1106 lines
34 KiB
Go
1106 lines
34 KiB
Go
// Copyright 2015 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package trie
|
|
|
|
import (
|
|
"bytes"
|
|
crand "crypto/rand"
|
|
"encoding/binary"
|
|
"fmt"
|
|
mrand "math/rand"
|
|
"testing"
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/ethereum/go-ethereum/core/rawdb"
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
"github.com/ethereum/go-ethereum/ethdb/memorydb"
|
|
"golang.org/x/exp/slices"
|
|
)
|
|
|
|
// Prng is a pseudo random number generator seeded by strong randomness.
|
|
// The randomness is printed on startup in order to make failures reproducible.
|
|
var prng = initRnd()
|
|
|
|
func initRnd() *mrand.Rand {
|
|
var seed [8]byte
|
|
crand.Read(seed[:])
|
|
rnd := mrand.New(mrand.NewSource(int64(binary.LittleEndian.Uint64(seed[:]))))
|
|
fmt.Printf("Seed: %x\n", seed)
|
|
return rnd
|
|
}
|
|
|
|
func randBytes(n int) []byte {
|
|
r := make([]byte, n)
|
|
prng.Read(r)
|
|
return r
|
|
}
|
|
|
|
// makeProvers creates Merkle trie provers based on different implementations to
|
|
// test all variations.
|
|
func makeProvers(trie *Trie) []func(key []byte) *memorydb.Database {
|
|
var provers []func(key []byte) *memorydb.Database
|
|
|
|
// Create a direct trie based Merkle prover
|
|
provers = append(provers, func(key []byte) *memorydb.Database {
|
|
proof := memorydb.New()
|
|
trie.Prove(key, proof)
|
|
return proof
|
|
})
|
|
// Create a leaf iterator based Merkle prover
|
|
provers = append(provers, func(key []byte) *memorydb.Database {
|
|
proof := memorydb.New()
|
|
if it := NewIterator(trie.MustNodeIterator(key)); it.Next() && bytes.Equal(key, it.Key) {
|
|
for _, p := range it.Prove() {
|
|
proof.Put(crypto.Keccak256(p), p)
|
|
}
|
|
}
|
|
return proof
|
|
})
|
|
return provers
|
|
}
|
|
|
|
func TestProof(t *testing.T) {
|
|
trie, vals := randomTrie(500)
|
|
root := trie.Hash()
|
|
for i, prover := range makeProvers(trie) {
|
|
for _, kv := range vals {
|
|
proof := prover(kv.k)
|
|
if proof == nil {
|
|
t.Fatalf("prover %d: missing key %x while constructing proof", i, kv.k)
|
|
}
|
|
val, err := VerifyProof(root, kv.k, proof)
|
|
if err != nil {
|
|
t.Fatalf("prover %d: failed to verify proof for key %x: %v\nraw proof: %x", i, kv.k, err, proof)
|
|
}
|
|
if !bytes.Equal(val, kv.v) {
|
|
t.Fatalf("prover %d: verified value mismatch for key %x: have %x, want %x", i, kv.k, val, kv.v)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestOneElementProof(t *testing.T) {
|
|
trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase(), nil))
|
|
updateString(trie, "k", "v")
|
|
for i, prover := range makeProvers(trie) {
|
|
proof := prover([]byte("k"))
|
|
if proof == nil {
|
|
t.Fatalf("prover %d: nil proof", i)
|
|
}
|
|
if proof.Len() != 1 {
|
|
t.Errorf("prover %d: proof should have one element", i)
|
|
}
|
|
val, err := VerifyProof(trie.Hash(), []byte("k"), proof)
|
|
if err != nil {
|
|
t.Fatalf("prover %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
|
|
}
|
|
if !bytes.Equal(val, []byte("v")) {
|
|
t.Fatalf("prover %d: verified value mismatch: have %x, want 'k'", i, val)
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestBadProof(t *testing.T) {
|
|
trie, vals := randomTrie(800)
|
|
root := trie.Hash()
|
|
for i, prover := range makeProvers(trie) {
|
|
for _, kv := range vals {
|
|
proof := prover(kv.k)
|
|
if proof == nil {
|
|
t.Fatalf("prover %d: nil proof", i)
|
|
}
|
|
it := proof.NewIterator(nil, nil)
|
|
for i, d := 0, mrand.Intn(proof.Len()); i <= d; i++ {
|
|
it.Next()
|
|
}
|
|
key := it.Key()
|
|
val, _ := proof.Get(key)
|
|
proof.Delete(key)
|
|
it.Release()
|
|
|
|
mutateByte(val)
|
|
proof.Put(crypto.Keccak256(val), val)
|
|
|
|
if _, err := VerifyProof(root, kv.k, proof); err == nil {
|
|
t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Tests that missing keys can also be proven. The test explicitly uses a single
|
|
// entry trie and checks for missing keys both before and after the single entry.
