go-ethereum/trie/stacktrie.go

427 lines
12 KiB
Go

// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"errors"
"fmt"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
)
var ErrCommitDisabled = errors.New("no database for committing")
var stPool = sync.Pool{
New: func() interface{} {
return NewStackTrie(nil)
},
}
func stackTrieFromPool(db ethdb.KeyValueStore) *StackTrie {
st := stPool.Get().(*StackTrie)
st.db = db
return st
}
func returnToPool(st *StackTrie) {
st.Reset()
stPool.Put(st)
}
// StackTrie is a trie implementation that expects keys to be inserted
// in order. Once it determines that a subtree will no longer be inserted
// into, it will hash it and free up the memory it uses.
type StackTrie struct {
nodeType uint8 // node type (as in branch, ext, leaf)
val []byte // value contained by this node if it's a leaf
key []byte // key chunk covered by this (full|ext) node
keyOffset int // offset of the key chunk inside a full key
children [16]*StackTrie // list of children (for fullnodes and exts)
db ethdb.KeyValueStore // Pointer to the commit db, can be nil
}
// NewStackTrie allocates and initializes an empty trie.
func NewStackTrie(db ethdb.KeyValueStore) *StackTrie {
return &StackTrie{
nodeType: emptyNode,
db: db,
}
}
func newLeaf(ko int, key, val []byte, db ethdb.KeyValueStore) *StackTrie {
st := stackTrieFromPool(db)
st.nodeType = leafNode
st.keyOffset = ko
st.key = append(st.key, key[ko:]...)
st.val = val
return st
}
func newExt(ko int, key []byte, child *StackTrie, db ethdb.KeyValueStore) *StackTrie {
st := stackTrieFromPool(db)
st.nodeType = extNode
st.keyOffset = ko
st.key = append(st.key, key[ko:]...)
st.children[0] = child
return st
}
// List all values that StackTrie#nodeType can hold
const (
emptyNode = iota
branchNode
extNode
leafNode
hashedNode
)
// TryUpdate inserts a (key, value) pair into the stack trie
func (st *StackTrie) TryUpdate(key, value []byte) error {
k := keybytesToHex(key)
if len(value) == 0 {
panic("deletion not supported")
}
st.insert(k[:len(k)-1], value)
return nil
}
func (st *StackTrie) Update(key, value []byte) {
if err := st.TryUpdate(key, value); err != nil {
log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
}
}
func (st *StackTrie) Reset() {
st.db = nil
st.key = st.key[:0]
st.val = nil
for i := range st.children {
st.children[i] = nil
}
st.nodeType = emptyNode
st.keyOffset = 0
}
// Helper function that, given a full key, determines the index
// at which the chunk pointed by st.keyOffset is different from
// the same chunk in the full key.
func (st *StackTrie) getDiffIndex(key []byte) int {
diffindex := 0
for ; diffindex < len(st.key) && st.key[diffindex] == key[st.keyOffset+diffindex]; diffindex++ {
}
return diffindex
}
// Helper function to that inserts a (key, value) pair into
// the trie.
func (st *StackTrie) insert(key, value []byte) {
switch st.nodeType {
case branchNode: /* Branch */
idx := int(key[st.keyOffset])
// Unresolve elder siblings
for i := idx - 1; i >= 0; i-- {
if st.children[i] != nil {
if st.children[i].nodeType != hashedNode {
st.children[i].hash()
}
break
}
}
// Add new child
if st.children[idx] == nil {
st.children[idx] = stackTrieFromPool(st.db)
st.children[idx].keyOffset = st.keyOffset + 1
}
st.children[idx].insert(key, value)
case extNode: /* Ext */
// Compare both key chunks and see where they differ
diffidx := st.getDiffIndex(key)
// Check if chunks are identical. If so, recurse into
// the child node. Otherwise, the key has to be split
// into 1) an optional common prefix, 2) the fullnode
// representing the two differing path, and 3) a leaf
// for each of the differentiated subtrees.
