go-ethereum/eth/protocols/snap/sync.go

3264 lines
112 KiB
Go

// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snap
import (
"bytes"
"encoding/json"
"errors"
"fmt"
gomath "math"
"math/big"
"math/rand"
"sort"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p/msgrate"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
"github.com/ethereum/go-ethereum/trie/trienode"
)
const (
// minRequestSize is the minimum number of bytes to request from a remote peer.
// This number is used as the low cap for account and storage range requests.
// Bytecode and trienode are limited inherently by item count (1).
minRequestSize = 64 * 1024
// maxRequestSize is the maximum number of bytes to request from a remote peer.
// This number is used as the high cap for account and storage range requests.
// Bytecode and trienode are limited more explicitly by the caps below.
maxRequestSize = 512 * 1024
// maxCodeRequestCount is the maximum number of bytecode blobs to request in a
// single query. If this number is too low, we're not filling responses fully
// and waste round trip times. If it's too high, we're capping responses and
// waste bandwidth.
//
// Deployed bytecodes are currently capped at 24KB, so the minimum request
// size should be maxRequestSize / 24K. Assuming that most contracts do not
// come close to that, requesting 4x should be a good approximation.
maxCodeRequestCount = maxRequestSize / (24 * 1024) * 4
// maxTrieRequestCount is the maximum number of trie node blobs to request in
// a single query. If this number is too low, we're not filling responses fully
// and waste round trip times. If it's too high, we're capping responses and
// waste bandwidth.
maxTrieRequestCount = maxRequestSize / 512
// trienodeHealRateMeasurementImpact is the impact a single measurement has on
// the local node's trienode processing capacity. A value closer to 0 reacts
// slower to sudden changes, but it is also more stable against temporary hiccups.
trienodeHealRateMeasurementImpact = 0.005
// minTrienodeHealThrottle is the minimum divisor for throttling trie node
// heal requests to avoid overloading the local node and excessively expanding
// the state trie breadth wise.
minTrienodeHealThrottle = 1
// maxTrienodeHealThrottle is the maximum divisor for throttling trie node
// heal requests to avoid overloading the local node and exessively expanding
// the state trie bedth wise.
maxTrienodeHealThrottle = maxTrieRequestCount
// trienodeHealThrottleIncrease is the multiplier for the throttle when the
// rate of arriving data is higher than the rate of processing it.
trienodeHealThrottleIncrease = 1.33
// trienodeHealThrottleDecrease is the divisor for the throttle when the
// rate of arriving data is lower than the rate of processing it.
trienodeHealThrottleDecrease = 1.25
// batchSizeThreshold is the maximum size allowed for gentrie batch.
batchSizeThreshold = 8 * 1024 * 1024
)
var (
// accountConcurrency is the number of chunks to split the account trie into
// to allow concurrent retrievals.
accountConcurrency = 16
// storageConcurrency is the number of chunks to split a large contract
// storage trie into to allow concurrent retrievals.
storageConcurrency = 16
)
// ErrCancelled is returned from snap syncing if the operation was prematurely
// terminated.
var ErrCancelled = errors.New("sync cancelled")
// accountRequest tracks a pending account range request to ensure responses are
// to actual requests and to validate any security constraints.
//
// Concurrency note: account requests and responses are handled concurrently from
// the main runloop to allow Merkle proof verifications on the peer's thread and
// to drop on invalid response. The request struct must contain all the data to
// construct the response without accessing runloop internals (i.e. task). That
// is only included to allow the runloop to match a response to the task being
// synced without having yet another set of maps.
type accountRequest struct {
peer string // Peer to which this request is assigned
id uint64 // Request ID of this request
time time.Time // Timestamp when the request was sent
deliver chan *accountResponse // Channel to deliver successful response on
revert chan *accountRequest // Channel to deliver request failure on
cancel chan struct{} // Channel to track sync cancellation
timeout *time.Timer // Timer to track delivery timeout
stale chan struct{} // Channel to signal the request was dropped
origin common.Hash // First account requested to allow continuation checks
limit common.Hash // Last account requested to allow non-overlapping chunking
task *accountTask // Task which this request is filling (only access fields through the runloop!!)
}
// accountResponse is an already Merkle-verified remote response to an account
// range request. It contains the subtrie for the requested account range and
// the database that's going to be filled with the internal nodes on commit.
type accountResponse struct {
task *accountTask // Task which this request is filling
hashes []common.Hash // Account hashes in the returned range
accounts []*types.StateAccount // Expanded accounts in the returned range
cont bool // Whether the account range has a continuation
}
// bytecodeRequest tracks a pending bytecode request to ensure responses are to
// actual requests and to validate any security constraints.
//
// Concurrency note: bytecode requests and responses are handled concurrently from
// the main runloop to allow Keccak256 hash verifications on the peer's thread and
// to drop on invalid response. The request struct must contain all the data to
// construct the response without accessing runloop internals (i.e. task). That
// is only included to allow the runloop to match a response to the task being
// synced without having yet another set of maps.
type bytecodeRequest struct {
peer string // Peer to which this request is assigned
id uint64 // Request ID of this request
time time.Time // Timestamp when the request was sent
deliver chan *bytecodeResponse // Channel to deliver successful response on
revert chan *bytecodeRequest // Channel to deliver request failure on
cancel chan struct{} // Channel to track sync cancellation
timeout *time.Timer // Timer to track delivery timeout
stale chan struct{} // Channel to signal the request was dropped
hashes []common.Hash // Bytecode hashes to validate responses
task *accountTask // Task which this request is filling (only access fields through the runloop!!)
}
// bytecodeResponse is an already verified remote response to a bytecode request.
type bytecodeResponse struct {
task *accountTask // Task which this request is filling
hashes []common.Hash // Hashes of the bytecode to avoid double hashing
codes [][]byte // Actual bytecodes to store into the database (nil = missing)
}
// storageRequest tracks a pending storage ranges request to ensure responses are
// to actual requests and to validate any security constraints.
//
// Concurrency note: storage requests and responses are handled concurrently from
// the main runloop to allow Merkle proof verifications on the peer's thread and
// to drop on invalid response. The request struct must contain all the data to
// construct the response without accessing runloop internals (i.e. tasks). That
// is only included to allow the runloop to match a response to the task being
// synced without having yet another set of maps.
type storageRequest struct {
peer string // Peer to which this request is assigned
id uint64 // Request ID of this request
time time.Time // Timestamp when the request was sent
deliver chan *storageResponse // Channel to deliver successful response on
revert chan *storageRequest // Channel to deliver request failure on
cancel chan struct{} // Channel to track sync cancellation
timeout *time.Timer // Timer to track delivery timeout
stale chan struct{} // Channel to signal the request was dropped
accounts []common.Hash // Account hashes to validate responses
roots []common.Hash // Storage roots to validate responses
origin common.Hash // First storage slot requested to allow continuation checks
limit common.Hash // Last storage slot requested to allow non-overlapping chunking
mainTask *accountTask // Task which this response belongs to (only access fields through the runloop!!)
subTask *storageTask // Task which this response is filling (only access fields through the runloop!!)
}
// storageResponse is an already Merkle-verified remote response to a storage
// range request. It contains the subtries for the requested storage ranges and
// the databases that's going to be filled with the internal nodes on commit.
type storageResponse struct {
mainTask *accountTask // Task which this response belongs to
subTask *storageTask // Task which this response is filling
accounts []common.Hash // Account hashes requested, may be only partially filled
roots []common.Hash // Storage roots requested, may be only partially filled
hashes [][]common.Hash // Storage slot hashes in the returned range
slots [][][]byte // Storage slot values in the returned range
cont bool // Whether the last storage range has a continuation
}
// trienodeHealRequest tracks a pending state trie request to ensure responses
// are to actual requests and to validate any security constraints.
//
// Concurrency note: trie node requests and responses are handled concurrently from
// the main runloop to allow Keccak256 hash verifications on the peer's thread and
// to drop on invalid response. The request struct must contain all the data to
// construct the response without accessing runloop internals (i.e. task). That
// is only included to allow the runloop to match a response to the task being
// synced without having yet another set of maps.
type trienodeHealRequest struct {
peer string // Peer to which this request is assigned
id uint64 // Request ID of this request
time time.Time // Timestamp when the request was sent
deliver chan *trienodeHealResponse // Channel to deliver successful response on
revert chan *trienodeHealRequest // Channel to deliver request failure on
cancel chan struct{} // Channel to track sync cancellation
timeout *time.Timer // Timer to track delivery timeout
stale chan struct{} // Channel to signal the request was dropped
paths []string // Trie node paths for identifying trie node
hashes []common.Hash // Trie node hashes to validate responses
task *healTask // Task which this request is filling (only access fields through the runloop!!)
}
// trienodeHealResponse is an already verified remote response to a trie node request.
type trienodeHealResponse struct {
task *healTask // Task which this request is filling
paths []string // Paths of the trie nodes
hashes []common.Hash // Hashes of the trie nodes to avoid double hashing
nodes [][]byte // Actual trie nodes to store into the database (nil = missing)
}
// bytecodeHealRequest tracks a pending bytecode request to ensure responses are to
// actual requests and to validate any security constraints.
//
// Concurrency note: bytecode requests and responses are handled concurrently from
// the main runloop to allow Keccak256 hash verifications on the peer's thread and
// to drop on invalid response. The request struct must contain all the data to
// construct the response without accessing runloop internals (i.e. task). That
// is only included to allow the runloop to match a response to the task being
// synced without having yet another set of maps.
type bytecodeHealRequest struct {
peer string // Peer to which this request is assigned
id uint64 // Request ID of this request
time time.Time // Timestamp when the request was sent
deliver chan *bytecodeHealResponse // Channel to deliver successful response on
revert chan *bytecodeHealRequest // Channel to deliver request failure on
cancel chan struct{} // Channel to track sync cancellation
timeout *time.Timer // Timer to track delivery timeout
stale chan struct{} // Channel to signal the request was dropped
hashes []common.Hash // Bytecode hashes to validate responses
task *healTask // Task which this request is filling (only access fields through the runloop!!)
}
// bytecodeHealResponse is an already verified remote response to a bytecode request.
type bytecodeHealResponse struct {
task *healTask // Task which this request is filling
hashes []common.Hash // Hashes of the bytecode to avoid double hashing
codes [][]byte // Actual bytecodes to store into the database (nil = missing)
}
// accountTask represents the sync task for a chunk of the account snapshot.
type accountTask struct {
// These fields get serialized to key-value store on shutdown
Next common.Hash // Next account to sync in this interval
Last common.Hash // Last account to sync in this interval
SubTasks map[common.Hash][]*storageTask // Storage intervals needing fetching for large contracts
// This is a list of account hashes whose storage are already completed
// in this cycle. This field is newly introduced in v1.14 and will be
// empty if the task is resolved from legacy progress data. Furthermore,
// this additional field will be ignored by legacy Geth. The only side
// effect is that these contracts might be resynced in the new cycle,
// retaining the legacy behavior.
StorageCompleted []common.Hash `json:",omitempty"`
// These fields are internals used during runtime
req *accountRequest // Pending request to fill this task
res *accountResponse // Validate response filling this task
pend int // Number of pending subtasks for this round
needCode []bool // Flags whether the filling accounts need code retrieval
needState []bool // Flags whether the filling accounts need storage retrieval
needHeal []bool // Flags whether the filling accounts's state was chunked and need healing
codeTasks map[common.Hash]struct{} // Code hashes that need retrieval
stateTasks map[common.Hash]common.Hash // Account hashes->roots that need full state retrieval
stateCompleted map[common.Hash]struct{} // Account hashes whose storage have been completed
genBatch ethdb.Batch // Batch used by the node generator
genTrie genTrie // Node generator from storage slots
done bool // Flag whether the task can be removed
}
// activeSubTasks returns the set of storage tasks covered by the current account
// range. Normally this would be the entire subTask set, but on a sync interrupt
// and later resume it can happen that a shorter account range is retrieved. This
// method ensures that we only start up the subtasks covered by the latest account
// response.
//
// Nil is returned if the account range is empty.
func (task *accountTask) activeSubTasks() map[common.Hash][]*storageTask {
if len(task.res.hashes) == 0 {
return nil
}
var (
tasks = make(map[common.Hash][]*storageTask)
last = task.res.hashes[len(task.res.hashes)-1]
)
for hash, subTasks := range task.SubTasks {
if hash.Cmp(last) <= 0 {
tasks[hash] = subTasks
}
}
return tasks
}
// storageTask represents the sync task for a chunk of the storage snapshot.
type storageTask struct {
Next common.Hash // Next account to sync in this interval
Last common.Hash // Last account to sync in this interval
// These fields are internals used during runtime
root common.Hash // Storage root hash for this instance
req *storageRequest // Pending request to fill this task
genBatch ethdb.Batch // Batch used by the node generator
genTrie genTrie // Node generator from storage slots
done bool // Flag whether the task can be removed
}
// healTask represents the sync task for healing the snap-synced chunk boundaries.
type healTask struct {
scheduler *trie.Sync // State trie sync scheduler defining the tasks
trieTasks map[string]common.Hash // Set of trie node tasks currently queued for retrieval, indexed by node path
codeTasks map[common.Hash]struct{} // Set of byte code tasks currently queued for retrieval, indexed by code hash
}
// SyncProgress is a database entry to allow suspending and resuming a snapshot state
// sync. Opposed to full and fast sync, there is no way to restart a suspended
// snap sync without prior knowledge of the suspension point.
type SyncProgress struct {
Tasks []*accountTask // The suspended account tasks (contract tasks within)
// Status report during syncing phase
AccountSynced uint64 // Number of accounts downloaded
AccountBytes common.StorageSize // Number of account trie bytes persisted to disk
BytecodeSynced uint64 // Number of bytecodes downloaded
BytecodeBytes common.StorageSize // Number of bytecode bytes downloaded
StorageSynced uint64 // Number of storage slots downloaded
StorageBytes common.StorageSize // Number of storage trie bytes persisted to disk
// Status report during healing phase
TrienodeHealSynced uint64 // Number of state trie nodes downloaded
TrienodeHealBytes common.StorageSize // Number of state trie bytes persisted to disk
BytecodeHealSynced uint64 // Number of bytecodes downloaded
BytecodeHealBytes common.StorageSize // Number of bytecodes persisted to disk
}
// SyncPending is analogous to SyncProgress, but it's used to report on pending
// ephemeral sync progress that doesn't get persisted into the database.
type SyncPending struct {
TrienodeHeal uint64 // Number of state trie nodes pending
BytecodeHeal uint64 // Number of bytecodes pending
}
// SyncPeer abstracts out the methods required for a peer to be synced against
// with the goal of allowing the construction of mock peers without the full
// blown networking.
type SyncPeer interface {
// ID retrieves the peer's unique identifier.
