go-ethereum/core/rawdb/chain_iterator.go

306 lines
9.9 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package rawdb
import (
"math"
"runtime"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/prque"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
"golang.org/x/crypto/sha3"
)
// InitDatabaseFromFreezer reinitializes an empty database from a previous batch
// of frozen ancient blocks. The method iterates over all the frozen blocks and
// injects into the database the block hash->number mappings.
func InitDatabaseFromFreezer(db ethdb.Database) {
// If we can't access the freezer or it's empty, abort
frozen, err := db.Ancients()
if err != nil || frozen == 0 {
return
}
var (
batch = db.NewBatch()
start = time.Now()
logged = start.Add(-7 * time.Second) // Unindex during import is fast, don't double log
hash common.Hash
)
for i := uint64(0); i < frozen; i++ {
// Since the freezer has all data in sequential order on a file,
// it would be 'neat' to read more data in one go, and let the
// freezerdb return N items (e.g up to 1000 items per go)
// That would require an API change in Ancients though
if h, err := db.Ancient(freezerHashTable, i); err != nil {
log.Crit("Failed to init database from freezer", "err", err)
} else {
hash = common.BytesToHash(h)
}
WriteHeaderNumber(batch, hash, i)
// If enough data was accumulated in memory or we're at the last block, dump to disk
if batch.ValueSize() > ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
log.Crit("Failed to write data to db", "err", err)
}
batch.Reset()
}
// If we've spent too much time already, notify the user of what we're doing
if time.Since(logged) > 8*time.Second {
log.Info("Initializing database from freezer", "total", frozen, "number", i, "hash", hash, "elapsed", common.PrettyDuration(time.Since(start)))
logged = time.Now()
}
}
if err := batch.Write(); err != nil {
log.Crit("Failed to write data to db", "err", err)
}
batch.Reset()
WriteHeadHeaderHash(db, hash)
WriteHeadFastBlockHash(db, hash)
log.Info("Initialized database from freezer", "blocks", frozen, "elapsed", common.PrettyDuration(time.Since(start)))
}
type blockTxHashes struct {
number uint64
hashes []common.Hash
}
// iterateTransactions iterates over all transactions in the (canon) block
// number(s) given, and yields the hashes on a channel
func iterateTransactions(db ethdb.Database, from uint64, to uint64, reverse bool) (chan *blockTxHashes, chan struct{}) {
// One thread sequentially reads data from db
type numberRlp struct {
number uint64
rlp rlp.RawValue
}
if to == from {
return nil, nil
}
threads := to - from
if cpus := runtime.NumCPU(); threads > uint64(cpus) {
threads = uint64(cpus)
}
var (
rlpCh = make(chan *numberRlp, threads*2) // we send raw rlp over this channel
hashesCh = make(chan *blockTxHashes, threads*2) // send hashes over hashesCh
abortCh = make(chan struct{})
)
// lookup runs in one instance
lookup := func() {
n, end := from, to
if reverse {
n, end = to-1, from-1
}
defer close(rlpCh)
for n != end {
data := ReadCanonicalBodyRLP(db, n)
// Feed the block to the aggregator, or abort on interrupt
select {
case rlpCh <- &numberRlp{n, data}:
case <-abortCh:
return
}
if reverse {
n--
} else {
n++
}
}
}
// process runs in parallell
nThreadsAlive := int32(threads)
process := func() {
defer func() {
// Last processor closes the result channel
if atomic.AddInt32(&nThreadsAlive, -1) == 0 {
close(hashesCh)
}
}()
var hasher = sha3.NewLegacyKeccak256()
for data := range rlpCh {
it, err := rlp.NewListIterator(data.rlp)
if err != nil {
log.Warn("tx iteration error", "error", err)
return
}
it.Next()
txs := it.Value()
txIt, err := rlp.NewListIterator(txs)
if err != nil {
log.Warn("tx iteration error", "error", err)
return
}
var hashes []common.Hash
for txIt.Next() {
if err := txIt.Err(); err != nil {
log.Warn("tx iteration error", "error", err)
return
}
var txHash common.Hash
hasher.Reset()
hasher.Write(txIt.Value())
hasher.Sum(txHash[:0])
hashes = append(hashes, txHash)
}
result := &blockTxHashes{
hashes: hashes,
number: data.number,
}
// Feed the block to the aggregator, or abort on interrupt
select {
case hashesCh <- result:
case <-abortCh:
return
}
}
}
go lookup() // start the sequential db accessor
for i := 0; i < int(threads); i++ {
go process()
}
return hashesCh, abortCh
}
// IndexTransactions creates txlookup indices of the specified block range.