if diffidx == len(st.key) {
// Ext key and key segment are identical, recurse into
// the child node.
st.children[0].insert(key, value)
return
}
// Save the original part. Depending if the break is
// at the extension's last byte or not, create an
// intermediate extension or use the extension's child
// node directly.
var n *StackTrie
if diffidx < len(st.key)-1 {
n = newExt(diffidx+1, st.key, st.children[0], st.db)
} else {
// Break on the last byte, no need to insert
// an extension node: reuse the current node
n = st.children[0]
}
// Convert to hash
n.hash()
var p *StackTrie
if diffidx == 0 {
// the break is on the first byte, so
// the current node is converted into
// a branch node.
st.children[0] = nil
p = st
st.nodeType = branchNode
} else {
// the common prefix is at least one byte
// long, insert a new intermediate branch
// node.
st.children[0] = stackTrieFromPool(st.db)
st.children[0].nodeType = branchNode
st.children[0].keyOffset = st.keyOffset + diffidx
p = st.children[0]
}
// Create a leaf for the inserted part
o := newLeaf(st.keyOffset+diffidx+1, key, value, st.db)
// Insert both child leaves where they belong:
origIdx := st.key[diffidx]
newIdx := key[diffidx+st.keyOffset]
p.children[origIdx] = n
p.children[newIdx] = o
st.key = st.key[:diffidx]
case leafNode: /* Leaf */
// Compare both key chunks and see where they differ
diffidx := st.getDiffIndex(key)
// Overwriting a key isn't supported, which means that
// the current leaf is expected to be split into 1) an
// optional extension for the common prefix of these 2
// keys, 2) a fullnode selecting the path on which the
// keys differ, and 3) one leaf for the differentiated
// component of each key.
if diffidx >= len(st.key) {
panic("Trying to insert into existing key")
}
// Check if the split occurs at the first nibble of the
// chunk. In that case, no prefix extnode is necessary.
// Otherwise, create that
var p *StackTrie
if diffidx == 0 {
// Convert current leaf into a branch
st.nodeType = branchNode
p = st
st.children[0] = nil
} else {
// Convert current node into an ext,
// and insert a child branch node.
st.nodeType = extNode
st.children[0] = NewStackTrie(st.db)
st.children[0].nodeType = branchNode
st.children[0].keyOffset = st.keyOffset + diffidx
p = st.children[0]
}
// Create the two child leaves: the one containing the
// original value and the one containing the new value
// The child leave will be hashed directly in order to
// free up some memory.
origIdx := st.key[diffidx]
p.children[origIdx] = newLeaf(diffidx+1, st.key, st.val, st.db)
p.children[origIdx].hash()
newIdx := key[diffidx+st.keyOffset]
p.children[newIdx] = newLeaf(p.keyOffset+1, key, value, st.db)
// Finally, cut off the key part that has been passed
// over to the children.
st.key = st.key[:diffidx]
st.val = nil
case emptyNode: /* Empty */
st.nodeType = leafNode
st.key = key[st.keyOffset:]
st.val = value
case hashedNode:
panic("trying to insert into hash")
default:
panic("invalid type")
}
}
// hash() hashes the node 'st' and converts it into 'hashedNode', if possible.
// Possible outcomes:
// 1. The rlp-encoded value was >= 32 bytes:
// - Then the 32-byte `hash` will be accessible in `st.val`.
// - And the 'st.type' will be 'hashedNode'
// 2. The rlp-encoded value was < 32 bytes
// - Then the <32 byte rlp-encoded value will be accessible in 'st.val'.