ID() string
// RequestAccountRange fetches a batch of accounts rooted in a specific account
// trie, starting with the origin.
RequestAccountRange(id uint64, root, origin, limit common.Hash, bytes uint64) error
// RequestStorageRanges fetches a batch of storage slots belonging to one or
// more accounts. If slots from only one account is requested, an origin marker
// may also be used to retrieve from there.
RequestStorageRanges(id uint64, root common.Hash, accounts []common.Hash, origin, limit []byte, bytes uint64) error
// RequestByteCodes fetches a batch of bytecodes by hash.
RequestByteCodes(id uint64, hashes []common.Hash, bytes uint64) error
// RequestTrieNodes fetches a batch of account or storage trie nodes rooted in
// a specific state trie.
RequestTrieNodes(id uint64, root common.Hash, paths []TrieNodePathSet, bytes uint64) error
// Log retrieves the peer's own contextual logger.
Log() log.Logger
}
// Syncer is an Ethereum account and storage trie syncer based on snapshots and
// the snap protocol. It's purpose is to download all the accounts and storage
// slots from remote peers and reassemble chunks of the state trie, on top of
// which a state sync can be run to fix any gaps / overlaps.
//
// Every network request has a variety of failure events:
// - The peer disconnects after task assignment, failing to send the request
// - The peer disconnects after sending the request, before delivering on it
// - The peer remains connected, but does not deliver a response in time
// - The peer delivers a stale response after a previous timeout
// - The peer delivers a refusal to serve the requested state
type Syncer struct {
db ethdb.KeyValueStore // Database to store the trie nodes into (and dedup)
scheme string // Node scheme used in node database
root common.Hash // Current state trie root being synced
tasks []*accountTask // Current account task set being synced
snapped bool // Flag to signal that snap phase is done
healer *healTask // Current state healing task being executed
update chan struct{} // Notification channel for possible sync progression
peers map[string]SyncPeer // Currently active peers to download from
peerJoin *event.Feed // Event feed to react to peers joining
peerDrop *event.Feed // Event feed to react to peers dropping
rates *msgrate.Trackers // Message throughput rates for peers
// Request tracking during syncing phase
statelessPeers map[string]struct{} // Peers that failed to deliver state data
accountIdlers map[string]struct{} // Peers that aren't serving account requests
bytecodeIdlers map[string]struct{} // Peers that aren't serving bytecode requests
storageIdlers map[string]struct{} // Peers that aren't serving storage requests
accountReqs map[uint64]*accountRequest // Account requests currently running
bytecodeReqs map[uint64]*bytecodeRequest // Bytecode requests currently running
storageReqs map[uint64]*storageRequest // Storage requests currently running
accountSynced uint64 // Number of accounts downloaded
accountBytes common.StorageSize // Number of account trie bytes persisted to disk
bytecodeSynced uint64 // Number of bytecodes downloaded
bytecodeBytes common.StorageSize // Number of bytecode bytes downloaded
storageSynced uint64 // Number of storage slots downloaded
storageBytes common.StorageSize // Number of storage trie bytes persisted to disk
extProgress *SyncProgress // progress that can be exposed to external caller.
// Request tracking during healing phase
trienodeHealIdlers map[string]struct{} // Peers that aren't serving trie node requests
bytecodeHealIdlers map[string]struct{} // Peers that aren't serving bytecode requests
trienodeHealReqs map[uint64]*trienodeHealRequest // Trie node requests currently running
bytecodeHealReqs map[uint64]*bytecodeHealRequest // Bytecode requests currently running
trienodeHealRate float64 // Average heal rate for processing trie node data
trienodeHealPend atomic.Uint64 // Number of trie nodes currently pending for processing
trienodeHealThrottle float64 // Divisor for throttling the amount of trienode heal data requested
trienodeHealThrottled time.Time // Timestamp the last time the throttle was updated
trienodeHealSynced uint64 // Number of state trie nodes downloaded
trienodeHealBytes common.StorageSize // Number of state trie bytes persisted to disk
trienodeHealDups uint64 // Number of state trie nodes already processed
trienodeHealNops uint64 // Number of state trie nodes not requested
bytecodeHealSynced uint64 // Number of bytecodes downloaded
bytecodeHealBytes common.StorageSize // Number of bytecodes persisted to disk
bytecodeHealDups uint64 // Number of bytecodes already processed
bytecodeHealNops uint64 // Number of bytecodes not requested
stateWriter ethdb.Batch // Shared batch writer used for persisting raw states
accountHealed uint64 // Number of accounts downloaded during the healing stage
accountHealedBytes common.StorageSize // Number of raw account bytes persisted to disk during the healing stage
storageHealed uint64 // Number of storage slots downloaded during the healing stage
storageHealedBytes common.StorageSize // Number of raw storage bytes persisted to disk during the healing stage
startTime time.Time // Time instance when snapshot sync started
logTime time.Time // Time instance when status was last reported
pend sync.WaitGroup // Tracks network request goroutines for graceful shutdown
lock sync.RWMutex // Protects fields that can change outside of sync (peers, reqs, root)
}
// NewSyncer creates a new snapshot syncer to download the Ethereum state over the
// snap protocol.
func NewSyncer(db ethdb.KeyValueStore, scheme string) *Syncer {
return &Syncer{
db: db,
scheme: scheme,
peers: make(map[string]SyncPeer),
peerJoin: new(event.Feed),
peerDrop: new(event.Feed),
rates: msgrate.NewTrackers(log.New("proto", "snap")),
update: make(chan struct{}, 1),
accountIdlers: make(map[string]struct{}),
storageIdlers: make(map[string]struct{}),
bytecodeIdlers: make(map[string]struct{}),
accountReqs: make(map[uint64]*accountRequest),
storageReqs: make(map[uint64]*storageRequest),
bytecodeReqs: make(map[uint64]*bytecodeRequest),
trienodeHealIdlers: make(map[string]struct{}),
bytecodeHealIdlers: make(map[string]struct{}),
trienodeHealReqs: make(map[uint64]*trienodeHealRequest),
bytecodeHealReqs: make(map[uint64]*bytecodeHealRequest),
trienodeHealThrottle: maxTrienodeHealThrottle, // Tune downward instead of insta-filling with junk
stateWriter: db.NewBatch(),
extProgress: new(SyncProgress),
}
}
// Register injects a new data source into the syncer's peerset.
func (s *Syncer) Register(peer SyncPeer) error {
// Make sure the peer is not registered yet
id := peer.ID()
s.lock.Lock()
if _, ok := s.peers[id]; ok {
log.Error("Snap peer already registered", "id", id)
s.lock.Unlock()
return errors.New("already registered")
}
s.peers[id] = peer
s.rates.Track(id, msgrate.NewTracker(s.rates.MeanCapacities(), s.rates.MedianRoundTrip()))
// Mark the peer as idle, even if no sync is running
s.accountIdlers[id] = struct{}{}
s.storageIdlers[id] = struct{}{}
s.bytecodeIdlers[id] = struct{}{}
s.trienodeHealIdlers[id] = struct{}{}
s.bytecodeHealIdlers[id] = struct{}{}
s.lock.Unlock()
// Notify any active syncs that a new peer can be assigned data
s.peerJoin.Send(id)
return nil
}
// Unregister injects a new data source into the syncer's peerset.
func (s *Syncer) Unregister(id string) error {
// Remove all traces of the peer from the registry
s.lock.Lock()
if _, ok := s.peers[id]; !ok {
log.Error("Snap peer not registered", "id", id)
s.lock.Unlock()
return errors.New("not registered")
}
delete(s.peers, id)
s.rates.Untrack(id)
// Remove status markers, even if no sync is running
delete(s.statelessPeers, id)
delete(s.accountIdlers, id)
delete(s.storageIdlers, id)
delete(s.bytecodeIdlers, id)
delete(s.trienodeHealIdlers, id)
delete(s.bytecodeHealIdlers, id)
s.lock.Unlock()
// Notify any active syncs that pending requests need to be reverted
s.peerDrop.Send(id)
return nil
}
// Sync starts (or resumes a previous) sync cycle to iterate over a state trie
// with the given root and reconstruct the nodes based on the snapshot leaves.
// Previously downloaded segments will not be redownloaded of fixed, rather any
// errors will be healed after the leaves are fully accumulated.
func (s *Syncer) Sync(root common.Hash, cancel chan struct{}) error {
// Move the trie root from any previous value, revert stateless markers for
// any peers and initialize the syncer if it was not yet run
s.lock.Lock()
s.root = root
s.healer = &healTask{
scheduler: state.NewStateSync(root, s.db, s.onHealState, s.scheme),
trieTasks: make(map[string]common.Hash),
codeTasks: make(map[common.Hash]struct{}),
}
s.statelessPeers = make(map[string]struct{})
s.lock.Unlock()
if s.startTime == (time.Time{}) {
s.startTime = time.Now()
}
// Retrieve the previous sync status from LevelDB and abort if already synced
s.loadSyncStatus()
if len(s.tasks) == 0 && s.healer.scheduler.Pending() == 0 {
log.Debug("Snapshot sync already completed")
return nil
}
defer func() { // Persist any progress, independent of failure
for _, task := range s.tasks {
s.forwardAccountTask(task)
}
s.cleanAccountTasks()
s.saveSyncStatus()
}()
log.Debug("Starting snapshot sync cycle", "root", root)
// Flush out the last committed raw states
defer func() {
if s.stateWriter.ValueSize() > 0 {
s.stateWriter.Write()
s.stateWriter.Reset()
}
}()
defer s.report(true)
// commit any trie- and bytecode-healing data.
defer s.commitHealer(true)
// Whether sync completed or not, disregard any future packets
defer func() {
log.Debug("Terminating snapshot sync cycle", "root", root)
s.lock.Lock()
s.accountReqs = make(map[uint64]*accountRequest)
s.storageReqs = make(map[uint64]*storageRequest)
s.bytecodeReqs = make(map[uint64]*bytecodeRequest)
s.trienodeHealReqs = make(map[uint64]*trienodeHealRequest)
s.bytecodeHealReqs = make(map[uint64]*bytecodeHealRequest)
s.lock.Unlock()
}()
// Keep scheduling sync tasks
peerJoin := make(chan string, 16)
peerJoinSub := s.peerJoin.Subscribe(peerJoin)
defer peerJoinSub.Unsubscribe()
peerDrop := make(chan string, 16)
peerDropSub := s.peerDrop.Subscribe(peerDrop)
defer peerDropSub.Unsubscribe()
// Create a set of unique channels for this sync cycle. We need these to be
// ephemeral so a data race doesn't accidentally deliver something stale on
// a persistent channel across syncs (yup, this happened)
var (
accountReqFails = make(chan *accountRequest)
storageReqFails = make(chan *storageRequest)
bytecodeReqFails = make(chan *bytecodeRequest)
accountResps = make(chan *accountResponse)
storageResps = make(chan *storageResponse)
bytecodeResps = make(chan *bytecodeResponse)
trienodeHealReqFails = make(chan *trienodeHealRequest)
bytecodeHealReqFails = make(chan *bytecodeHealRequest)
trienodeHealResps = make(chan *trienodeHealResponse)
bytecodeHealResps = make(chan *bytecodeHealResponse)
)
for {
// Remove all completed tasks and terminate sync if everything's done
s.cleanStorageTasks()
s.cleanAccountTasks()
if len(s.tasks) == 0 && s.healer.scheduler.Pending() == 0 {
return nil
}
// Assign all the data retrieval tasks to any free peers
s.assignAccountTasks(accountResps, accountReqFails, cancel)
s.assignBytecodeTasks(bytecodeResps, bytecodeReqFails, cancel)
s.assignStorageTasks(storageResps, storageReqFails, cancel)
if len(s.tasks) == 0 {
// Sync phase done, run heal phase
s.assignTrienodeHealTasks(trienodeHealResps, trienodeHealReqFails, cancel)
s.assignBytecodeHealTasks(bytecodeHealResps, bytecodeHealReqFails, cancel)
}
// Update sync progress
s.lock.Lock()
s.extProgress = &SyncProgress{
AccountSynced: s.accountSynced,
AccountBytes: s.accountBytes,
BytecodeSynced: s.bytecodeSynced,
BytecodeBytes: s.bytecodeBytes,
StorageSynced: s.storageSynced,
StorageBytes: s.storageBytes,
TrienodeHealSynced: s.trienodeHealSynced,
TrienodeHealBytes: s.trienodeHealBytes,
BytecodeHealSynced: s.bytecodeHealSynced,
BytecodeHealBytes: s.bytecodeHealBytes,
}
s.lock.Unlock()
// Wait for something to happen
select {
case <-s.update:
// Something happened (new peer, delivery, timeout), recheck tasks
case <-peerJoin:
// A new peer joined, try to schedule it new tasks
case id := <-peerDrop:
s.revertRequests(id)
case <-cancel:
return ErrCancelled
case req := <-accountReqFails:
s.revertAccountRequest(req)
case req := <-bytecodeReqFails:
s.revertBytecodeRequest(req)
case req := <-storageReqFails:
s.revertStorageRequest(req)
case req := <-trienodeHealReqFails:
s.revertTrienodeHealRequest(req)
case req := <-bytecodeHealReqFails:
s.revertBytecodeHealRequest(req)
case res := <-accountResps:
s.processAccountResponse(res)
case res := <-bytecodeResps:
s.processBytecodeResponse(res)
case res := <-storageResps:
s.processStorageResponse(res)
case res := <-trienodeHealResps:
s.processTrienodeHealResponse(res)
case res := <-bytecodeHealResps:
s.processBytecodeHealResponse(res)
}
// Report stats if something meaningful happened
s.report(false)
}
}
// loadSyncStatus retrieves a previously aborted sync status from the database,
// or generates a fresh one if none is available.
