go-ethereum/p2p/discover/v4_udp.go

788 lines
24 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package discover
import (
"bytes"
"container/list"
"context"
"crypto/ecdsa"
crand "crypto/rand"
"errors"
"fmt"
"io"
"net"
"sync"
"time"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p/discover/v4wire"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/netutil"
)
// Errors
var (
errExpired = errors.New("expired")
errUnsolicitedReply = errors.New("unsolicited reply")
errUnknownNode = errors.New("unknown node")
errTimeout = errors.New("RPC timeout")
errClockWarp = errors.New("reply deadline too far in the future")
errClosed = errors.New("socket closed")
errLowPort = errors.New("low port")
)
const (
respTimeout = 500 * time.Millisecond
expiration = 20 * time.Second
bondExpiration = 24 * time.Hour
maxFindnodeFailures = 5 // nodes exceeding this limit are dropped
ntpFailureThreshold = 32 // Continuous timeouts after which to check NTP
ntpWarningCooldown = 10 * time.Minute // Minimum amount of time to pass before repeating NTP warning
driftThreshold = 10 * time.Second // Allowed clock drift before warning user
// Discovery packets are defined to be no larger than 1280 bytes.
// Packets larger than this size will be cut at the end and treated
// as invalid because their hash won't match.
maxPacketSize = 1280
)
// UDPv4 implements the v4 wire protocol.
type UDPv4 struct {
conn UDPConn
log log.Logger
netrestrict *netutil.Netlist
priv *ecdsa.PrivateKey
localNode *enode.LocalNode
db *enode.DB
tab *Table
closeOnce sync.Once
wg sync.WaitGroup
addReplyMatcher chan *replyMatcher
gotreply chan reply
closeCtx context.Context
cancelCloseCtx context.CancelFunc
}
// replyMatcher represents a pending reply.
//
// Some implementations of the protocol wish to send more than one
// reply packet to findnode. In general, any neighbors packet cannot
// be matched up with a specific findnode packet.
//
// Our implementation handles this by storing a callback function for
// each pending reply. Incoming packets from a node are dispatched
// to all callback functions for that node.
type replyMatcher struct {
// these fields must match in the reply.
from enode.ID
ip net.IP
ptype byte
// time when the request must complete
deadline time.Time
// callback is called when a matching reply arrives. If it returns matched == true, the
// reply was acceptable. The second return value indicates whether the callback should
// be removed from the pending reply queue. If it returns false, the reply is considered
// incomplete and the callback will be invoked again for the next matching reply.
callback replyMatchFunc
// errc receives nil when the callback indicates completion or an
// error if no further reply is received within the timeout.
errc chan error
// reply contains the most recent reply. This field is safe for reading after errc has
// received a value.
reply v4wire.Packet
}
type replyMatchFunc func(v4wire.Packet) (matched bool, requestDone bool)
// reply is a reply packet from a certain node.
type reply struct {
from enode.ID
ip net.IP
data v4wire.Packet
// loop indicates whether there was
// a matching request by sending on this channel.
matched chan<- bool
}
func ListenV4(c UDPConn, ln *enode.LocalNode, cfg Config) (*UDPv4, error) {
cfg = cfg.withDefaults()
closeCtx, cancel := context.WithCancel(context.Background())
t := &UDPv4{
conn: newMeteredConn(c),
priv: cfg.PrivateKey,
netrestrict: cfg.NetRestrict,
localNode: ln,
db: ln.Database(),
gotreply: make(chan reply),
addReplyMatcher: make(chan *replyMatcher),
closeCtx: closeCtx,
cancelCloseCtx: cancel,
log: cfg.Log,
}
tab, err := newTable(t, ln.Database(), cfg.Bootnodes, t.log)
if err != nil {
return nil, err
}
t.tab = tab
go tab.loop()
t.wg.Add(2)
go t.loop()
go t.readLoop(cfg.Unhandled)
return t, nil
}
// Self returns the local node.
func (t *UDPv4) Self() *enode.Node {
return t.localNode.Node()
}
// Close shuts down the socket and aborts any running queries.
func (t *UDPv4) Close() {
t.closeOnce.Do(func() {
t.cancelCloseCtx()
t.conn.Close()
t.wg.Wait()
t.tab.close()
})
}
// Resolve searches for a specific node with the given ID and tries to get the most recent
// version of the node record for it. It returns n if the node could not be resolved.