|
|
func TestMissingKeyProof(t *testing.T) {
|
|
trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase(), nil))
|
|
updateString(trie, "k", "v")
|
|
|
|
for i, key := range []string{"a", "j", "l", "z"} {
|
|
proof := memorydb.New()
|
|
trie.Prove([]byte(key), proof)
|
|
|
|
if proof.Len() != 1 {
|
|
t.Errorf("test %d: proof should have one element", i)
|
|
}
|
|
val, err := VerifyProof(trie.Hash(), []byte(key), proof)
|
|
if err != nil {
|
|
t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
|
|
}
|
|
if val != nil {
|
|
t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val)
|
|
}
|
|
}
|
|
}
|
|
|
|
// TestRangeProof tests normal range proof with both edge proofs
|
|
// as the existent proof. The test cases are generated randomly.
|
|
func TestRangeProof(t *testing.T) {
|
|
trie, vals := randomTrie(4096)
|
|
var entries []*kv
|
|
for _, kv := range vals {
|
|
entries = append(entries, kv)
|
|
}
|
|
slices.SortFunc(entries, (*kv).less)
|
|
for i := 0; i < 500; i++ {
|
|
start := mrand.Intn(len(entries))
|
|
end := mrand.Intn(len(entries)-start) + start + 1
|
|
|
|
proof := memorydb.New()
|
|
if err := trie.Prove(entries[start].k, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(entries[end-1].k, proof); err != nil {
|
|
t.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
var keys [][]byte
|
|
var vals [][]byte
|
|
for i := start; i < end; i++ {
|
|
keys = append(keys, entries[i].k)
|
|
vals = append(vals, entries[i].v)
|
|
}
|
|
_, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
|
|
if err != nil {
|
|
t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
|
|
}
|
|
}
|
|
}
|
|
|
|
// TestRangeProof tests normal range proof with two non-existent proofs.
|
|
// The test cases are generated randomly.
|
|
func TestRangeProofWithNonExistentProof(t *testing.T) {
|
|
trie, vals := randomTrie(4096)
|
|
var entries []*kv
|
|
for _, kv := range vals {
|
|
entries = append(entries, kv)
|
|
}
|
|
slices.SortFunc(entries, (*kv).less)
|
|
for i := 0; i < 500; i++ {
|
|
start := mrand.Intn(len(entries))
|
|
end := mrand.Intn(len(entries)-start) + start + 1
|
|
proof := memorydb.New()
|
|
|
|
// Short circuit if the decreased key is same with the previous key
|
|
first := decreaseKey(common.CopyBytes(entries[start].k))
|
|
if start != 0 && bytes.Equal(first, entries[start-1].k) {
|
|
continue
|
|
}
|
|
// Short circuit if the decreased key is underflow
|
|
if bytes.Compare(first, entries[start].k) > 0 {
|
|
continue
|
|
}
|
|
// Short circuit if the increased key is same with the next key
|
|
last := increaseKey(common.CopyBytes(entries[end-1].k))
|
|
if end != len(entries) && bytes.Equal(last, entries[end].k) {
|
|
continue
|
|
}
|
|
// Short circuit if the increased key is overflow
|
|
if bytes.Compare(last, entries[end-1].k) < 0 {
|
|
continue
|
|
}
|
|
if err := trie.Prove(first, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(last, proof); err != nil {
|
|
t.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
var keys [][]byte
|
|
var vals [][]byte
|
|
for i := start; i < end; i++ {
|
|
keys = append(keys, entries[i].k)
|
|
vals = append(vals, entries[i].v)
|
|
}
|
|
_, err := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof)
|
|
if err != nil {
|
|
t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
|
|
}
|
|
}
|
|
// Special case, two edge proofs for two edge key.