func (s *Syncer) loadSyncStatus() {
var progress SyncProgress
if status := rawdb.ReadSnapshotSyncStatus(s.db); status != nil {
if err := json.Unmarshal(status, &progress); err != nil {
log.Error("Failed to decode snap sync status", "err", err)
} else {
for _, task := range progress.Tasks {
log.Debug("Scheduled account sync task", "from", task.Next, "last", task.Last)
}
s.tasks = progress.Tasks
for _, task := range s.tasks {
// Restore the completed storages
task.stateCompleted = make(map[common.Hash]struct{})
for _, hash := range task.StorageCompleted {
task.stateCompleted[hash] = struct{}{}
}
task.StorageCompleted = nil
// Allocate batch for account trie generation
task.genBatch = ethdb.HookedBatch{
Batch: s.db.NewBatch(),
OnPut: func(key []byte, value []byte) {
s.accountBytes += common.StorageSize(len(key) + len(value))
},
}
if s.scheme == rawdb.HashScheme {
task.genTrie = newHashTrie(task.genBatch)
}
if s.scheme == rawdb.PathScheme {
task.genTrie = newPathTrie(common.Hash{}, task.Next != common.Hash{}, s.db, task.genBatch)
}
// Restore leftover storage tasks
for accountHash, subtasks := range task.SubTasks {
for _, subtask := range subtasks {
subtask.genBatch = ethdb.HookedBatch{
Batch: s.db.NewBatch(),
OnPut: func(key []byte, value []byte) {
s.storageBytes += common.StorageSize(len(key) + len(value))
},
}
if s.scheme == rawdb.HashScheme {
subtask.genTrie = newHashTrie(subtask.genBatch)
}
if s.scheme == rawdb.PathScheme {
subtask.genTrie = newPathTrie(accountHash, subtask.Next != common.Hash{}, s.db, subtask.genBatch)
}
}
}
}
s.lock.Lock()
defer s.lock.Unlock()
s.snapped = len(s.tasks) == 0
s.accountSynced = progress.AccountSynced
s.accountBytes = progress.AccountBytes
s.bytecodeSynced = progress.BytecodeSynced
s.bytecodeBytes = progress.BytecodeBytes
s.storageSynced = progress.StorageSynced
s.storageBytes = progress.StorageBytes
s.trienodeHealSynced = progress.TrienodeHealSynced
s.trienodeHealBytes = progress.TrienodeHealBytes
s.bytecodeHealSynced = progress.BytecodeHealSynced
s.bytecodeHealBytes = progress.BytecodeHealBytes
return
}
}
// Either we've failed to decode the previous state, or there was none.
// Start a fresh sync by chunking up the account range and scheduling
// them for retrieval.
s.tasks = nil
s.accountSynced, s.accountBytes = 0, 0
s.bytecodeSynced, s.bytecodeBytes = 0, 0
s.storageSynced, s.storageBytes = 0, 0
s.trienodeHealSynced, s.trienodeHealBytes = 0, 0
s.bytecodeHealSynced, s.bytecodeHealBytes = 0, 0
var next common.Hash
step := new(big.Int).Sub(
new(big.Int).Div(
new(big.Int).Exp(common.Big2, common.Big256, nil),
big.NewInt(int64(accountConcurrency)),
), common.Big1,
)
for i := 0; i < accountConcurrency; i++ {
last := common.BigToHash(new(big.Int).Add(next.Big(), step))
if i == accountConcurrency-1 {
// Make sure we don't overflow if the step is not a proper divisor
last = common.MaxHash
}
batch := ethdb.HookedBatch{
Batch: s.db.NewBatch(),
OnPut: func(key []byte, value []byte) {
s.accountBytes += common.StorageSize(len(key) + len(value))
},
}
var tr genTrie
if s.scheme == rawdb.HashScheme {
tr = newHashTrie(batch)
}
if s.scheme == rawdb.PathScheme {
tr = newPathTrie(common.Hash{}, next != common.Hash{}, s.db, batch)
}
s.tasks = append(s.tasks, &accountTask{
Next: next,
Last: last,
SubTasks: make(map[common.Hash][]*storageTask),
genBatch: batch,
stateCompleted: make(map[common.Hash]struct{}),
genTrie: tr,
})
log.Debug("Created account sync task", "from", next, "last", last)
next = common.BigToHash(new(big.Int).Add(last.Big(), common.Big1))
}
}
// saveSyncStatus marshals the remaining sync tasks into leveldb.
func (s *Syncer) saveSyncStatus() {
// Serialize any partial progress to disk before spinning down
for _, task := range s.tasks {
// Claim the right boundary as incomplete before flushing the
// accumulated nodes in batch, the nodes on right boundary
// will be discarded and cleaned up by this call.
task.genTrie.commit(false)
if err := task.genBatch.Write(); err != nil {
log.Error("Failed to persist account slots", "err", err)
}
for _, subtasks := range task.SubTasks {
for _, subtask := range subtasks {
// Same for account trie, discard and cleanup the
// incomplete right boundary.
subtask.genTrie.commit(false)
if err := subtask.genBatch.Write(); err != nil {
log.Error("Failed to persist storage slots", "err", err)
}
}
}
// Save the account hashes of completed storage.
task.StorageCompleted = make([]common.Hash, 0, len(task.stateCompleted))
for hash := range task.stateCompleted {
task.StorageCompleted = append(task.StorageCompleted, hash)
}
if len(task.StorageCompleted) > 0 {
log.Debug("Leftover completed storages", "number", len(task.StorageCompleted), "next", task.Next, "last", task.Last)
}
}
// Store the actual progress markers
progress := &SyncProgress{
Tasks: s.tasks,
AccountSynced: s.accountSynced,
AccountBytes: s.accountBytes,
BytecodeSynced: s.bytecodeSynced,
BytecodeBytes: s.bytecodeBytes,
StorageSynced: s.storageSynced,
StorageBytes: s.storageBytes,
TrienodeHealSynced: s.trienodeHealSynced,
TrienodeHealBytes: s.trienodeHealBytes,
BytecodeHealSynced: s.bytecodeHealSynced,
BytecodeHealBytes: s.bytecodeHealBytes,
}
status, err := json.Marshal(progress)
if err != nil {
panic(err) // This can only fail during implementation
}
rawdb.WriteSnapshotSyncStatus(s.db, status)
}
// Progress returns the snap sync status statistics.
func (s *Syncer) Progress() (*SyncProgress, *SyncPending) {
s.lock.Lock()
defer s.lock.Unlock()
pending := new(SyncPending)
if s.healer != nil {
pending.TrienodeHeal = uint64(len(s.healer.trieTasks))
pending.BytecodeHeal = uint64(len(s.healer.codeTasks))
}
return s.extProgress, pending
}
// cleanAccountTasks removes account range retrieval tasks that have already been
// completed.
func (s *Syncer) cleanAccountTasks() {
// If the sync was already done before, don't even bother
if len(s.tasks) == 0 {
return
}
// Sync wasn't finished previously, check for any task that can be finalized
for i := 0; i < len(s.tasks); i++ {
if s.tasks[i].done {
s.tasks = append(s.tasks[:i], s.tasks[i+1:]...)
i--
}
}
// If everything was just finalized just, generate the account trie and start heal
if len(s.tasks) == 0 {
s.lock.Lock()
s.snapped = true
s.lock.Unlock()
// Push the final sync report
s.reportSyncProgress(true)
}
}
// cleanStorageTasks iterates over all the account tasks and storage sub-tasks
// within, cleaning any that have been completed.
func (s *Syncer) cleanStorageTasks() {
for _, task := range s.tasks {
for account, subtasks := range task.SubTasks {
// Remove storage range retrieval tasks that completed
for j := 0; j < len(subtasks); j++ {
if subtasks[j].done {
subtasks = append(subtasks[:j], subtasks[j+1:]...)
j--
}
}
if len(subtasks) > 0 {
task.SubTasks[account] = subtasks
continue
}
// If all storage chunks are done, mark the account as done too
for j, hash := range task.res.hashes {
if hash == account {
task.needState[j] = false
}
}
delete(task.SubTasks, account)
task.pend--
// Mark the state as complete to prevent resyncing, regardless
// if state healing is necessary.
task.stateCompleted[account] = struct{}{}
// If this was the last pending task, forward the account task
if task.pend == 0 {
s.forwardAccountTask(task)
}
}
}
}
// assignAccountTasks attempts to match idle peers to pending account range
// retrievals.
func (s *Syncer) assignAccountTasks(success chan *accountResponse, fail chan *accountRequest, cancel chan struct{}) {
s.lock.Lock()
defer s.lock.Unlock()
// Sort the peers by download capacity to use faster ones if many available
idlers := &capacitySort{
ids: make([]string, 0, len(s.accountIdlers)),
caps: make([]int, 0, len(s.accountIdlers)),
}
targetTTL := s.rates.TargetTimeout()
for id := range s.accountIdlers {
if _, ok := s.statelessPeers[id]; ok {
continue
}
idlers.ids = append(idlers.ids, id)
idlers.caps = append(idlers.caps, s.rates.Capacity(id, AccountRangeMsg, targetTTL))
}
if len(idlers.ids) == 0 {
return
}
sort.Sort(sort.Reverse(idlers))
// Iterate over all the tasks and try to find a pending one
for _, task := range s.tasks {
// Skip any tasks already filling
if task.req != nil || task.res != nil {
continue
}
// Task pending retrieval, try to find an idle peer. If no such peer
// exists, we probably assigned tasks for all (or they are stateless).
// Abort the entire assignment mechanism.
if len(idlers.ids) == 0 {
return
}
var (
idle = idlers.ids[0]
peer = s.peers[idle]
cap = idlers.caps[0]
)
idlers.ids, idlers.caps = idlers.ids[1:], idlers.caps[1:]
// Matched a pending task to an idle peer, allocate a unique request id
var reqid uint64
for {
reqid = uint64(rand.Int63())
if reqid == 0 {
continue
}
if _, ok := s.accountReqs[reqid]; ok {
continue
}
break
}
// Generate the network query and send it to the peer
req := &accountRequest{
peer: idle,
id: reqid,
time: time.Now(),
deliver: success,
revert: fail,
cancel: cancel,
stale: make(chan struct{}),
origin: task.Next,
limit: task.Last,
task: task,
}
req.timeout = time.AfterFunc(s.rates.TargetTimeout(), func() {
peer.Log().Debug("Account range request timed out", "reqid", reqid)
s.rates.Update(idle, AccountRangeMsg, 0, 0)
s.scheduleRevertAccountRequest(req)
})
s.accountReqs[reqid] = req
delete(s.accountIdlers, idle)
s.pend.Add(1)
go func(root common.Hash) {
defer s.pend.Done()
// Attempt to send the remote request and revert if it fails
if cap > maxRequestSize {
cap = maxRequestSize
}
if cap < minRequestSize { // Don't bother with peers below a bare minimum performance
cap = minRequestSize
}
if err := peer.RequestAccountRange(reqid, root, req.origin, req.limit, uint64(cap)); err != nil {
peer.Log().Debug("Failed to request account range", "err", err)
s.scheduleRevertAccountRequest(req)
}
}(s.root)
// Inject the request into the task to block further assignments
task.req = req
}
}
// assignBytecodeTasks attempts to match idle peers to pending code retrievals.
func (s *Syncer) assignBytecodeTasks(success chan *bytecodeResponse, fail chan *bytecodeRequest, cancel chan struct{}) {
s.lock.Lock()
defer s.lock.Unlock()
// Sort the peers by download capacity to use faster ones if many available
idlers := &capacitySort{
ids: make([]string, 0, len(s.bytecodeIdlers)),
caps: make([]int, 0, len(s.bytecodeIdlers)),
}
targetTTL := s.rates.TargetTimeout()
for id := range s.bytecodeIdlers {
if _, ok := s.statelessPeers[id]; ok {
continue
}
idlers.ids = append(idlers.ids, id)
idlers.caps = append(idlers.caps, s.rates.Capacity(id, ByteCodesMsg, targetTTL))
}
if len(idlers.ids) == 0 {
return
}
sort.Sort(sort.Reverse(idlers))
// Iterate over all the tasks and try to find a pending one
for _, task := range s.tasks {
// Skip any tasks not in the bytecode retrieval phase
if task.res == nil {
continue
}
// Skip tasks that are already retrieving (or done with) all codes
if len(task.codeTasks) == 0 {
continue
}
// Task pending retrieval, try to find an idle peer. If no such peer
// exists, we probably assigned tasks for all (or they are stateless).