func (t *UDPv4) Resolve(n *enode.Node) *enode.Node {
// Try asking directly. This works if the node is still responding on the endpoint we have.
if rn, err := t.RequestENR(n); err == nil {
return rn
}
// Check table for the ID, we might have a newer version there.
if intable := t.tab.getNode(n.ID()); intable != nil && intable.Seq() > n.Seq() {
n = intable
if rn, err := t.RequestENR(n); err == nil {
return rn
}
}
// Otherwise perform a network lookup.
var key enode.Secp256k1
if n.Load(&key) != nil {
return n // no secp256k1 key
}
result := t.LookupPubkey((*ecdsa.PublicKey)(&key))
for _, rn := range result {
if rn.ID() == n.ID() {
if rn, err := t.RequestENR(rn); err == nil {
return rn
}
}
}
return n
}
func (t *UDPv4) ourEndpoint() v4wire.Endpoint {
n := t.Self()
a := &net.UDPAddr{IP: n.IP(), Port: n.UDP()}
return v4wire.NewEndpoint(a, uint16(n.TCP()))
}
// Ping sends a ping message to the given node.
func (t *UDPv4) Ping(n *enode.Node) error {
_, err := t.ping(n)
return err
}
// ping sends a ping message to the given node and waits for a reply.
func (t *UDPv4) ping(n *enode.Node) (seq uint64, err error) {
rm := t.sendPing(n.ID(), &net.UDPAddr{IP: n.IP(), Port: n.UDP()}, nil)
if err = <-rm.errc; err == nil {
seq = rm.reply.(*v4wire.Pong).ENRSeq
}
return seq, err
}
// sendPing sends a ping message to the given node and invokes the callback
// when the reply arrives.
func (t *UDPv4) sendPing(toid enode.ID, toaddr *net.UDPAddr, callback func()) *replyMatcher {
req := t.makePing(toaddr)
packet, hash, err := v4wire.Encode(t.priv, req)
if err != nil {
errc := make(chan error, 1)
errc <- err
return &replyMatcher{errc: errc}
}
// Add a matcher for the reply to the pending reply queue. Pongs are matched if they
// reference the ping we're about to send.
rm := t.pending(toid, toaddr.IP, v4wire.PongPacket, func(p v4wire.Packet) (matched bool, requestDone bool) {
matched = bytes.Equal(p.(*v4wire.Pong).ReplyTok, hash)
if matched && callback != nil {
callback()
}
return matched, matched
})
// Send the packet.
t.localNode.UDPContact(toaddr)
t.write(toaddr, toid, req.Name(), packet)
return rm
}
func (t *UDPv4) makePing(toaddr *net.UDPAddr) *v4wire.Ping {
return &v4wire.Ping{
Version: 4,
From: t.ourEndpoint(),
To: v4wire.NewEndpoint(toaddr, 0),
Expiration: uint64(time.Now().Add(expiration).Unix()),
ENRSeq: t.localNode.Node().Seq(),
}
}
// LookupPubkey finds the closest nodes to the given public key.
func (t *UDPv4) LookupPubkey(key *ecdsa.PublicKey) []*enode.Node {
if t.tab.len() == 0 {
// All nodes were dropped, refresh. The very first query will hit this
// case and run the bootstrapping logic.
<-t.tab.refresh()
}
return t.newLookup(t.closeCtx, encodePubkey(key)).run()
}
// RandomNodes is an iterator yielding nodes from a random walk of the DHT.
func (t *UDPv4) RandomNodes() enode.Iterator {
return newLookupIterator(t.closeCtx, t.newRandomLookup)
}
// lookupRandom implements transport.
func (t *UDPv4) lookupRandom() []*enode.Node {
return t.newRandomLookup(t.closeCtx).run()
}
// lookupSelf implements transport.
func (t *UDPv4) lookupSelf() []*enode.Node {
return t.newLookup(t.closeCtx, encodePubkey(&t.priv.PublicKey)).run()
}
func (t *UDPv4) newRandomLookup(ctx context.Context) *lookup {
var target encPubkey
crand.Read(target[:])
return t.newLookup(ctx, target)
}
func (t *UDPv4) newLookup(ctx context.Context, targetKey encPubkey) *lookup {
target := enode.ID(crypto.Keccak256Hash(targetKey[:]))
ekey := v4wire.Pubkey(targetKey)
it := newLookup(ctx, t.tab, target, func(n *node) ([]*node, error) {
return t.findnode(n.ID(), n.addr(), ekey)
})
return it
}
// findnode sends a findnode request to the given node and waits until
// the node has sent up to k neighbors.
