lock
diff.parent = newBase
diff.lock.Unlock()
default:
panic(fmt.Sprintf("unknown data layer in triedb: %T", parent))
}
// Remove any layer that is stale or links into a stale layer
children := make(map[common.Hash][]common.Hash)
for root, layer := range tree.layers {
if dl, ok := layer.(*diffLayer); ok {
parent := dl.parentLayer().rootHash()
children[parent] = append(children[parent], root)
}
}
clearDiff := func(layer layer) {
diff, ok := layer.(*diffLayer)
if !ok {
return
}
tree.lookup.removeLayer(diff)
}
var remove func(root common.Hash)
remove = func(root common.Hash) {
clearDiff(tree.layers[root])
// Unlink the layer from the layer tree and cascade to its children
delete(tree.descendants, root)
delete(tree.layers, root)
for _, child := range children[root] {
remove(child)
}
delete(children, root)
}
remove(tree.base.rootHash()) // remove the old/stale disk layer
clearDiff(replaced) // remove the lookup data of the stale parent being replaced
tree.base = newBase // update the base layer with newly constructed one
return nil
}
// bottom returns the bottom-most disk layer in this tree.
func (tree *layerTree) bottom() *diskLayer {
tree.lock.RLock()
defer tree.lock.RUnlock()
return tree.base
}
// lookupAccount returns the layer that is confirmed to contain the account data
// being searched for.
func (tree *layerTree) lookupAccount(accountHash common.Hash, state common.Hash) (layer, error) {
tree.lock.RLock()
defer tree.lock.RUnlock()
tip := tree.lookup.accountTip(accountHash, state, tree.base.root)
if tip == (common.Hash{}) {
return nil, fmt.Errorf("[%#x] %w", state, errSnapshotStale)
}
l := tree.layers[tip]
if l == nil {
return nil, fmt.Errorf("triedb layer [%#x] missing", tip)
}
return l, nil
}
// lookupStorage returns the layer that is confirmed to contain the storage slot
// data being searched for.
func (tree *layerTree) lookupStorage(accountHash common.Hash, slotHash common.Hash, state common.Hash) (layer, error) {
tree.lock.RLock()
defer tree.lock.RUnlock()
tip := tree.lookup.storageTip(accountHash, slotHash, state, tree.base.root)
if tip == (common.Hash{}) {
return nil, fmt.Errorf("[%#x] %w", state, errSnapshotStale)
}
l := tree.layers[tip]
if l == nil {
return nil, fmt.Errorf("triedb layer [%#x] missing", tip)
}
return l, nil
}