// Abort the entire assignment mechanism.
if len(idlers.ids) == 0 {
return
}
var (
idle = idlers.ids[0]
peer = s.peers[idle]
cap = idlers.caps[0]
)
idlers.ids, idlers.caps = idlers.ids[1:], idlers.caps[1:]
// Matched a pending task to an idle peer, allocate a unique request id
var reqid uint64
for {
reqid = uint64(rand.Int63())
if reqid == 0 {
continue
}
if _, ok := s.bytecodeReqs[reqid]; ok {
continue
}
break
}
// Generate the network query and send it to the peer
if cap > maxCodeRequestCount {
cap = maxCodeRequestCount
}
hashes := make([]common.Hash, 0, cap)
for hash := range task.codeTasks {
delete(task.codeTasks, hash)
hashes = append(hashes, hash)
if len(hashes) >= cap {
break
}
}
req := &bytecodeRequest{
peer: idle,
id: reqid,
time: time.Now(),
deliver: success,
revert: fail,
cancel: cancel,
stale: make(chan struct{}),
hashes: hashes,
task: task,
}
req.timeout = time.AfterFunc(s.rates.TargetTimeout(), func() {
peer.Log().Debug("Bytecode request timed out", "reqid", reqid)
s.rates.Update(idle, ByteCodesMsg, 0, 0)
s.scheduleRevertBytecodeRequest(req)
})
s.bytecodeReqs[reqid] = req
delete(s.bytecodeIdlers, idle)
s.pend.Add(1)
go func() {
defer s.pend.Done()
// Attempt to send the remote request and revert if it fails
if err := peer.RequestByteCodes(reqid, hashes, maxRequestSize); err != nil {
log.Debug("Failed to request bytecodes", "err", err)
s.scheduleRevertBytecodeRequest(req)
}
}()
}
}
// assignStorageTasks attempts to match idle peers to pending storage range
// retrievals.
func (s *Syncer) assignStorageTasks(success chan *storageResponse, fail chan *storageRequest, cancel chan struct{}) {
s.lock.Lock()
defer s.lock.Unlock()
// Sort the peers by download capacity to use faster ones if many available
idlers := &capacitySort{
ids: make([]string, 0, len(s.storageIdlers)),
caps: make([]int, 0, len(s.storageIdlers)),
}
targetTTL := s.rates.TargetTimeout()
for id := range s.storageIdlers {
if _, ok := s.statelessPeers[id]; ok {
continue
}
idlers.ids = append(idlers.ids, id)
idlers.caps = append(idlers.caps, s.rates.Capacity(id, StorageRangesMsg, targetTTL))
}
if len(idlers.ids) == 0 {
return
}
sort.Sort(sort.Reverse(idlers))
// Iterate over all the tasks and try to find a pending one
for _, task := range s.tasks {
// Skip any tasks not in the storage retrieval phase
if task.res == nil {
continue
}
// Skip tasks that are already retrieving (or done with) all small states
storageTasks := task.activeSubTasks()
if len(storageTasks) == 0 && len(task.stateTasks) == 0 {
continue
}
// Task pending retrieval, try to find an idle peer. If no such peer
// exists, we probably assigned tasks for all (or they are stateless).
// Abort the entire assignment mechanism.
if len(idlers.ids) == 0 {
return
}
var (
idle = idlers.ids[0]
peer = s.peers[idle]
cap = idlers.caps[0]
)
idlers.ids, idlers.caps = idlers.ids[1:], idlers.caps[1:]
// Matched a pending task to an idle peer, allocate a unique request id
var reqid uint64
for {
reqid = uint64(rand.Int63())
if reqid == 0 {
continue
}
if _, ok := s.storageReqs[reqid]; ok {
continue
}
break
}
// Generate the network query and send it to the peer. If there are
// large contract tasks pending, complete those before diving into
// even more new contracts.
if cap > maxRequestSize {
cap = maxRequestSize
}
if cap < minRequestSize { // Don't bother with peers below a bare minimum performance
cap = minRequestSize
}
storageSets := cap / 1024
var (
accounts = make([]common.Hash, 0, storageSets)
roots = make([]common.Hash, 0, storageSets)
subtask *storageTask
)
for account, subtasks := range storageTasks {
for _, st := range subtasks {
// Skip any subtasks already filling
if st.req != nil {
continue
}
// Found an incomplete storage chunk, schedule it
accounts = append(accounts, account)
roots = append(roots, st.root)
subtask = st
break // Large contract chunks are downloaded individually
}
if subtask != nil {
break // Large contract chunks are downloaded individually
}
}
if subtask == nil {
// No large contract required retrieval, but small ones available
for account, root := range task.stateTasks {
delete(task.stateTasks, account)
accounts = append(accounts, account)
roots = append(roots, root)
if len(accounts) >= storageSets {
break
}
}
}
// If nothing was found, it means this task is actually already fully
// retrieving, but large contracts are hard to detect. Skip to the next.
if len(accounts) == 0 {
continue
}
req := &storageRequest{
peer: idle,
id: reqid,
time: time.Now(),
deliver: success,
revert: fail,
cancel: cancel,
stale: make(chan struct{}),
accounts: accounts,
roots: roots,
mainTask: task,
subTask: subtask,
}
if subtask != nil {
req.origin = subtask.Next
req.limit = subtask.Last
}
req.timeout = time.AfterFunc(s.rates.TargetTimeout(), func() {
peer.Log().Debug("Storage request timed out", "reqid", reqid)
s.rates.Update(idle, StorageRangesMsg, 0, 0)
s.scheduleRevertStorageRequest(req)
})
s.storageReqs[reqid] = req
delete(s.storageIdlers, idle)
s.pend.Add(1)
go func(root common.Hash) {
defer s.pend.Done()
// Attempt to send the remote request and revert if it fails
var origin, limit []byte
if subtask != nil {
origin, limit = req.origin[:], req.limit[:]
}
if err := peer.RequestStorageRanges(reqid, root, accounts, origin, limit, uint64(cap)); err != nil {
log.Debug("Failed to request storage", "err", err)
s.scheduleRevertStorageRequest(req)
}
}(s.root)
// Inject the request into the subtask to block further assignments
if subtask != nil {
subtask.req = req
}
}
}
// assignTrienodeHealTasks attempts to match idle peers to trie node requests to
// heal any trie errors caused by the snap sync's chunked retrieval model.
func (s *Syncer) assignTrienodeHealTasks(success chan *trienodeHealResponse, fail chan *trienodeHealRequest, cancel chan struct{}) {
s.lock.Lock()
defer s.lock.Unlock()
// Sort the peers by download capacity to use faster ones if many available
idlers := &capacitySort{
ids: make([]string, 0, len(s.trienodeHealIdlers)),
caps: make([]int, 0, len(s.trienodeHealIdlers)),
}
targetTTL := s.rates.TargetTimeout()
for id := range s.trienodeHealIdlers {
if _, ok := s.statelessPeers[id]; ok {
continue
}
idlers.ids = append(idlers.ids, id)
idlers.caps = append(idlers.caps, s.rates.Capacity(id, TrieNodesMsg, targetTTL))
}
if len(idlers.ids) == 0 {
return
}
sort.Sort(sort.Reverse(idlers))
// Iterate over pending tasks and try to find a peer to retrieve with
for len(s.healer.trieTasks) > 0 || s.healer.scheduler.Pending() > 0 {
// If there are not enough trie tasks queued to fully assign, fill the
// queue from the state sync scheduler. The trie synced schedules these
// together with bytecodes, so we need to queue them combined.
var (
have = len(s.healer.trieTasks) + len(s.healer.codeTasks)
want = maxTrieRequestCount + maxCodeRequestCount
)
if have < want {
paths, hashes, codes := s.healer.scheduler.Missing(want - have)
for i, path := range paths {
s.healer.trieTasks[path] = hashes[i]
}
for _, hash := range codes {
s.healer.codeTasks[hash] = struct{}{}
}
}
// If all the heal tasks are bytecodes or already downloading, bail
if len(s.healer.trieTasks) == 0 {
return
}
// Task pending retrieval, try to find an idle peer. If no such peer
// exists, we probably assigned tasks for all (or they are stateless).
// Abort the entire assignment mechanism.
if len(idlers.ids) == 0 {
return
}
var (
idle = idlers.ids[0]
peer = s.peers[idle]
cap = idlers.caps[0]
)
idlers.ids, idlers.caps = idlers.ids[1:], idlers.caps[1:]
// Matched a pending task to an idle peer, allocate a unique request id
var reqid uint64
for {
reqid = uint64(rand.Int63())
if reqid == 0 {
continue
}
if _, ok := s.trienodeHealReqs[reqid]; ok {
continue
}
break
}
// Generate the network query and send it to the peer
if cap > maxTrieRequestCount {
cap = maxTrieRequestCount
}
cap = int(float64(cap) / s.trienodeHealThrottle)
if cap <= 0 {
cap = 1
}
var (
hashes = make([]common.Hash, 0, cap)
paths = make([]string, 0, cap)
pathsets = make([]TrieNodePathSet, 0, cap)
)
for path, hash := range s.healer.trieTasks {
delete(s.healer.trieTasks, path)
paths = append(paths, path)
hashes = append(hashes, hash)
if len(paths) >= cap {
break
}
}
// Group requests by account hash
paths, hashes, _, pathsets = sortByAccountPath(paths, hashes)
req := &trienodeHealRequest{
peer: idle,
id: reqid,
time: time.Now(),
deliver: success,
revert: fail,
cancel: cancel,
stale: make(chan struct{}),
paths: paths,
hashes: hashes,
task: s.healer,
}
req.timeout = time.AfterFunc(s.rates.TargetTimeout(), func() {
peer.Log().Debug("Trienode heal request timed out", "reqid", reqid)
s.rates.Update(idle, TrieNodesMsg, 0, 0)
s.scheduleRevertTrienodeHealRequest(req)
})
s.trienodeHealReqs[reqid] = req
delete(s.trienodeHealIdlers, idle)
s.pend.Add(1)
go func(root common.Hash) {
defer s.pend.Done()
// Attempt to send the remote request and revert if it fails
if err := peer.RequestTrieNodes(reqid, root, pathsets, maxRequestSize); err != nil {
log.Debug("Failed to request trienode healers", "err", err)
s.scheduleRevertTrienodeHealRequest(req)
}
}(s.root)
}
}
// assignBytecodeHealTasks attempts to match idle peers to bytecode requests to
// heal any trie errors caused by the snap sync's chunked retrieval model.
func (s *Syncer) assignBytecodeHealTasks(success chan *bytecodeHealResponse, fail chan *bytecodeHealRequest, cancel chan struct{}) {
s.lock.Lock()
defer s.lock.Unlock()
// Sort the peers by download capacity to use faster ones if many available
idlers := &capacitySort{
ids: make([]string, 0, len(s.bytecodeHealIdlers)),
caps: make([]int, 0, len(s.bytecodeHealIdlers)),
}
targetTTL := s.rates.TargetTimeout()
for id := range s.bytecodeHealIdlers {
if _, ok := s.statelessPeers[id]; ok {
continue
}
idlers.ids = append(idlers.ids, id)
idlers.caps = append(idlers.caps, s.rates.Capacity(id, ByteCodesMsg, targetTTL))
}
if len(idlers.ids) == 0 {
return
}
sort.Sort(sort.Reverse(idlers))
// Iterate over pending tasks and try to find a peer to retrieve with
for len(s.healer.codeTasks) > 0 || s.healer.scheduler.Pending() > 0 {
// If there are not enough trie tasks queued to fully assign, fill the
// queue from the state sync scheduler. The trie synced schedules these
// together with trie nodes, so we need to queue them combined.
var (
have = len(s.healer.trieTasks) + len(s.healer.codeTasks)
want = maxTrieRequestCount + maxCodeRequestCount
)
if have < want {
paths, hashes, codes := s.healer.scheduler.Missing(want - have)
for i, path := range paths {
s.healer.trieTasks[path] = hashes[i]
}
for _, hash := range codes {
s.healer.codeTasks[hash] = struct{}{}
}
}
// If all the heal tasks are trienodes or already downloading, bail
if len(s.healer.codeTasks) == 0 {
return
}
// Task pending retrieval, try to find an idle peer. If no such peer
// exists, we probably assigned tasks for all (or they are stateless).
// Abort the entire assignment mechanism.
if len(idlers.ids) == 0 {
return
}
var (
idle = idlers.ids[0]
peer = s.peers[idle]
cap = idlers.caps[0]
)
idlers.ids, idlers.caps = idlers.ids[1:], idlers.caps[1:]
// Matched a pending task to an idle peer, allocate a unique request id
var reqid uint64
for {
reqid = uint64(rand.Int63())
if reqid == 0 {
continue
}
if _, ok := s.bytecodeHealReqs[reqid]; ok {
continue
}
break
}
// Generate the network query and send it to the peer
if cap > maxCodeRequestCount {
cap = maxCodeRequestCount
}
hashes := make([]common.Hash, 0, cap)
for hash := range s.healer.codeTasks {
delete(s.healer.codeTasks, hash)
hashes = append(hashes, hash)
if len(hashes) >= cap {
break
}
}
req := &bytecodeHealRequest{
peer: idle,
id: reqid,
time: time.Now(),
deliver: success,
revert: fail,
cancel: cancel,
stale: make(chan struct{}),
hashes: hashes,
task: s.healer,
}
req.timeout = time.AfterFunc(s.rates.TargetTimeout(), func() {
peer.Log().Debug("Bytecode heal request timed out", "reqid", reqid)
s.rates.Update(idle, ByteCodesMsg, 0, 0)
s.scheduleRevertBytecodeHealRequest(req)
})
s.bytecodeHealReqs[reqid] = req
delete(s.bytecodeHealIdlers, idle)
s.pend.Add(1)
go func() {
defer s.pend.Done()
// Attempt to send the remote request and revert if it fails
if err := peer.RequestByteCodes(reqid, hashes, maxRequestSize); err != nil {
log.Debug("Failed to request bytecode healers", "err", err)
s.scheduleRevertBytecodeHealRequest(req)
}
}()
}
}
// revertRequests locates all the currently pending requests from a particular
// peer and reverts them, rescheduling for others to fulfill.
func (s *Syncer) revertRequests(peer string) {
// Gather the requests first, revertals need the lock too
s.lock.Lock()
var accountReqs []*accountRequest
for _, req := range s.accountReqs {
if req.peer == peer {
accountReqs = append(accountReqs, req)
}
}
var bytecodeReqs []*bytecodeRequest
for _, req := range s.bytecodeReqs {
if req.peer == peer {
bytecodeReqs = append(bytecodeReqs, req)
}
}
var storageReqs []*storageRequest
for _, req := range s.storageReqs {
if req.peer == peer {
storageReqs = append(storageReqs, req)
}
}
var trienodeHealReqs []*trienodeHealRequest
for _, req := range s.trienodeHealReqs {
if req.peer == peer {
trienodeHealReqs = append(trienodeHealReqs, req)
}
}
var bytecodeHealReqs []*bytecodeHealRequest
for _, req := range s.bytecodeHealReqs {
if req.peer == peer {
bytecodeHealReqs = append(bytecodeHealReqs, req)
}
}
s.lock.Unlock()
// Revert all the requests matching the peer
for _, req := range accountReqs {
s.revertAccountRequest(req)
}
for _, req := range bytecodeReqs {
s.revertBytecodeRequest(req)
}
for _, req := range storageReqs {
s.revertStorageRequest(req)
}
for _, req := range trienodeHealReqs {
s.revertTrienodeHealRequest(req)
}
for _, req := range bytecodeHealReqs {
s.revertBytecodeHealRequest(req)
}
}
// scheduleRevertAccountRequest asks the event loop to clean up an account range
// request and return all failed retrieval tasks to the scheduler for reassignment.
func (s *Syncer) scheduleRevertAccountRequest(req *accountRequest) {
select {
case req.revert <- req:
// Sync event loop notified
case <-req.cancel:
// Sync cycle got cancelled
case <-req.stale:
// Request already reverted
}
}
// revertAccountRequest cleans up an account range request and returns all failed
// retrieval tasks to the scheduler for reassignment.