func (t *UDPv4) findnode(toid enode.ID, toaddr *net.UDPAddr, target v4wire.Pubkey) ([]*node, error) {
t.ensureBond(toid, toaddr)
// Add a matcher for 'neighbours' replies to the pending reply queue. The matcher is
// active until enough nodes have been received.
nodes := make([]*node, 0, bucketSize)
nreceived := 0
rm := t.pending(toid, toaddr.IP, v4wire.NeighborsPacket, func(r v4wire.Packet) (matched bool, requestDone bool) {
reply := r.(*v4wire.Neighbors)
for _, rn := range reply.Nodes {
nreceived++
n, err := t.nodeFromRPC(toaddr, rn)
if err != nil {
t.log.Trace("Invalid neighbor node received", "ip", rn.IP, "addr", toaddr, "err", err)
continue
}
nodes = append(nodes, n)
}
return true, nreceived >= bucketSize
})
t.send(toaddr, toid, &v4wire.Findnode{
Target: target,
Expiration: uint64(time.Now().Add(expiration).Unix()),
})
// Ensure that callers don't see a timeout if the node actually responded. Since
// findnode can receive more than one neighbors response, the reply matcher will be
// active until the remote node sends enough nodes. If the remote end doesn't have
// enough nodes the reply matcher will time out waiting for the second reply, but
// there's no need for an error in that case.
err := <-rm.errc
if errors.Is(err, errTimeout) && rm.reply != nil {
err = nil
}
return nodes, err
}
// RequestENR sends ENRRequest to the given node and waits for a response.
func (t *UDPv4) RequestENR(n *enode.Node) (*enode.Node, error) {
addr := &net.UDPAddr{IP: n.IP(), Port: n.UDP()}
t.ensureBond(n.ID(), addr)
req := &v4wire.ENRRequest{
Expiration: uint64(time.Now().Add(expiration).Unix()),
}
packet, hash, err := v4wire.Encode(t.priv, req)
if err != nil {
return nil, err
}
// Add a matcher for the reply to the pending reply queue. Responses are matched if
// they reference the request we're about to send.
rm := t.pending(n.ID(), addr.IP, v4wire.ENRResponsePacket, func(r v4wire.Packet) (matched bool, requestDone bool) {
matched = bytes.Equal(r.(*v4wire.ENRResponse).ReplyTok, hash)
return matched, matched
})
// Send the packet and wait for the reply.
t.write(addr, n.ID(), req.Name(), packet)
if err := <-rm.errc; err != nil {
return nil, err
}
// Verify the response record.
respN, err := enode.New(enode.ValidSchemes, &rm.reply.(*v4wire.ENRResponse).Record)
if err != nil {
return nil, err
}
if respN.ID() != n.ID() {
return nil, fmt.Errorf("invalid ID in response record")
}
if respN.Seq() < n.Seq() {
return n, nil // response record is older
}
if err := netutil.CheckRelayIP(addr.IP, respN.IP()); err != nil {
return nil, fmt.Errorf("invalid IP in response record: %v", err)
}
return respN, nil
}
// pending adds a reply matcher to the pending reply queue.
// see the documentation of type replyMatcher for a detailed explanation.
func (t *UDPv4) pending(id enode.ID, ip net.IP, ptype byte, callback replyMatchFunc) *replyMatcher {
ch := make(chan error, 1)
p := &replyMatcher{from: id, ip: ip, ptype: ptype, callback: callback, errc: ch}
select {
case t.addReplyMatcher <- p:
// loop will handle it
case <-t.closeCtx.Done():
ch <- errClosed
}
return p
}
// handleReply dispatches a reply packet, invoking reply matchers. It returns
// whether any matcher considered the packet acceptable.
func (t *UDPv4) handleReply(from enode.ID, fromIP net.IP, req v4wire.Packet) bool {
matched := make(chan bool, 1)
select {
case t.gotreply <- reply{from, fromIP, req, matched}:
// loop will handle it
return <-matched
case <-t.closeCtx.Done():
return false
}
}
// loop runs in its own goroutine. it keeps track of
// the refresh timer and the pending reply queue.