|
|
proof := memorydb.New()
|
|
first := common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes()
|
|
last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes()
|
|
if err := trie.Prove(first, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(last, proof); err != nil {
|
|
t.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
var k [][]byte
|
|
var v [][]byte
|
|
for i := 0; i < len(entries); i++ {
|
|
k = append(k, entries[i].k)
|
|
v = append(v, entries[i].v)
|
|
}
|
|
_, err := VerifyRangeProof(trie.Hash(), first, last, k, v, proof)
|
|
if err != nil {
|
|
t.Fatal("Failed to verify whole rang with non-existent edges")
|
|
}
|
|
}
|
|
|
|
// TestRangeProofWithInvalidNonExistentProof tests such scenarios:
|
|
// - There exists a gap between the first element and the left edge proof
|
|
// - There exists a gap between the last element and the right edge proof
|
|
func TestRangeProofWithInvalidNonExistentProof(t *testing.T) {
|
|
trie, vals := randomTrie(4096)
|
|
var entries []*kv
|
|
for _, kv := range vals {
|
|
entries = append(entries, kv)
|
|
}
|
|
slices.SortFunc(entries, (*kv).less)
|
|
|
|
// Case 1
|
|
start, end := 100, 200
|
|
first := decreaseKey(common.CopyBytes(entries[start].k))
|
|
|
|
proof := memorydb.New()
|
|
if err := trie.Prove(first, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(entries[end-1].k, proof); err != nil {
|
|
t.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
start = 105 // Gap created
|
|
k := make([][]byte, 0)
|
|
v := make([][]byte, 0)
|
|
for i := start; i < end; i++ {
|
|
k = append(k, entries[i].k)
|
|
v = append(v, entries[i].v)
|
|
}
|
|
_, err := VerifyRangeProof(trie.Hash(), first, k[len(k)-1], k, v, proof)
|
|
if err == nil {
|
|
t.Fatalf("Expected to detect the error, got nil")
|
|
}
|
|
|
|
// Case 2
|
|
start, end = 100, 200
|
|
last := increaseKey(common.CopyBytes(entries[end-1].k))
|
|
proof = memorydb.New()
|
|
if err := trie.Prove(entries[start].k, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(last, proof); err != nil {
|
|
t.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
end = 195 // Capped slice
|
|
k = make([][]byte, 0)
|
|
v = make([][]byte, 0)
|
|
for i := start; i < end; i++ {
|
|
k = append(k, entries[i].k)
|
|
v = append(v, entries[i].v)
|
|
}
|
|
_, err = VerifyRangeProof(trie.Hash(), k[0], last, k, v, proof)
|
|
if err == nil {
|
|
t.Fatalf("Expected to detect the error, got nil")
|
|
}
|
|
}
|
|
|
|
// TestOneElementRangeProof tests the proof with only one
|
|
// element. The first edge proof can be existent one or
|
|
// non-existent one.
|
|
func TestOneElementRangeProof(t *testing.T) {
|
|
trie, vals := randomTrie(4096)
|
|
var entries []*kv
|
|
for _, kv := range vals {
|
|
entries = append(entries, kv)
|
|
}
|
|
slices.SortFunc(entries, (*kv).less)
|
|
|
|
// One element with existent edge proof, both edge proofs
|
|
// point to the SAME key.
|
|
start := 1000
|
|
proof := memorydb.New()
|
|
if err := trie.Prove(entries[start].k, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
_, err := VerifyRangeProof(trie.Hash(), entries[start].k, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
|
|
if err != nil {
|
|
t.Fatalf("Expected no error, got %v", err)
|
|
}
|
|
|
|
// One element with left non-existent edge proof
|
|
start = 1000
|
|
first := decreaseKey(common.CopyBytes(entries[start].k))
|
|
proof = memorydb.New()
|
|
if err := trie.Prove(first, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(entries[start].k, proof); err != nil {
|
|
t.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
_, err = VerifyRangeProof(trie.Hash(), first, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
|
|
if err != nil {
|
|
t.Fatalf("Expected no error, got %v", err)
|
|
}
|
|
|
|
// One element with right non-existent edge proof
|
|
start = 1000
|
|
last := increaseKey(common.CopyBytes(entries[start].k))
|
|
proof = memorydb.New()
|
|
if err := trie.Prove(entries[start].k, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(last, proof); err != nil {
|
|
t.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
_, err = VerifyRangeProof(trie.Hash(), entries[start].k, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
|
|
if err != nil {
|
|
t.Fatalf("Expected no error, got %v", err)
|
|
}
|
|
|
|
// One element with two non-existent edge proofs
|
|
start = 1000
|
|
first, last = decreaseKey(common.CopyBytes(entries[start].k)), increaseKey(common.CopyBytes(entries[start].k))
|
|
proof = memorydb.New()
|
|
if err := trie.Prove(first, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(last, proof); err != nil {
|
|
t.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
_, err = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
|
|
if err != nil {
|
|
t.Fatalf("Expected no error, got %v", err)
|
|
}
|
|
|
|
// Test the mini trie with only a single element.