//
// Note, this needs to run on the event runloop thread to reschedule to idle peers.
// On peer threads, use scheduleRevertAccountRequest.
func (s *Syncer) revertAccountRequest(req *accountRequest) {
log.Debug("Reverting account request", "peer", req.peer, "reqid", req.id)
select {
case <-req.stale:
log.Trace("Account request already reverted", "peer", req.peer, "reqid", req.id)
return
default:
}
close(req.stale)
// Remove the request from the tracked set
s.lock.Lock()
delete(s.accountReqs, req.id)
s.lock.Unlock()
// If there's a timeout timer still running, abort it and mark the account
// task as not-pending, ready for rescheduling
req.timeout.Stop()
if req.task.req == req {
req.task.req = nil
}
}
// scheduleRevertBytecodeRequest asks the event loop to clean up a bytecode request
// and return all failed retrieval tasks to the scheduler for reassignment.
func (s *Syncer) scheduleRevertBytecodeRequest(req *bytecodeRequest) {
select {
case req.revert <- req:
// Sync event loop notified
case <-req.cancel:
// Sync cycle got cancelled
case <-req.stale:
// Request already reverted
}
}
// revertBytecodeRequest cleans up a bytecode request and returns all failed
// retrieval tasks to the scheduler for reassignment.
//
// Note, this needs to run on the event runloop thread to reschedule to idle peers.
// On peer threads, use scheduleRevertBytecodeRequest.
func (s *Syncer) revertBytecodeRequest(req *bytecodeRequest) {
log.Debug("Reverting bytecode request", "peer", req.peer)
select {
case <-req.stale:
log.Trace("Bytecode request already reverted", "peer", req.peer, "reqid", req.id)
return
default:
}
close(req.stale)
// Remove the request from the tracked set
s.lock.Lock()
delete(s.bytecodeReqs, req.id)
s.lock.Unlock()
// If there's a timeout timer still running, abort it and mark the code
// retrievals as not-pending, ready for rescheduling
req.timeout.Stop()
for _, hash := range req.hashes {
req.task.codeTasks[hash] = struct{}{}
}
}
// scheduleRevertStorageRequest asks the event loop to clean up a storage range
// request and return all failed retrieval tasks to the scheduler for reassignment.
func (s *Syncer) scheduleRevertStorageRequest(req *storageRequest) {
select {
case req.revert <- req:
// Sync event loop notified
case <-req.cancel:
// Sync cycle got cancelled
case <-req.stale:
// Request already reverted
}
}
// revertStorageRequest cleans up a storage range request and returns all failed
// retrieval tasks to the scheduler for reassignment.
//
// Note, this needs to run on the event runloop thread to reschedule to idle peers.
// On peer threads, use scheduleRevertStorageRequest.
func (s *Syncer) revertStorageRequest(req *storageRequest) {
log.Debug("Reverting storage request", "peer", req.peer)
select {
case <-req.stale:
log.Trace("Storage request already reverted", "peer", req.peer, "reqid", req.id)
return
default:
}
close(req.stale)
// Remove the request from the tracked set
s.lock.Lock()
delete(s.storageReqs, req.id)
s.lock.Unlock()
// If there's a timeout timer still running, abort it and mark the storage
// task as not-pending, ready for rescheduling
req.timeout.Stop()
if req.subTask != nil {
req.subTask.req = nil
} else {
for i, account := range req.accounts {
req.mainTask.stateTasks[account] = req.roots[i]
}
}
}
// scheduleRevertTrienodeHealRequest asks the event loop to clean up a trienode heal
// request and return all failed retrieval tasks to the scheduler for reassignment.
func (s *Syncer) scheduleRevertTrienodeHealRequest(req *trienodeHealRequest) {
select {
case req.revert <- req:
// Sync event loop notified
case <-req.cancel:
// Sync cycle got cancelled
case <-req.stale:
// Request already reverted
}
}
// revertTrienodeHealRequest cleans up a trienode heal request and returns all
// failed retrieval tasks to the scheduler for reassignment.
//
// Note, this needs to run on the event runloop thread to reschedule to idle peers.
// On peer threads, use scheduleRevertTrienodeHealRequest.
func (s *Syncer) revertTrienodeHealRequest(req *trienodeHealRequest) {
log.Debug("Reverting trienode heal request", "peer", req.peer)
select {
case <-req.stale:
log.Trace("Trienode heal request already reverted", "peer", req.peer, "reqid", req.id)
return
default:
}
close(req.stale)
// Remove the request from the tracked set
s.lock.Lock()
delete(s.trienodeHealReqs, req.id)
s.lock.Unlock()
// If there's a timeout timer still running, abort it and mark the trie node
// retrievals as not-pending, ready for rescheduling
req.timeout.Stop()
for i, path := range req.paths {
req.task.trieTasks[path] = req.hashes[i]
}
}
// scheduleRevertBytecodeHealRequest asks the event loop to clean up a bytecode heal
// request and return all failed retrieval tasks to the scheduler for reassignment.
func (s *Syncer) scheduleRevertBytecodeHealRequest(req *bytecodeHealRequest) {
select {
case req.revert <- req:
// Sync event loop notified
case <-req.cancel:
// Sync cycle got cancelled
case <-req.stale:
// Request already reverted
}
}
// revertBytecodeHealRequest cleans up a bytecode heal request and returns all
// failed retrieval tasks to the scheduler for reassignment.
//
// Note, this needs to run on the event runloop thread to reschedule to idle peers.
// On peer threads, use scheduleRevertBytecodeHealRequest.
func (s *Syncer) revertBytecodeHealRequest(req *bytecodeHealRequest) {
log.Debug("Reverting bytecode heal request", "peer", req.peer)
select {
case <-req.stale:
log.Trace("Bytecode heal request already reverted", "peer", req.peer, "reqid", req.id)
return
default:
}
close(req.stale)
// Remove the request from the tracked set
s.lock.Lock()
delete(s.bytecodeHealReqs, req.id)
s.lock.Unlock()
// If there's a timeout timer still running, abort it and mark the code
// retrievals as not-pending, ready for rescheduling
req.timeout.Stop()
for _, hash := range req.hashes {
req.task.codeTasks[hash] = struct{}{}
}
}
// processAccountResponse integrates an already validated account range response
// into the account tasks.
func (s *Syncer) processAccountResponse(res *accountResponse) {
// Switch the task from pending to filling
res.task.req = nil
res.task.res = res
// Ensure that the response doesn't overflow into the subsequent task
lastBig := res.task.Last.Big()
for i, hash := range res.hashes {
// Mark the range complete if the last is already included.
// Keep iteration to delete the extra states if exists.
cmp := hash.Big().Cmp(lastBig)
if cmp == 0 {
res.cont = false
continue
}
if cmp > 0 {
// Chunk overflown, cut off excess
res.hashes = res.hashes[:i]
res.accounts = res.accounts[:i]
res.cont = false // Mark range completed
break
}
}
// Iterate over all the accounts and assemble which ones need further sub-
// filling before the entire account range can be persisted.
res.task.needCode = make([]bool, len(res.accounts))
res.task.needState = make([]bool, len(res.accounts))
res.task.needHeal = make([]bool, len(res.accounts))
res.task.codeTasks = make(map[common.Hash]struct{})
res.task.stateTasks = make(map[common.Hash]common.Hash)
resumed := make(map[common.Hash]struct{})
res.task.pend = 0
for i, account := range res.accounts {
// Check if the account is a contract with an unknown code
if !bytes.Equal(account.CodeHash, types.EmptyCodeHash.Bytes()) {
if !rawdb.HasCodeWithPrefix(s.db, common.BytesToHash(account.CodeHash)) {
res.task.codeTasks[common.BytesToHash(account.CodeHash)] = struct{}{}
res.task.needCode[i] = true
res.task.pend++
}
}
// Check if the account is a contract with an unknown storage trie
if account.Root != types.EmptyRootHash {
// If the storage was already retrieved in the last cycle, there's no need
// to resync it again, regardless of whether the storage root is consistent
// or not.
if _, exist := res.task.stateCompleted[res.hashes[i]]; exist {
// The leftover storage tasks are not expected, unless system is
// very wrong.
if _, ok := res.task.SubTasks[res.hashes[i]]; ok {
panic(fmt.Errorf("unexpected leftover storage tasks, owner: %x", res.hashes[i]))
}
// Mark the healing tag if storage root node is inconsistent, or
// it's non-existent due to storage chunking.
if !rawdb.HasTrieNode(s.db, res.hashes[i], nil, account.Root, s.scheme) {
res.task.needHeal[i] = true
}
} else {
// If there was a previous large state retrieval in progress,
// don't restart it from scratch. This happens if a sync cycle
// is interrupted and resumed later. However, *do* update the
// previous root hash.
if subtasks, ok := res.task.SubTasks[res.hashes[i]]; ok {
log.Debug("Resuming large storage retrieval", "account", res.hashes[i], "root", account.Root)
for _, subtask := range subtasks {
subtask.root = account.Root
}
res.task.needHeal[i] = true
resumed[res.hashes[i]] = struct{}{}
largeStorageResumedGauge.Inc(1)
} else {
// It's possible that in the hash scheme, the storage, along
// with the trie nodes of the given root, is already present
// in the database. Schedule the storage task anyway to simplify
// the logic here.
res.task.stateTasks[res.hashes[i]] = account.Root
}
res.task.needState[i] = true
res.task.pend++
}
}
}
// Delete any subtasks that have been aborted but not resumed. It's essential
// as the corresponding contract might be self-destructed in this cycle(it's
// no longer possible in ethereum as self-destruction is disabled in Cancun
// Fork, but the condition is still necessary for other networks).
//
// Keep the leftover storage tasks if they are not covered by the responded
// account range which should be picked up in next account wave.
if len(res.hashes) > 0 {
// The hash of last delivered account in the response
last := res.hashes[len(res.hashes)-1]
for hash := range res.task.SubTasks {
// TODO(rjl493456442) degrade the log level before merging.
if hash.Cmp(last) > 0 {
log.Info("Keeping suspended storage retrieval", "account", hash)
continue
}
// TODO(rjl493456442) degrade the log level before merging.
// It should never happen in ethereum.
if _, ok := resumed[hash]; !ok {
log.Error("Aborting suspended storage retrieval", "account", hash)
delete(res.task.SubTasks, hash)
largeStorageDiscardGauge.Inc(1)
}
}
}
// If the account range contained no contracts, or all have been fully filled
// beforehand, short circuit storage filling and forward to the next task
if res.task.pend == 0 {
s.forwardAccountTask(res.task)
return
}
// Some accounts are incomplete, leave as is for the storage and contract
// task assigners to pick up and fill
}
// processBytecodeResponse integrates an already validated bytecode response
// into the account tasks.
func (s *Syncer) processBytecodeResponse(res *bytecodeResponse) {
batch := s.db.NewBatch()
var (
codes uint64
)
for i, hash := range res.hashes {
code := res.codes[i]
// If the bytecode was not delivered, reschedule it
if code == nil {
res.task.codeTasks[hash] = struct{}{}
continue
}
// Code was delivered, mark it not needed any more
for j, account := range res.task.res.accounts {
if res.task.needCode[j] && hash == common.BytesToHash(account.CodeHash) {
res.task.needCode[j] = false
res.task.pend--
}
}
// Push the bytecode into a database batch
codes++
rawdb.WriteCode(batch, hash, code)
}
bytes := common.StorageSize(batch.ValueSize())
if err := batch.Write(); err != nil {
log.Crit("Failed to persist bytecodes", "err", err)
}
s.bytecodeSynced += codes
s.bytecodeBytes += bytes
log.Debug("Persisted set of bytecodes", "count", codes, "bytes", bytes)
// If this delivery completed the last pending task, forward the account task
// to the next chunk
if res.task.pend == 0 {
s.forwardAccountTask(res.task)
return
}
// Some accounts are still incomplete, leave as is for the storage and contract
// task assigners to pick up and fill.