func (t *UDPv4) loop() {
defer t.wg.Done()
var (
plist = list.New()
timeout = time.NewTimer(0)
nextTimeout *replyMatcher // head of plist when timeout was last reset
contTimeouts = 0 // number of continuous timeouts to do NTP checks
ntpWarnTime = time.Unix(0, 0)
)
<-timeout.C // ignore first timeout
defer timeout.Stop()
resetTimeout := func() {
if plist.Front() == nil || nextTimeout == plist.Front().Value {
return
}
// Start the timer so it fires when the next pending reply has expired.
now := time.Now()
for el := plist.Front(); el != nil; el = el.Next() {
nextTimeout = el.Value.(*replyMatcher)
if dist := nextTimeout.deadline.Sub(now); dist < 2*respTimeout {
timeout.Reset(dist)
return
}
// Remove pending replies whose deadline is too far in the
// future. These can occur if the system clock jumped
// backwards after the deadline was assigned.
nextTimeout.errc <- errClockWarp
plist.Remove(el)
}
nextTimeout = nil
timeout.Stop()
}
for {
resetTimeout()
select {
case <-t.closeCtx.Done():
for el := plist.Front(); el != nil; el = el.Next() {
el.Value.(*replyMatcher).errc <- errClosed
}
return
case p := <-t.addReplyMatcher:
p.deadline = time.Now().Add(respTimeout)
plist.PushBack(p)
case r := <-t.gotreply:
var matched bool // whether any replyMatcher considered the reply acceptable.
for el := plist.Front(); el != nil; el = el.Next() {
p := el.Value.(*replyMatcher)
if p.from == r.from && p.ptype == r.data.Kind() && p.ip.Equal(r.ip) {
ok, requestDone := p.callback(r.data)
matched = matched || ok
p.reply = r.data
// Remove the matcher if callback indicates that all replies have been received.
if requestDone {
p.errc <- nil
plist.Remove(el)
}
// Reset the continuous timeout counter (time drift detection)
contTimeouts = 0
}
}
r.matched <- matched
case now := <-timeout.C:
nextTimeout = nil
// Notify and remove callbacks whose deadline is in the past.
for el := plist.Front(); el != nil; el = el.Next() {
p := el.Value.(*replyMatcher)
if now.After(p.deadline) || now.Equal(p.deadline) {
p.errc <- errTimeout
plist.Remove(el)
contTimeouts++
}
}
// If we've accumulated too many timeouts, do an NTP time sync check
if contTimeouts > ntpFailureThreshold {
if time.Since(ntpWarnTime) >= ntpWarningCooldown {
ntpWarnTime = time.Now()
go checkClockDrift()
}
contTimeouts = 0
}
}
}
}
func (t *UDPv4) send(toaddr *net.UDPAddr, toid enode.ID, req v4wire.Packet) ([]byte, error) {
packet, hash, err := v4wire.Encode(t.priv, req)
if err != nil {
return hash, err
}
return hash, t.write(toaddr, toid, req.Name(), packet)
}
func (t *UDPv4) write(toaddr *net.UDPAddr, toid enode.ID, what string, packet []byte) error {
_, err := t.conn.WriteToUDP(packet, toaddr)
t.log.Trace(">> "+what, "id", toid, "addr", toaddr, "err", err)
return err
}
// readLoop runs in its own goroutine. it handles incoming UDP packets.
func (t *UDPv4) readLoop(unhandled chan<- ReadPacket) {
defer t.wg.Done()
if unhandled != nil {
defer close(unhandled)
}
buf := make([]byte, maxPacketSize)
for {
nbytes, from, err := t.conn.ReadFromUDP(buf)
if netutil.IsTemporaryError(err) {
// Ignore temporary read errors.
t.log.Debug("Temporary UDP read error", "err", err)
continue
} else if err != nil {
// Shut down the loop for permanent errors.
if !errors.Is(err, io.EOF) {
t.log.Debug("UDP read error", "err", err)
}
return
}
if t.handlePacket(from, buf[:nbytes]) != nil && unhandled != nil {
select {
case unhandled <- ReadPacket{buf[:nbytes], from}:
default:
}
}
}
}
func (t *UDPv4) handlePacket(from *net.UDPAddr, buf []byte) error {
rawpacket, fromKey, hash, err := v4wire.Decode(buf)
if err != nil {
t.log.Debug("Bad discv4 packet", "addr", from, "err", err)
return err
}
packet := t.wrapPacket(rawpacket)
fromID := fromKey.ID()
if err == nil && packet.preverify != nil {
err = packet.preverify(packet, from, fromID, fromKey)
}
t.log.Trace("<< "+packet.Name(), "id", fromID, "addr", from, "err", err)
if err == nil && packet.handle != nil {
packet.handle(packet, from, fromID, hash)
}
return err
}
// checkBond checks if the given node has a recent enough endpoint proof.
func (t *UDPv4) checkBond(id enode.ID, ip net.IP) bool {
return time.Since(t.db.LastPongReceived(id, ip)) < bondExpiration
}
// ensureBond solicits a ping from a node if we haven't seen a ping from it for a while.