|
|
tinyTrie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase(), nil))
|
|
entry := &kv{randBytes(32), randBytes(20), false}
|
|
tinyTrie.MustUpdate(entry.k, entry.v)
|
|
|
|
first = common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes()
|
|
last = entry.k
|
|
proof = memorydb.New()
|
|
if err := tinyTrie.Prove(first, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := tinyTrie.Prove(last, proof); err != nil {
|
|
t.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
_, err = VerifyRangeProof(tinyTrie.Hash(), first, last, [][]byte{entry.k}, [][]byte{entry.v}, proof)
|
|
if err != nil {
|
|
t.Fatalf("Expected no error, got %v", err)
|
|
}
|
|
}
|
|
|
|
// TestAllElementsProof tests the range proof with all elements.
|
|
// The edge proofs can be nil.
|
|
func TestAllElementsProof(t *testing.T) {
|
|
trie, vals := randomTrie(4096)
|
|
var entries []*kv
|
|
for _, kv := range vals {
|
|
entries = append(entries, kv)
|
|
}
|
|
slices.SortFunc(entries, (*kv).less)
|
|
|
|
var k [][]byte
|
|
var v [][]byte
|
|
for i := 0; i < len(entries); i++ {
|
|
k = append(k, entries[i].k)
|
|
v = append(v, entries[i].v)
|
|
}
|
|
_, err := VerifyRangeProof(trie.Hash(), nil, nil, k, v, nil)
|
|
if err != nil {
|
|
t.Fatalf("Expected no error, got %v", err)
|
|
}
|
|
|
|
// With edge proofs, it should still work.
|
|
proof := memorydb.New()
|
|
if err := trie.Prove(entries[0].k, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(entries[len(entries)-1].k, proof); err != nil {
|
|
t.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
_, err = VerifyRangeProof(trie.Hash(), k[0], k[len(k)-1], k, v, proof)
|
|
if err != nil {
|
|
t.Fatalf("Expected no error, got %v", err)
|
|
}
|
|
|
|
// Even with non-existent edge proofs, it should still work.
|
|
proof = memorydb.New()
|
|
first := common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes()
|
|
last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes()
|
|
if err := trie.Prove(first, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(last, proof); err != nil {
|
|
t.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
_, err = VerifyRangeProof(trie.Hash(), first, last, k, v, proof)
|
|
if err != nil {
|
|
t.Fatalf("Expected no error, got %v", err)
|
|
}
|
|
}
|
|
|
|
// TestSingleSideRangeProof tests the range starts from zero.
|
|
func TestSingleSideRangeProof(t *testing.T) {
|
|
for i := 0; i < 64; i++ {
|
|
trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase(), nil))
|
|
var entries []*kv
|
|
for i := 0; i < 4096; i++ {
|
|
value := &kv{randBytes(32), randBytes(20), false}
|
|
trie.MustUpdate(value.k, value.v)
|
|
entries = append(entries, value)
|
|
}
|
|
slices.SortFunc(entries, (*kv).less)
|
|
|
|
var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1}
|
|
for _, pos := range cases {
|
|
proof := memorydb.New()
|
|
if err := trie.Prove(common.Hash{}.Bytes(), proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(entries[pos].k, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
k := make([][]byte, 0)
|
|
v := make([][]byte, 0)
|
|
for i := 0; i <= pos; i++ {
|
|
k = append(k, entries[i].k)
|
|
v = append(v, entries[i].v)
|
|
}
|
|
_, err := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k[len(k)-1], k, v, proof)
|
|
if err != nil {
|
|
t.Fatalf("Expected no error, got %v", err)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// TestReverseSingleSideRangeProof tests the range ends with 0xffff...fff.
|
|
func TestReverseSingleSideRangeProof(t *testing.T) {
|
|
for i := 0; i < 64; i++ {
|
|
trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase(), nil))
|
|
var entries []*kv
|
|
for i := 0; i < 4096; i++ {
|
|
value := &kv{randBytes(32), randBytes(20), false}
|
|
trie.MustUpdate(value.k, value.v)
|
|
entries = append(entries, value)
|
|
}
|
|
slices.SortFunc(entries, (*kv).less)
|
|
|
|
var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1}
|
|
for _, pos := range cases {
|
|
proof := memorydb.New()
|
|
if err := trie.Prove(entries[pos].k, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
|
|
if err := trie.Prove(last.Bytes(), proof); err != nil {
|
|
t.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
k := make([][]byte, 0)
|
|
v := make([][]byte, 0)
|
|
for i := pos; i < len(entries); i++ {
|
|
k = append(k, entries[i].k)
|
|
v = append(v, entries[i].v)
|
|
}
|
|
_, err := VerifyRangeProof(trie.Hash(), k[0], last.Bytes(), k, v, proof)
|
|
if err != nil {
|
|
t.Fatalf("Expected no error, got %v", err)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// TestBadRangeProof tests a few cases which the proof is wrong.