}
// processStorageResponse integrates an already validated storage response
// into the account tasks.
func (s *Syncer) processStorageResponse(res *storageResponse) {
// Switch the subtask from pending to idle
if res.subTask != nil {
res.subTask.req = nil
}
batch := ethdb.HookedBatch{
Batch: s.db.NewBatch(),
OnPut: func(key []byte, value []byte) {
s.storageBytes += common.StorageSize(len(key) + len(value))
},
}
var (
slots int
oldStorageBytes = s.storageBytes
)
// Iterate over all the accounts and reconstruct their storage tries from the
// delivered slots
for i, account := range res.accounts {
// If the account was not delivered, reschedule it
if i >= len(res.hashes) {
res.mainTask.stateTasks[account] = res.roots[i]
continue
}
// State was delivered, if complete mark as not needed any more, otherwise
// mark the account as needing healing
for j, hash := range res.mainTask.res.hashes {
if account != hash {
continue
}
acc := res.mainTask.res.accounts[j]
// If the packet contains multiple contract storage slots, all
// but the last are surely complete. The last contract may be
// chunked, so check it's continuation flag.
if res.subTask == nil && res.mainTask.needState[j] && (i < len(res.hashes)-1 || !res.cont) {
res.mainTask.needState[j] = false
res.mainTask.pend--
res.mainTask.stateCompleted[account] = struct{}{} // mark it as completed
smallStorageGauge.Inc(1)
}
// If the last contract was chunked, mark it as needing healing
// to avoid writing it out to disk prematurely.
if res.subTask == nil && !res.mainTask.needHeal[j] && i == len(res.hashes)-1 && res.cont {
res.mainTask.needHeal[j] = true
}
// If the last contract was chunked, we need to switch to large
// contract handling mode
if res.subTask == nil && i == len(res.hashes)-1 && res.cont {
// If we haven't yet started a large-contract retrieval, create
// the subtasks for it within the main account task
if tasks, ok := res.mainTask.SubTasks[account]; !ok {
var (
keys = res.hashes[i]
chunks = uint64(storageConcurrency)
lastKey common.Hash
)
if len(keys) > 0 {
lastKey = keys[len(keys)-1]
}
// If the number of slots remaining is low, decrease the
// number of chunks. Somewhere on the order of 10-15K slots
// fit into a packet of 500KB. A key/slot pair is maximum 64
// bytes, so pessimistically maxRequestSize/64 = 8K.
//
// Chunk so that at least 2 packets are needed to fill a task.
if estimate, err := estimateRemainingSlots(len(keys), lastKey); err == nil {
if n := estimate / (2 * (maxRequestSize / 64)); n+1 < chunks {
chunks = n + 1
}
log.Debug("Chunked large contract", "initiators", len(keys), "tail", lastKey, "remaining", estimate, "chunks", chunks)
} else {
log.Debug("Chunked large contract", "initiators", len(keys), "tail", lastKey, "chunks", chunks)
}
r := newHashRange(lastKey, chunks)
if chunks == 1 {
smallStorageGauge.Inc(1)
} else {
largeStorageGauge.Inc(1)
}
// Our first task is the one that was just filled by this response.
batch := ethdb.HookedBatch{
Batch: s.db.NewBatch(),
OnPut: func(key []byte, value []byte) {
s.storageBytes += common.StorageSize(len(key) + len(value))
},
}
var tr genTrie
if s.scheme == rawdb.HashScheme {
tr = newHashTrie(batch)
}
if s.scheme == rawdb.PathScheme {
// Keep the left boundary as it's the first range.
tr = newPathTrie(account, false, s.db, batch)
}
tasks = append(tasks, &storageTask{
Next: common.Hash{},
Last: r.End(),
root: acc.Root,
genBatch: batch,
genTrie: tr,
})
for r.Next() {
batch := ethdb.HookedBatch{
Batch: s.db.NewBatch(),
OnPut: func(key []byte, value []byte) {
s.storageBytes += common.StorageSize(len(key) + len(value))
},
}
var tr genTrie
if s.scheme == rawdb.HashScheme {
tr = newHashTrie(batch)
}
if s.scheme == rawdb.PathScheme {
tr = newPathTrie(account, true, s.db, batch)
}
tasks = append(tasks, &storageTask{
Next: r.Start(),
Last: r.End(),
root: acc.Root,
genBatch: batch,
genTrie: tr,
})
}
for _, task := range tasks {
log.Debug("Created storage sync task", "account", account, "root", acc.Root, "from", task.Next, "last", task.Last)
}
res.mainTask.SubTasks[account] = tasks
// Since we've just created the sub-tasks, this response
// is surely for the first one (zero origin)
res.subTask = tasks[0]
}
}
// If we're in large contract delivery mode, forward the subtask
if res.subTask != nil {
// Ensure the response doesn't overflow into the subsequent task
last := res.subTask.Last.Big()
// Find the first overflowing key. While at it, mark res as complete
// if we find the range to include or pass the 'last'
index := sort.Search(len(res.hashes[i]), func(k int) bool {
cmp := res.hashes[i][k].Big().Cmp(last)
if cmp >= 0 {
res.cont = false
}
return cmp > 0
})
if index >= 0 {
// cut off excess
res.hashes[i] = res.hashes[i][:index]
res.slots[i] = res.slots[i][:index]
}
// Forward the relevant storage chunk (even if created just now)
if res.cont {
res.subTask.Next = incHash(res.hashes[i][len(res.hashes[i])-1])
} else {
res.subTask.done = true
}
}
}
// Iterate over all the complete contracts, reconstruct the trie nodes and
// push them to disk. If the contract is chunked, the trie nodes will be
// reconstructed later.
slots += len(res.hashes[i])
if i < len(res.hashes)-1 || res.subTask == nil {
// no need to make local reassignment of account: this closure does not outlive the loop
var tr genTrie
if s.scheme == rawdb.HashScheme {
tr = newHashTrie(batch)
}
if s.scheme == rawdb.PathScheme {
// Keep the left boundary as it's complete
tr = newPathTrie(account, false, s.db, batch)
}
for j := 0; j < len(res.hashes[i]); j++ {
tr.update(res.hashes[i][j][:], res.slots[i][j])
}
tr.commit(true)
}
// Persist the received storage segments. These flat state maybe
// outdated during the sync, but it can be fixed later during the
// snapshot generation.
for j := 0; j < len(res.hashes[i]); j++ {
rawdb.WriteStorageSnapshot(batch, account, res.hashes[i][j], res.slots[i][j])
// If we're storing large contracts, generate the trie nodes
// on the fly to not trash the gluing points
if i == len(res.hashes)-1 && res.subTask != nil {
res.subTask.genTrie.update(res.hashes[i][j][:], res.slots[i][j])
}
}
}
// Large contracts could have generated new trie nodes, flush them to disk
if res.subTask != nil {
if res.subTask.done {
root := res.subTask.genTrie.commit(res.subTask.Last == common.MaxHash)
if err := res.subTask.genBatch.Write(); err != nil {
log.Error("Failed to persist stack slots", "err", err)
}
res.subTask.genBatch.Reset()
// If the chunk's root is an overflown but full delivery,
// clear the heal request.
accountHash := res.accounts[len(res.accounts)-1]
if root == res.subTask.root && rawdb.HasTrieNode(s.db, accountHash, nil, root, s.scheme) {
for i, account := range res.mainTask.res.hashes {
if account == accountHash {
res.mainTask.needHeal[i] = false
skipStorageHealingGauge.Inc(1)
}
}
}
} else if res.subTask.genBatch.ValueSize() > batchSizeThreshold {
res.subTask.genTrie.commit(false)
if err := res.subTask.genBatch.Write(); err != nil {
log.Error("Failed to persist stack slots", "err", err)
}
res.subTask.genBatch.Reset()
}
}
// Flush anything written just now and update the stats
if err := batch.Write(); err != nil {
log.Crit("Failed to persist storage slots", "err", err)
}
s.storageSynced += uint64(slots)
log.Debug("Persisted set of storage slots", "accounts", len(res.hashes), "slots", slots, "bytes", s.storageBytes-oldStorageBytes)
// If this delivery completed the last pending task, forward the account task
// to the next chunk
if res.mainTask.pend == 0 {
s.forwardAccountTask(res.mainTask)
return
}
// Some accounts are still incomplete, leave as is for the storage and contract
// task assigners to pick up and fill.
}
// processTrienodeHealResponse integrates an already validated trienode response
// into the healer tasks.
func (s *Syncer) processTrienodeHealResponse(res *trienodeHealResponse) {
var (
start = time.Now()
fills int
)
for i, hash := range res.hashes {
node := res.nodes[i]
// If the trie node was not delivered, reschedule it
if node == nil {
res.task.trieTasks[res.paths[i]] = res.hashes[i]
continue
}
fills++
// Push the trie node into the state syncer
s.trienodeHealSynced++
s.trienodeHealBytes += common.StorageSize(len(node))
err := s.healer.scheduler.ProcessNode(trie.NodeSyncResult{Path: res.paths[i], Data: node})
switch err {
case nil:
case trie.ErrAlreadyProcessed:
s.trienodeHealDups++
case trie.ErrNotRequested:
s.trienodeHealNops++
default:
log.Error("Invalid trienode processed", "hash", hash, "err", err)
}
}
s.commitHealer(false)
// Calculate the processing rate of one filled trie node
rate := float64(fills) / (float64(time.Since(start)) / float64(time.Second))
// Update the currently measured trienode queueing and processing throughput.
//
// The processing rate needs to be updated uniformly independent if we've
// processed 1x100 trie nodes or 100x1 to keep the rate consistent even in
// the face of varying network packets. As such, we cannot just measure the
// time it took to process N trie nodes and update once, we need one update
// per trie node.
//
// Naively, that would be:
//
// for i:=0; i<fills; i++ {
// healRate = (1-measurementImpact)*oldRate + measurementImpact*newRate
// }
//
// Essentially, a recursive expansion of HR = (1-MI)*HR + MI*NR.
//
// We can expand that formula for the Nth item as:
// HR(N) = (1-MI)^N*OR + (1-MI)^(N-1)*MI*NR + (1-MI)^(N-2)*MI*NR + ... + (1-MI)^0*MI*NR
//
// The above is a geometric sequence that can be summed to:
// HR(N) = (1-MI)^N*(OR-NR) + NR
s.trienodeHealRate = gomath.Pow(1-trienodeHealRateMeasurementImpact, float64(fills))*(s.trienodeHealRate-rate) + rate
pending := s.trienodeHealPend.Load()
if time.Since(s.trienodeHealThrottled) > time.Second {
// Periodically adjust the trie node throttler
if float64(pending) > 2*s.trienodeHealRate {
s.trienodeHealThrottle *= trienodeHealThrottleIncrease
} else {
s.trienodeHealThrottle /= trienodeHealThrottleDecrease
}
if s.trienodeHealThrottle > maxTrienodeHealThrottle {
s.trienodeHealThrottle = maxTrienodeHealThrottle
} else if s.trienodeHealThrottle < minTrienodeHealThrottle {
s.trienodeHealThrottle = minTrienodeHealThrottle
}
s.trienodeHealThrottled = time.Now()
log.Debug("Updated trie node heal throttler", "rate", s.trienodeHealRate, "pending", pending, "throttle", s.trienodeHealThrottle)
}
}
func (s *Syncer) commitHealer(force bool) {
if !force && s.healer.scheduler.MemSize() < ethdb.IdealBatchSize {
return
}
batch := s.db.NewBatch()
if err := s.healer.scheduler.Commit(batch); err != nil {
log.Crit("Failed to commit healing data", "err", err)
}
if err := batch.Write(); err != nil {
log.Crit("Failed to persist healing data", "err", err)
}
log.Debug("Persisted set of healing data", "type", "trienodes", "bytes", common.StorageSize(batch.ValueSize()))
}
// processBytecodeHealResponse integrates an already validated bytecode response
// into the healer tasks.
func (s *Syncer) processBytecodeHealResponse(res *bytecodeHealResponse) {
for i, hash := range res.hashes {
node := res.codes[i]
// If the trie node was not delivered, reschedule it
if node == nil {
res.task.codeTasks[hash] = struct{}{}
continue
}
// Push the trie node into the state syncer
s.bytecodeHealSynced++
s.bytecodeHealBytes += common.StorageSize(len(node))
err := s.healer.scheduler.ProcessCode(trie.CodeSyncResult{Hash: hash, Data: node})
switch err {
case nil:
case trie.ErrAlreadyProcessed:
s.bytecodeHealDups++
case trie.ErrNotRequested:
s.bytecodeHealNops++
default:
log.Error("Invalid bytecode processed", "hash", hash, "err", err)
}
}
s.commitHealer(false)
}
// forwardAccountTask takes a filled account task and persists anything available
// into the database, after which it forwards the next account marker so that the
// task's next chunk may be filled.
func (s *Syncer) forwardAccountTask(task *accountTask) {
// Remove any pending delivery
res := task.res
if res == nil {
return // nothing to forward
}
task.res = nil
// Persist the received account segments. These flat state maybe
// outdated during the sync, but it can be fixed later during the
// snapshot generation.
oldAccountBytes := s.accountBytes
batch := ethdb.HookedBatch{
Batch: s.db.NewBatch(),
OnPut: func(key []byte, value []byte) {
s.accountBytes += common.StorageSize(len(key) + len(value))
},
}
for i, hash := range res.hashes {
if task.needCode[i] || task.needState[i] {
break
}
slim := types.SlimAccountRLP(*res.accounts[i])
rawdb.WriteAccountSnapshot(batch, hash, slim)
if !task.needHeal[i] {
// If the storage task is complete, drop it into the stack trie
// to generate account trie nodes for it
full, err := types.FullAccountRLP(slim) // TODO(karalabe): Slim parsing can be omitted
if err != nil {
panic(err) // Really shouldn't ever happen
}
task.genTrie.update(hash[:], full)
} else {
// If the storage task is incomplete, explicitly delete the corresponding
// account item from the account trie to ensure that all nodes along the
// path to the incomplete storage trie are cleaned up.