// This ensures there is a valid endpoint proof on the remote end.
func (t *UDPv4) ensureBond(toid enode.ID, toaddr *net.UDPAddr) {
tooOld := time.Since(t.db.LastPingReceived(toid, toaddr.IP)) > bondExpiration
if tooOld || t.db.FindFails(toid, toaddr.IP) > maxFindnodeFailures {
rm := t.sendPing(toid, toaddr, nil)
<-rm.errc
// Wait for them to ping back and process our pong.
time.Sleep(respTimeout)
}
}
func (t *UDPv4) nodeFromRPC(sender *net.UDPAddr, rn v4wire.Node) (*node, error) {
if rn.UDP <= 1024 {
return nil, errLowPort
}
if err := netutil.CheckRelayIP(sender.IP, rn.IP); err != nil {
return nil, err
}
if t.netrestrict != nil && !t.netrestrict.Contains(rn.IP) {
return nil, errors.New("not contained in netrestrict list")
}
key, err := v4wire.DecodePubkey(crypto.S256(), rn.ID)
if err != nil {
return nil, err
}
n := wrapNode(enode.NewV4(key, rn.IP, int(rn.TCP), int(rn.UDP)))
err = n.ValidateComplete()
return n, err
}
func nodeToRPC(n *node) v4wire.Node {
var key ecdsa.PublicKey
var ekey v4wire.Pubkey
if err := n.Load((*enode.Secp256k1)(&key)); err == nil {
ekey = v4wire.EncodePubkey(&key)
}
return v4wire.Node{ID: ekey, IP: n.IP(), UDP: uint16(n.UDP()), TCP: uint16(n.TCP())}
}
// wrapPacket returns the handler functions applicable to a packet.
func (t *UDPv4) wrapPacket(p v4wire.Packet) *packetHandlerV4 {
var h packetHandlerV4
h.Packet = p
switch p.(type) {
case *v4wire.Ping:
h.preverify = t.verifyPing
h.handle = t.handlePing
case *v4wire.Pong:
h.preverify = t.verifyPong
case *v4wire.Findnode:
h.preverify = t.verifyFindnode
h.handle = t.handleFindnode
case *v4wire.Neighbors:
h.preverify = t.verifyNeighbors
case *v4wire.ENRRequest:
h.preverify = t.verifyENRRequest
h.handle = t.handleENRRequest
case *v4wire.ENRResponse:
h.preverify = t.verifyENRResponse
}
return &h
}
// packetHandlerV4 wraps a packet with handler functions.
type packetHandlerV4 struct {
v4wire.Packet
senderKey *ecdsa.PublicKey // used for ping
// preverify checks whether the packet is valid and should be handled at all.
preverify func(p *packetHandlerV4, from *net.UDPAddr, fromID enode.ID, fromKey v4wire.Pubkey) error
// handle handles the packet.
handle func(req *packetHandlerV4, from *net.UDPAddr, fromID enode.ID, mac []byte)
}
// PING/v4
func (t *UDPv4) verifyPing(h *packetHandlerV4, from *net.UDPAddr, fromID enode.ID, fromKey v4wire.Pubkey) error {
req := h.Packet.(*v4wire.Ping)
senderKey, err := v4wire.DecodePubkey(crypto.S256(), fromKey)
if err != nil {
return err
}
if v4wire.Expired(req.Expiration) {
return errExpired
}
h.senderKey = senderKey
return nil
}
func (t *UDPv4) handlePing(h *packetHandlerV4, from *net.UDPAddr, fromID enode.ID, mac []byte) {
req := h.Packet.(*v4wire.Ping)
// Reply.
t.send(from, fromID, &v4wire.Pong{
To: v4wire.NewEndpoint(from, req.From.TCP),
ReplyTok: mac,
Expiration: uint64(time.Now().Add(expiration).Unix()),
ENRSeq: t.localNode.Node().Seq(),
})
// Ping back if our last pong on file is too far in the past.