//
// This function iterates canonical chain in reverse order, it has one main advantage:
// We can write tx index tail flag periodically even without the whole indexing
// procedure is finished. So that we can resume indexing procedure next time quickly.
func IndexTransactions(db ethdb.Database, from uint64, to uint64) {
// short circuit for invalid range
if from >= to {
return
}
var (
hashesCh, abortCh = iterateTransactions(db, from, to, true)
batch = db.NewBatch()
start = time.Now()
logged = start.Add(-7 * time.Second)
// Since we iterate in reverse, we expect the first number to come
// in to be [to-1]. Therefore, setting lastNum to means that the
// prqueue gap-evaluation will work correctly
lastNum = to
queue = prque.New(nil)
// for stats reporting
blocks, txs = 0, 0
)
defer close(abortCh)
for chanDelivery := range hashesCh {
// Push the delivery into the queue and process contiguous ranges.
// Since we iterate in reverse, so lower numbers have lower prio, and
// we can use the number directly as prio marker
queue.Push(chanDelivery, int64(chanDelivery.number))
for !queue.Empty() {
// If the next available item is gapped, return
if _, priority := queue.Peek(); priority != int64(lastNum-1) {
break
}
// Next block available, pop it off and index it
delivery := queue.PopItem().(*blockTxHashes)
lastNum = delivery.number
WriteTxLookupEntriesByHash(batch, delivery.number, delivery.hashes)
blocks++
txs += len(delivery.hashes)
// If enough data was accumulated in memory or we're at the last block, dump to disk
if batch.ValueSize() > ethdb.IdealBatchSize {
// Also write the tail there
WriteTxIndexTail(batch, lastNum)
if err := batch.Write(); err != nil {
log.Crit("Failed writing batch to db", "error", err)
return
}
batch.Reset()
}
// If we've spent too much time already, notify the user of what we're doing
if time.Since(logged) > 8*time.Second {
log.Info("Indexing transactions", "blocks", blocks, "txs", txs, "tail", lastNum, "total", to-from, "elapsed", common.PrettyDuration(time.Since(start)))
logged = time.Now()
}
}
}
if lastNum < to {
WriteTxIndexTail(batch, lastNum)
// No need to write the batch if we never entered the loop above...
if err := batch.Write(); err != nil {
log.Crit("Failed writing batch to db", "error", err)
return
}
}
log.Info("Indexed transactions", "blocks", blocks, "txs", txs, "tail", lastNum, "elapsed", common.PrettyDuration(time.Since(start)))
}
// UnindexTransactions removes txlookup indices of the specified block range.
func UnindexTransactions(db ethdb.Database, from uint64, to uint64) {
// short circuit for invalid range
if from >= to {
return
}
// Write flag first and then unindex the transaction indices. Some indices
// will be left in the database if crash happens but it's fine.
WriteTxIndexTail(db, to)
// If only one block is unindexed, do it directly
//if from+1 == to {
// data := ReadCanonicalBodyRLP(db, uint64(from))
// DeleteTxLookupEntries(db, ReadBlock(db, ReadCanonicalHash(db, from), from))
// log.Info("Unindexed transactions", "blocks", 1, "tail", to)
// return
//}
// TODO @holiman, add this back (if we want it)
var (
hashesCh, abortCh = iterateTransactions(db, from, to, false)
batch = db.NewBatch()
start = time.Now()
logged = start.Add(-7 * time.Second)
)
defer close(abortCh)
// Otherwise spin up the concurrent iterator and unindexer
blocks, txs := 0, 0
for delivery := range hashesCh {
DeleteTxLookupEntriesByHash(batch, delivery.hashes)
txs += len(delivery.hashes)
blocks++
// If enough data was accumulated in memory or we're at the last block, dump to disk
// A batch counts the size of deletion as '1', so we need to flush more
// often than that.
if blocks%1000 == 0 {
if err := batch.Write(); err != nil {
log.Crit("Failed writing batch to db", "error", err)
return
}
batch.Reset()
}
// If we've spent too much time already, notify the user of what we're doing
if time.Since(logged) > 8*time.Second {
log.Info("Unindexing transactions", "blocks", "txs", txs, int64(math.Abs(float64(delivery.number-from))), "total", to-from, "elapsed", common.PrettyDuration(time.Since(start)))
logged = time.Now()
}
}
if err := batch.Write(); err != nil {
log.Crit("Failed writing batch to db", "error", err)
return
}
log.Info("Unindexed transactions", "blocks", blocks, "txs", txs, "tail", to, "elapsed", common.PrettyDuration(time.Since(start)))
}