// - And the 'st.type' will be 'hashedNode' AGAIN
//
// This method will also:
// set 'st.type' to hashedNode
// clear 'st.key'
func (st *StackTrie) hash() {
/* Shortcut if node is already hashed */
if st.nodeType == hashedNode {
return
}
// The 'hasher' is taken from a pool, but we don't actually
// claim an instance until all children are done with their hashing,
// and we actually need one
var h *hasher
switch st.nodeType {
case branchNode:
var nodes [17]node
for i, child := range st.children {
if child == nil {
nodes[i] = nilValueNode
continue
}
child.hash()
if len(child.val) < 32 {
nodes[i] = rawNode(child.val)
} else {
nodes[i] = hashNode(child.val)
}
st.children[i] = nil // Reclaim mem from subtree
returnToPool(child)
}
nodes[16] = nilValueNode
h = newHasher(false)
defer returnHasherToPool(h)
h.tmp.Reset()
if err := rlp.Encode(&h.tmp, nodes); err != nil {
panic(err)
}
case extNode:
st.children[0].hash()
h = newHasher(false)
defer returnHasherToPool(h)
h.tmp.Reset()
var valuenode node
if len(st.children[0].val) < 32 {
valuenode = rawNode(st.children[0].val)
} else {
valuenode = hashNode(st.children[0].val)
}
n := struct {
Key []byte
Val node
}{
Key: hexToCompact(st.key),
Val: valuenode,
}
if err := rlp.Encode(&h.tmp, n); err != nil {
panic(err)
}
returnToPool(st.children[0])
st.children[0] = nil // Reclaim mem from subtree
case leafNode:
h = newHasher(false)
defer returnHasherToPool(h)
h.tmp.Reset()
st.key = append(st.key, byte(16))
sz := hexToCompactInPlace(st.key)
n := [][]byte{st.key[:sz], st.val}
if err := rlp.Encode(&h.tmp, n); err != nil {
panic(err)
}
case emptyNode:
st.val = st.val[:0]
st.val = append(st.val, emptyRoot[:]...)
st.key = st.key[:0]
st.nodeType = hashedNode
return
default:
panic("Invalid node type")
}
st.key = st.key[:0]
st.nodeType = hashedNode
if len(h.tmp) < 32 {
st.val = st.val[:0]
st.val = append(st.val, h.tmp...)
return
}
// Going to write the hash to the 'val'. Need to ensure it's properly sized first
// Typically, 'branchNode's will have no 'val', and require this allocation
if required := 32 - len(st.val); required > 0 {
buf := make([]byte, required)
st.val = append(st.val, buf...)
}
st.val = st.val[:32]
h.sha.Reset()
h.sha.Write(h.tmp)
h.sha.Read(st.val)
if st.db != nil {
// TODO! Is it safe to Put the slice here?
// Do all db implementations copy the value provided?
st.db.Put(st.val, h.tmp)
}
}
// Hash returns the hash of the current node
func (st *StackTrie) Hash() (h common.Hash) {
st.hash()
if len(st.val) != 32 {
// If the node's RLP isn't 32 bytes long, the node will not
// be hashed, and instead contain the rlp-encoding of the
// node. For the top level node, we need to force the hashing.
ret := make([]byte, 32)
h := newHasher(false)
defer returnHasherToPool(h)
h.sha.Reset()
h.sha.Write(st.val)
h.sha.Read(ret)
return common.BytesToHash(ret)
}
return common.BytesToHash(st.val)
}
// Commit will firstly hash the entrie trie if it's still not hashed
// and then commit all nodes to the associated database. Actually most
// of the trie nodes MAY have been committed already. The main purpose
// here is to commit the root node.
//
// The associated database is expected, otherwise the whole commit
// functionality should be disabled.
func (st *StackTrie) Commit() (common.Hash, error) {
if st.db == nil {
return common.Hash{}, ErrCommitDisabled
}
st.hash()
if len(st.val) != 32 {
// If the node's RLP isn't 32 bytes long, the node will not
// be hashed (and committed), and instead contain the rlp-encoding of the
// node. For the top level node, we need to force the hashing+commit.
ret := make([]byte, 32)
h := newHasher(false)
defer returnHasherToPool(h)
h.sha.Reset()
h.sha.Write(st.val)
h.sha.Read(ret)
st.db.Put(ret, st.val)
return common.BytesToHash(ret), nil
}
return common.BytesToHash(st.val), nil
}