if err := task.genTrie.delete(hash[:]); err != nil {
panic(err) // Really shouldn't ever happen
}
}
}
// Flush anything written just now and update the stats
if err := batch.Write(); err != nil {
log.Crit("Failed to persist accounts", "err", err)
}
s.accountSynced += uint64(len(res.accounts))
// Task filling persisted, push it the chunk marker forward to the first
// account still missing data.
for i, hash := range res.hashes {
if task.needCode[i] || task.needState[i] {
return
}
task.Next = incHash(hash)
// Remove the completion flag once the account range is pushed
// forward. The leftover accounts will be skipped in the next
// cycle.
delete(task.stateCompleted, hash)
}
// All accounts marked as complete, track if the entire task is done
task.done = !res.cont
// Error out if there is any leftover completion flag.
if task.done && len(task.stateCompleted) != 0 {
panic(fmt.Errorf("storage completion flags should be emptied, %d left", len(task.stateCompleted)))
}
// Stack trie could have generated trie nodes, push them to disk (we need to
// flush after finalizing task.done. It's fine even if we crash and lose this
// write as it will only cause more data to be downloaded during heal.
if task.done {
task.genTrie.commit(task.Last == common.MaxHash)
if err := task.genBatch.Write(); err != nil {
log.Error("Failed to persist stack account", "err", err)
}
task.genBatch.Reset()
} else if task.genBatch.ValueSize() > batchSizeThreshold {
task.genTrie.commit(false)
if err := task.genBatch.Write(); err != nil {
log.Error("Failed to persist stack account", "err", err)
}
task.genBatch.Reset()
}
log.Debug("Persisted range of accounts", "accounts", len(res.accounts), "bytes", s.accountBytes-oldAccountBytes)
}
// OnAccounts is a callback method to invoke when a range of accounts are
// received from a remote peer.
func (s *Syncer) OnAccounts(peer SyncPeer, id uint64, hashes []common.Hash, accounts [][]byte, proof [][]byte) error {
size := common.StorageSize(len(hashes) * common.HashLength)
for _, account := range accounts {
size += common.StorageSize(len(account))
}
for _, node := range proof {
size += common.StorageSize(len(node))
}
logger := peer.Log().New("reqid", id)
logger.Trace("Delivering range of accounts", "hashes", len(hashes), "accounts", len(accounts), "proofs", len(proof), "bytes", size)
// Whether or not the response is valid, we can mark the peer as idle and
// notify the scheduler to assign a new task. If the response is invalid,
// we'll drop the peer in a bit.
defer func() {
s.lock.Lock()
defer s.lock.Unlock()
if _, ok := s.peers[peer.ID()]; ok {
s.accountIdlers[peer.ID()] = struct{}{}
}
select {
case s.update <- struct{}{}:
default:
}
}()
s.lock.Lock()
// Ensure the response is for a valid request
req, ok := s.accountReqs[id]
if !ok {
// Request stale, perhaps the peer timed out but came through in the end
logger.Warn("Unexpected account range packet")
s.lock.Unlock()
return nil
}
delete(s.accountReqs, id)
s.rates.Update(peer.ID(), AccountRangeMsg, time.Since(req.time), int(size))
// Clean up the request timeout timer, we'll see how to proceed further based
// on the actual delivered content
if !req.timeout.Stop() {
// The timeout is already triggered, and this request will be reverted+rescheduled
s.lock.Unlock()
return nil
}
// Response is valid, but check if peer is signalling that it does not have
// the requested data. For account range queries that means the state being
// retrieved was either already pruned remotely, or the peer is not yet
// synced to our head.
if len(hashes) == 0 && len(accounts) == 0 && len(proof) == 0 {
logger.Debug("Peer rejected account range request", "root", s.root)
s.statelessPeers[peer.ID()] = struct{}{}
s.lock.Unlock()
// Signal this request as failed, and ready for rescheduling
s.scheduleRevertAccountRequest(req)
return nil
}
root := s.root
s.lock.Unlock()
// Reconstruct a partial trie from the response and verify it
keys := make([][]byte, len(hashes))
for i, key := range hashes {
keys[i] = common.CopyBytes(key[:])
}
nodes := make(trienode.ProofList, len(proof))
for i, node := range proof {
nodes[i] = node
}
cont, err := trie.VerifyRangeProof(root, req.origin[:], keys, accounts, nodes.Set())
if err != nil {
logger.Warn("Account range failed proof", "err", err)
// Signal this request as failed, and ready for rescheduling
s.scheduleRevertAccountRequest(req)
return err
}
accs := make([]*types.StateAccount, len(accounts))
for i, account := range accounts {
acc := new(types.StateAccount)
if err := rlp.DecodeBytes(account, acc); err != nil {
panic(err) // We created these blobs, we must be able to decode them
}
accs[i] = acc
}
response := &accountResponse{
task: req.task,
hashes: hashes,
accounts: accs,
cont: cont,
}
select {
case req.deliver <- response:
case <-req.cancel:
case <-req.stale:
}
return nil
}
// OnByteCodes is a callback method to invoke when a batch of contract
// bytes codes are received from a remote peer.
func (s *Syncer) OnByteCodes(peer SyncPeer, id uint64, bytecodes [][]byte) error {
s.lock.RLock()
syncing := !s.snapped
s.lock.RUnlock()
if syncing {
return s.onByteCodes(peer, id, bytecodes)
}
return s.onHealByteCodes(peer, id, bytecodes)
}
// onByteCodes is a callback method to invoke when a batch of contract
// bytes codes are received from a remote peer in the syncing phase.
func (s *Syncer) onByteCodes(peer SyncPeer, id uint64, bytecodes [][]byte) error {
var size common.StorageSize
for _, code := range bytecodes {
size += common.StorageSize(len(code))
}
logger := peer.Log().New("reqid", id)
logger.Trace("Delivering set of bytecodes", "bytecodes", len(bytecodes), "bytes", size)
// Whether or not the response is valid, we can mark the peer as idle and
// notify the scheduler to assign a new task. If the response is invalid,
// we'll drop the peer in a bit.
defer func() {
s.lock.Lock()
defer s.lock.Unlock()
if _, ok := s.peers[peer.ID()]; ok {
s.bytecodeIdlers[peer.ID()] = struct{}{}
}
select {
case s.update <- struct{}{}:
default:
}
}()
s.lock.Lock()
// Ensure the response is for a valid request
req, ok := s.bytecodeReqs[id]
if !ok {
// Request stale, perhaps the peer timed out but came through in the end
logger.Warn("Unexpected bytecode packet")
s.lock.Unlock()
return nil
}
delete(s.bytecodeReqs, id)
s.rates.Update(peer.ID(), ByteCodesMsg, time.Since(req.time), len(bytecodes))
// Clean up the request timeout timer, we'll see how to proceed further based
// on the actual delivered content
if !req.timeout.Stop() {
// The timeout is already triggered, and this request will be reverted+rescheduled
s.lock.Unlock()
return nil
}
// Response is valid, but check if peer is signalling that it does not have
// the requested data. For bytecode range queries that means the peer is not
// yet synced.
if len(bytecodes) == 0 {
logger.Debug("Peer rejected bytecode request")
s.statelessPeers[peer.ID()] = struct{}{}
s.lock.Unlock()
// Signal this request as failed, and ready for rescheduling
s.scheduleRevertBytecodeRequest(req)
return nil
}
s.lock.Unlock()
// Cross reference the requested bytecodes with the response to find gaps
// that the serving node is missing
hasher := crypto.NewKeccakState()
hash := make([]byte, 32)
codes := make([][]byte, len(req.hashes))
for i, j := 0, 0; i < len(bytecodes); i++ {
// Find the next hash that we've been served, leaving misses with nils
hasher.Reset()
hasher.Write(bytecodes[i])
hasher.Read(hash)
for j < len(req.hashes) && !bytes.Equal(hash, req.hashes[j][:]) {
j++
}
if j < len(req.hashes) {
codes[j] = bytecodes[i]
j++
continue
}
// We've either ran out of hashes, or got unrequested data
logger.Warn("Unexpected bytecodes", "count", len(bytecodes)-i)
// Signal this request as failed, and ready for rescheduling
s.scheduleRevertBytecodeRequest(req)
return errors.New("unexpected bytecode")
}
// Response validated, send it to the scheduler for filling
response := &bytecodeResponse{
task: req.task,
hashes: req.hashes,
codes: codes,
}
select {
case req.deliver <- response:
case <-req.cancel:
case <-req.stale:
}
return nil
}
// OnStorage is a callback method to invoke when ranges of storage slots
// are received from a remote peer.
func (s *Syncer) OnStorage(peer SyncPeer, id uint64, hashes [][]common.Hash, slots [][][]byte, proof [][]byte) error {
// Gather some trace stats to aid in debugging issues
var (
hashCount int
slotCount int
size common.StorageSize
)
for _, hashset := range hashes {
size += common.StorageSize(common.HashLength * len(hashset))
hashCount += len(hashset)
}
for _, slotset := range slots {
for _, slot := range slotset {
size += common.StorageSize(len(slot))
}
slotCount += len(slotset)
}
for _, node := range proof {
size += common.StorageSize(len(node))
}
logger := peer.Log().New("reqid", id)
logger.Trace("Delivering ranges of storage slots", "accounts", len(hashes), "hashes", hashCount, "slots", slotCount, "proofs", len(proof), "size", size)
// Whether or not the response is valid, we can mark the peer as idle and
// notify the scheduler to assign a new task. If the response is invalid,
// we'll drop the peer in a bit.
defer func() {
s.lock.Lock()
defer s.lock.Unlock()
if _, ok := s.peers[peer.ID()]; ok {
s.storageIdlers[peer.ID()] = struct{}{}
}
select {
case s.update <- struct{}{}:
default:
}
}()
s.lock.Lock()
// Ensure the response is for a valid request
req, ok := s.storageReqs[id]
if !ok {
// Request stale, perhaps the peer timed out but came through in the end
logger.Warn("Unexpected storage ranges packet")
s.lock.Unlock()
return nil
}
delete(s.storageReqs, id)
s.rates.Update(peer.ID(), StorageRangesMsg, time.Since(req.time), int(size))
// Clean up the request timeout timer, we'll see how to proceed further based
// on the actual delivered content
if !req.timeout.Stop() {
// The timeout is already triggered, and this request will be reverted+rescheduled
s.lock.Unlock()
return nil
}
// Reject the response if the hash sets and slot sets don't match, or if the
// peer sent more data than requested.
if len(hashes) != len(slots) {
s.lock.Unlock()
s.scheduleRevertStorageRequest(req) // reschedule request
logger.Warn("Hash and slot set size mismatch", "hashset", len(hashes), "slotset", len(slots))
return errors.New("hash and slot set size mismatch")
}
if len(hashes) > len(req.accounts) {
s.lock.Unlock()
s.scheduleRevertStorageRequest(req) // reschedule request
logger.Warn("Hash set larger than requested", "hashset", len(hashes), "requested", len(req.accounts))
return errors.New("hash set larger than requested")
}
// Response is valid, but check if peer is signalling that it does not have
// the requested data. For storage range queries that means the state being
// retrieved was either already pruned remotely, or the peer is not yet
// synced to our head.
if len(hashes) == 0 && len(proof) == 0 {
logger.Debug("Peer rejected storage request")
s.statelessPeers[peer.ID()] = struct{}{}
s.lock.Unlock()
s.scheduleRevertStorageRequest(req) // reschedule request
return nil
}
s.lock.Unlock()
// Reconstruct the partial tries from the response and verify them
var cont bool
// If a proof was attached while the response is empty, it indicates that the
// requested range specified with 'origin' is empty. Construct an empty state
// response locally to finalize the range.
if len(hashes) == 0 && len(proof) > 0 {
hashes = append(hashes, []common.Hash{})
slots = append(slots, [][]byte{})
}
for i := 0; i < len(hashes); i++ {
// Convert the keys and proofs into an internal format
keys := make([][]byte, len(hashes[i]))
for j, key := range hashes[i] {
keys[j] = common.CopyBytes(key[:])
}
nodes := make(trienode.ProofList, 0, len(proof))
if i == len(hashes)-1 {
for _, node := range proof {
nodes = append(nodes, node)
}
}
var err error
if len(nodes) == 0 {
// No proof has been attached, the response must cover the entire key
// space and hash to the origin root.