n := wrapNode(enode.NewV4(h.senderKey, from.IP, int(req.From.TCP), from.Port))
if time.Since(t.db.LastPongReceived(n.ID(), from.IP)) > bondExpiration {
t.sendPing(fromID, from, func() {
t.tab.addVerifiedNode(n)
})
} else {
t.tab.addVerifiedNode(n)
}
// Update node database and endpoint predictor.
t.db.UpdateLastPingReceived(n.ID(), from.IP, time.Now())
t.localNode.UDPEndpointStatement(from, &net.UDPAddr{IP: req.To.IP, Port: int(req.To.UDP)})
}
// PONG/v4
func (t *UDPv4) verifyPong(h *packetHandlerV4, from *net.UDPAddr, fromID enode.ID, fromKey v4wire.Pubkey) error {
req := h.Packet.(*v4wire.Pong)
if v4wire.Expired(req.Expiration) {
return errExpired
}
if !t.handleReply(fromID, from.IP, req) {
return errUnsolicitedReply
}
t.localNode.UDPEndpointStatement(from, &net.UDPAddr{IP: req.To.IP, Port: int(req.To.UDP)})
t.db.UpdateLastPongReceived(fromID, from.IP, time.Now())
return nil
}
// FINDNODE/v4
func (t *UDPv4) verifyFindnode(h *packetHandlerV4, from *net.UDPAddr, fromID enode.ID, fromKey v4wire.Pubkey) error {
req := h.Packet.(*v4wire.Findnode)
if v4wire.Expired(req.Expiration) {
return errExpired
}
if !t.checkBond(fromID, from.IP) {
// No endpoint proof pong exists, we don't process the packet. This prevents an
// attack vector where the discovery protocol could be used to amplify traffic in a
// DDOS attack. A malicious actor would send a findnode request with the IP address
// and UDP port of the target as the source address. The recipient of the findnode
// packet would then send a neighbors packet (which is a much bigger packet than
// findnode) to the victim.
return errUnknownNode
}
return nil
}
func (t *UDPv4) handleFindnode(h *packetHandlerV4, from *net.UDPAddr, fromID enode.ID, mac []byte) {
req := h.Packet.(*v4wire.Findnode)
// Determine closest nodes.
target := enode.ID(crypto.Keccak256Hash(req.Target[:]))
closest := t.tab.findnodeByID(target, bucketSize, true).entries
// Send neighbors in chunks with at most maxNeighbors per packet
// to stay below the packet size limit.
p := v4wire.Neighbors{Expiration: uint64(time.Now().Add(expiration).Unix())}
var sent bool
for _, n := range closest {
if netutil.CheckRelayIP(from.IP, n.IP()) == nil {
p.Nodes = append(p.Nodes, nodeToRPC(n))
}
if len(p.Nodes) == v4wire.MaxNeighbors {
t.send(from, fromID, &p)
p.Nodes = p.Nodes[:0]
sent = true
}
}
if len(p.Nodes) > 0 || !sent {
t.send(from, fromID, &p)
}
}
// NEIGHBORS/v4
func (t *UDPv4) verifyNeighbors(h *packetHandlerV4, from *net.UDPAddr, fromID enode.ID, fromKey v4wire.Pubkey) error {
req := h.Packet.(*v4wire.Neighbors)
if v4wire.Expired(req.Expiration) {
return errExpired
}
if !t.handleReply(fromID, from.IP, h.Packet) {
return errUnsolicitedReply
}
return nil
}
// ENRREQUEST/v4
func (t *UDPv4) verifyENRRequest(h *packetHandlerV4, from *net.UDPAddr, fromID enode.ID, fromKey v4wire.Pubkey) error {
req := h.Packet.(*v4wire.ENRRequest)
if v4wire.Expired(req.Expiration) {
return errExpired
}
if !t.checkBond(fromID, from.IP) {
return errUnknownNode
}
return nil
}
func (t *UDPv4) handleENRRequest(h *packetHandlerV4, from *net.UDPAddr, fromID enode.ID, mac []byte) {
t.send(from, fromID, &v4wire.ENRResponse{
ReplyTok: mac,
Record: *t.localNode.Node().Record(),
})
}
// ENRRESPONSE/v4
func (t *UDPv4) verifyENRResponse(h *packetHandlerV4, from *net.UDPAddr, fromID enode.ID, fromKey v4wire.Pubkey) error {
if !t.handleReply(fromID, from.IP, h.Packet) {
return errUnsolicitedReply
}
return nil
}