_, err = trie.VerifyRangeProof(req.roots[i], nil, keys, slots[i], nil)
if err != nil {
s.scheduleRevertStorageRequest(req) // reschedule request
logger.Warn("Storage slots failed proof", "err", err)
return err
}
} else {
// A proof was attached, the response is only partial, check that the
// returned data is indeed part of the storage trie
proofdb := nodes.Set()
cont, err = trie.VerifyRangeProof(req.roots[i], req.origin[:], keys, slots[i], proofdb)
if err != nil {
s.scheduleRevertStorageRequest(req) // reschedule request
logger.Warn("Storage range failed proof", "err", err)
return err
}
}
}
// Partial tries reconstructed, send them to the scheduler for storage filling
response := &storageResponse{
mainTask: req.mainTask,
subTask: req.subTask,
accounts: req.accounts,
roots: req.roots,
hashes: hashes,
slots: slots,
cont: cont,
}
select {
case req.deliver <- response:
case <-req.cancel:
case <-req.stale:
}
return nil
}
// OnTrieNodes is a callback method to invoke when a batch of trie nodes
// are received from a remote peer.
func (s *Syncer) OnTrieNodes(peer SyncPeer, id uint64, trienodes [][]byte) error {
var size common.StorageSize
for _, node := range trienodes {
size += common.StorageSize(len(node))
}
logger := peer.Log().New("reqid", id)
logger.Trace("Delivering set of healing trienodes", "trienodes", len(trienodes), "bytes", size)
// Whether or not the response is valid, we can mark the peer as idle and
// notify the scheduler to assign a new task. If the response is invalid,
// we'll drop the peer in a bit.
defer func() {
s.lock.Lock()
defer s.lock.Unlock()
if _, ok := s.peers[peer.ID()]; ok {
s.trienodeHealIdlers[peer.ID()] = struct{}{}
}
select {
case s.update <- struct{}{}:
default:
}
}()
s.lock.Lock()
// Ensure the response is for a valid request
req, ok := s.trienodeHealReqs[id]
if !ok {
// Request stale, perhaps the peer timed out but came through in the end
logger.Warn("Unexpected trienode heal packet")
s.lock.Unlock()
return nil
}
delete(s.trienodeHealReqs, id)
s.rates.Update(peer.ID(), TrieNodesMsg, time.Since(req.time), len(trienodes))
// Clean up the request timeout timer, we'll see how to proceed further based
// on the actual delivered content
if !req.timeout.Stop() {
// The timeout is already triggered, and this request will be reverted+rescheduled
s.lock.Unlock()
return nil
}
// Response is valid, but check if peer is signalling that it does not have
// the requested data. For bytecode range queries that means the peer is not
// yet synced.
if len(trienodes) == 0 {
logger.Debug("Peer rejected trienode heal request")
s.statelessPeers[peer.ID()] = struct{}{}
s.lock.Unlock()
// Signal this request as failed, and ready for rescheduling
s.scheduleRevertTrienodeHealRequest(req)
return nil
}
s.lock.Unlock()
// Cross reference the requested trienodes with the response to find gaps
// that the serving node is missing
var (
hasher = crypto.NewKeccakState()
hash = make([]byte, 32)
nodes = make([][]byte, len(req.hashes))
fills uint64
)
for i, j := 0, 0; i < len(trienodes); i++ {
// Find the next hash that we've been served, leaving misses with nils
hasher.Reset()
hasher.Write(trienodes[i])
hasher.Read(hash)
for j < len(req.hashes) && !bytes.Equal(hash, req.hashes[j][:]) {
j++
}
if j < len(req.hashes) {
nodes[j] = trienodes[i]
fills++
j++
continue
}
// We've either ran out of hashes, or got unrequested data
logger.Warn("Unexpected healing trienodes", "count", len(trienodes)-i)
// Signal this request as failed, and ready for rescheduling
s.scheduleRevertTrienodeHealRequest(req)
return errors.New("unexpected healing trienode")
}
// Response validated, send it to the scheduler for filling
s.trienodeHealPend.Add(fills)
defer func() {
s.trienodeHealPend.Add(^(fills - 1))
}()
response := &trienodeHealResponse{
paths: req.paths,
task: req.task,
hashes: req.hashes,
nodes: nodes,
}
select {
case req.deliver <- response:
case <-req.cancel:
case <-req.stale:
}
return nil
}
// onHealByteCodes is a callback method to invoke when a batch of contract
// bytes codes are received from a remote peer in the healing phase.
func (s *Syncer) onHealByteCodes(peer SyncPeer, id uint64, bytecodes [][]byte) error {
var size common.StorageSize
for _, code := range bytecodes {
size += common.StorageSize(len(code))
}
logger := peer.Log().New("reqid", id)
logger.Trace("Delivering set of healing bytecodes", "bytecodes", len(bytecodes), "bytes", size)
// Whether or not the response is valid, we can mark the peer as idle and
// notify the scheduler to assign a new task. If the response is invalid,
// we'll drop the peer in a bit.
defer func() {
s.lock.Lock()
defer s.lock.Unlock()
if _, ok := s.peers[peer.ID()]; ok {
s.bytecodeHealIdlers[peer.ID()] = struct{}{}
}
select {
case s.update <- struct{}{}:
default:
}
}()
s.lock.Lock()
// Ensure the response is for a valid request
req, ok := s.bytecodeHealReqs[id]
if !ok {
// Request stale, perhaps the peer timed out but came through in the end
logger.Warn("Unexpected bytecode heal packet")
s.lock.Unlock()
return nil
}
delete(s.bytecodeHealReqs, id)
s.rates.Update(peer.ID(), ByteCodesMsg, time.Since(req.time), len(bytecodes))
// Clean up the request timeout timer, we'll see how to proceed further based
// on the actual delivered content
if !req.timeout.Stop() {
// The timeout is already triggered, and this request will be reverted+rescheduled
s.lock.Unlock()
return nil
}
// Response is valid, but check if peer is signalling that it does not have
// the requested data. For bytecode range queries that means the peer is not
// yet synced.
if len(bytecodes) == 0 {
logger.Debug("Peer rejected bytecode heal request")
s.statelessPeers[peer.ID()] = struct{}{}
s.lock.Unlock()
// Signal this request as failed, and ready for rescheduling
s.scheduleRevertBytecodeHealRequest(req)
return nil
}
s.lock.Unlock()
// Cross reference the requested bytecodes with the response to find gaps
// that the serving node is missing
hasher := crypto.NewKeccakState()
hash := make([]byte, 32)
codes := make([][]byte, len(req.hashes))
for i, j := 0, 0; i < len(bytecodes); i++ {
// Find the next hash that we've been served, leaving misses with nils
hasher.Reset()
hasher.Write(bytecodes[i])
hasher.Read(hash)
for j < len(req.hashes) && !bytes.Equal(hash, req.hashes[j][:]) {
j++
}
if j < len(req.hashes) {
codes[j] = bytecodes[i]
j++
continue
}
// We've either ran out of hashes, or got unrequested data
logger.Warn("Unexpected healing bytecodes", "count", len(bytecodes)-i)
// Signal this request as failed, and ready for rescheduling
s.scheduleRevertBytecodeHealRequest(req)
return errors.New("unexpected healing bytecode")
}
// Response validated, send it to the scheduler for filling
response := &bytecodeHealResponse{
task: req.task,
hashes: req.hashes,
codes: codes,
}
select {
case req.deliver <- response:
case <-req.cancel:
case <-req.stale:
}
return nil
}
// onHealState is a callback method to invoke when a flat state(account
// or storage slot) is downloaded during the healing stage. The flat states
// can be persisted blindly and can be fixed later in the generation stage.
// Note it's not concurrent safe, please handle the concurrent issue outside.
func (s *Syncer) onHealState(paths [][]byte, value []byte) error {
if len(paths) == 1 {
var account types.StateAccount
if err := rlp.DecodeBytes(value, &account); err != nil {
return nil // Returning the error here would drop the remote peer
}
blob := types.SlimAccountRLP(account)
rawdb.WriteAccountSnapshot(s.stateWriter, common.BytesToHash(paths[0]), blob)
s.accountHealed += 1
s.accountHealedBytes += common.StorageSize(1 + common.HashLength + len(blob))
}
if len(paths) == 2 {
rawdb.WriteStorageSnapshot(s.stateWriter, common.BytesToHash(paths[0]), common.BytesToHash(paths[1]), value)
s.storageHealed += 1
s.storageHealedBytes += common.StorageSize(1 + 2*common.HashLength + len(value))
}
if s.stateWriter.ValueSize() > ethdb.IdealBatchSize {
s.stateWriter.Write() // It's fine to ignore the error here
s.stateWriter.Reset()
}
return nil
}
// hashSpace is the total size of the 256 bit hash space for accounts.
var hashSpace = new(big.Int).Exp(common.Big2, common.Big256, nil)
// report calculates various status reports and provides it to the user.
func (s *Syncer) report(force bool) {
if len(s.tasks) > 0 {
s.reportSyncProgress(force)
return
}
s.reportHealProgress(force)
}
// reportSyncProgress calculates various status reports and provides it to the user.
func (s *Syncer) reportSyncProgress(force bool) {
// Don't report all the events, just occasionally
if !force && time.Since(s.logTime) < 8*time.Second {
return
}
// Don't report anything until we have a meaningful progress
synced := s.accountBytes + s.bytecodeBytes + s.storageBytes
if synced == 0 {
return
}
accountGaps := new(big.Int)
for _, task := range s.tasks {
accountGaps.Add(accountGaps, new(big.Int).Sub(task.Last.Big(), task.Next.Big()))
}
accountFills := new(big.Int).Sub(hashSpace, accountGaps)
if accountFills.BitLen() == 0 {
return
}
s.logTime = time.Now()
estBytes := float64(new(big.Int).Div(
new(big.Int).Mul(new(big.Int).SetUint64(uint64(synced)), hashSpace),
accountFills,
).Uint64())
// Don't report anything until we have a meaningful progress
if estBytes < 1.0 {
return
}
elapsed := time.Since(s.startTime)
estTime := elapsed / time.Duration(synced) * time.Duration(estBytes)
// Create a mega progress report
var (
progress = fmt.Sprintf("%.2f%%", float64(synced)*100/estBytes)
accounts = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.accountSynced), s.accountBytes.TerminalString())
storage = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.storageSynced), s.storageBytes.TerminalString())
bytecode = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.bytecodeSynced), s.bytecodeBytes.TerminalString())
)
log.Info("Syncing: state download in progress", "synced", progress, "state", synced,
"accounts", accounts, "slots", storage, "codes", bytecode, "eta", common.PrettyDuration(estTime-elapsed))
}
// reportHealProgress calculates various status reports and provides it to the user.
func (s *Syncer) reportHealProgress(force bool) {
// Don't report all the events, just occasionally
if !force && time.Since(s.logTime) < 8*time.Second {
return
}
s.logTime = time.Now()
// Create a mega progress report
var (
trienode = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.trienodeHealSynced), s.trienodeHealBytes.TerminalString())
bytecode = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.bytecodeHealSynced), s.bytecodeHealBytes.TerminalString())
accounts = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.accountHealed), s.accountHealedBytes.TerminalString())
storage = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(s.storageHealed), s.storageHealedBytes.TerminalString())
)
log.Info("Syncing: state healing in progress", "accounts", accounts, "slots", storage,
"codes", bytecode, "nodes", trienode, "pending", s.healer.scheduler.Pending())
}
// estimateRemainingSlots tries to determine roughly how many slots are left in
// a contract storage, based on the number of keys and the last hash. This method
// assumes that the hashes are lexicographically ordered and evenly distributed.
func estimateRemainingSlots(hashes int, last common.Hash) (uint64, error) {
if last == (common.Hash{}) {
return 0, errors.New("last hash empty")
}
space := new(big.Int).Mul(math.MaxBig256, big.NewInt(int64(hashes)))
space.Div(space, last.Big())
if !space.IsUint64() {
// Gigantic address space probably due to too few or malicious slots
return 0, errors.New("too few slots for estimation")
}
return space.Uint64() - uint64(hashes), nil
}
// capacitySort implements the Sort interface, allowing sorting by peer message
// throughput. Note, callers should use sort.Reverse to get the desired effect
// of highest capacity being at the front.
type capacitySort struct {
ids []string
caps []int
}
func (s *capacitySort) Len() int {
return len(s.ids)
}
func (s *capacitySort) Less(i, j int) bool {
return s.caps[i] < s.caps[j]
}
func (s *capacitySort) Swap(i, j int) {
s.ids[i], s.ids[j] = s.ids[j], s.ids[i]
s.caps[i], s.caps[j] = s.caps[j], s.caps[i]
}
// healRequestSort implements the Sort interface, allowing sorting trienode
// heal requests, which is a prerequisite for merging storage-requests.
type healRequestSort struct {
paths []string
hashes []common.Hash
syncPaths []trie.SyncPath
}
func (t *healRequestSort) Len() int {
return len(t.hashes)
}
func (t *healRequestSort) Less(i, j int) bool {
a := t.syncPaths[i]
b := t.syncPaths[j]
switch bytes.Compare(a[0], b[0]) {
case -1:
return true
case 1:
return false
}
// identical first part
if len(a) < len(b) {
return true
}
if len(b) < len(a) {
return false
}
if len(a) == 2 {
return bytes.Compare(a[1], b[1]) < 0
}
return false
}
func (t *healRequestSort) Swap(i, j int) {
t.paths[i], t.paths[j] = t.paths[j], t.paths[i]
t.hashes[i], t.hashes[j] = t.hashes[j], t.hashes[i]
t.syncPaths[i], t.syncPaths[j] = t.syncPaths[j], t.syncPaths[i]
}
// Merge merges the pathsets, so that several storage requests concerning the
// same account are merged into one, to reduce bandwidth.
// OBS: This operation is moot if t has not first been sorted.
func (t *healRequestSort) Merge() []TrieNodePathSet {
var result []TrieNodePathSet
for _, path := range t.syncPaths {
pathset := TrieNodePathSet(path)
if len(path) == 1 {
// It's an account reference.
result = append(result, pathset)
} else {
// It's a storage reference.
end := len(result) - 1
if len(result) == 0 || !bytes.Equal(pathset[0], result[end][0]) {
// The account doesn't match last, create a new entry.
result = append(result, pathset)
} else {
// It's the same account as the previous one, add to the storage
// paths of that request.
result[end] = append(result[end], pathset[1])
}
}
}
return result
}
// sortByAccountPath takes hashes and paths, and sorts them. After that, it generates
// the TrieNodePaths and merges paths which belongs to the same account path.
func sortByAccountPath(paths []string, hashes []common.Hash) ([]string, []common.Hash, []trie.SyncPath, []TrieNodePathSet) {
syncPaths := make([]trie.SyncPath, len(paths))
for i, path := range paths {
syncPaths[i] = trie.NewSyncPath([]byte(path))
}
n := &healRequestSort{paths, hashes, syncPaths}
sort.Sort(n)
pathsets := n.Merge()
return n.paths, n.hashes, n.syncPaths, pathsets
}