|
|
// The prover is expected to detect the error.
|
|
func TestBadRangeProof(t *testing.T) {
|
|
trie, vals := randomTrie(4096)
|
|
var entries []*kv
|
|
for _, kv := range vals {
|
|
entries = append(entries, kv)
|
|
}
|
|
slices.SortFunc(entries, (*kv).less)
|
|
|
|
for i := 0; i < 500; i++ {
|
|
start := mrand.Intn(len(entries))
|
|
end := mrand.Intn(len(entries)-start) + start + 1
|
|
proof := memorydb.New()
|
|
if err := trie.Prove(entries[start].k, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(entries[end-1].k, proof); err != nil {
|
|
t.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
var keys [][]byte
|
|
var vals [][]byte
|
|
for i := start; i < end; i++ {
|
|
keys = append(keys, entries[i].k)
|
|
vals = append(vals, entries[i].v)
|
|
}
|
|
var first, last = keys[0], keys[len(keys)-1]
|
|
testcase := mrand.Intn(6)
|
|
var index int
|
|
switch testcase {
|
|
case 0:
|
|
// Modified key
|
|
index = mrand.Intn(end - start)
|
|
keys[index] = randBytes(32) // In theory it can't be same
|
|
case 1:
|
|
// Modified val
|
|
index = mrand.Intn(end - start)
|
|
vals[index] = randBytes(20) // In theory it can't be same
|
|
case 2:
|
|
// Gapped entry slice
|
|
index = mrand.Intn(end - start)
|
|
if (index == 0 && start < 100) || (index == end-start-1 && end <= 100) {
|
|
continue
|
|
}
|
|
keys = append(keys[:index], keys[index+1:]...)
|
|
vals = append(vals[:index], vals[index+1:]...)
|
|
case 3:
|
|
// Out of order
|
|
index1 := mrand.Intn(end - start)
|
|
index2 := mrand.Intn(end - start)
|
|
if index1 == index2 {
|
|
continue
|
|
}
|
|
keys[index1], keys[index2] = keys[index2], keys[index1]
|
|
vals[index1], vals[index2] = vals[index2], vals[index1]
|
|
case 4:
|
|
// Set random key to nil, do nothing
|
|
index = mrand.Intn(end - start)
|
|
keys[index] = nil
|
|
case 5:
|
|
// Set random value to nil, deletion
|
|
index = mrand.Intn(end - start)
|
|
vals[index] = nil
|
|
}
|
|
_, err := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof)
|
|
if err == nil {
|
|
t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1)
|
|
}
|
|
}
|
|
}
|
|
|
|
// TestGappedRangeProof focuses on the small trie with embedded nodes.
|
|
// If the gapped node is embedded in the trie, it should be detected too.
|
|
func TestGappedRangeProof(t *testing.T) {
|
|
trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase(), nil))
|
|
var entries []*kv // Sorted entries
|
|
for i := byte(0); i < 10; i++ {
|
|
value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
|
|
trie.MustUpdate(value.k, value.v)
|
|
entries = append(entries, value)
|
|
}
|
|
first, last := 2, 8
|
|
proof := memorydb.New()
|
|
if err := trie.Prove(entries[first].k, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(entries[last-1].k, proof); err != nil {
|
|
t.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
var keys [][]byte
|
|
var vals [][]byte
|
|
for i := first; i < last; i++ {
|
|
if i == (first+last)/2 {
|
|
continue
|
|
}
|
|
keys = append(keys, entries[i].k)
|
|
vals = append(vals, entries[i].v)
|
|
}
|
|
_, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
|
|
if err == nil {
|
|
t.Fatal("expect error, got nil")
|
|
}
|
|
}
|
|
|
|
// TestSameSideProofs tests the element is not in the range covered by proofs
|
|
func TestSameSideProofs(t *testing.T) {
|
|
trie, vals := randomTrie(4096)
|
|
var entries []*kv
|
|
for _, kv := range vals {
|
|
entries = append(entries, kv)
|
|
}
|
|
slices.SortFunc(entries, (*kv).less)
|
|
|
|
pos := 1000
|
|
first := decreaseKey(common.CopyBytes(entries[pos].k))
|
|
first = decreaseKey(first)
|
|
last := decreaseKey(common.CopyBytes(entries[pos].k))
|
|
|
|
proof := memorydb.New()
|
|
if err := trie.Prove(first, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(last, proof); err != nil {
|
|
t.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
_, err := VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof)
|
|
if err == nil {
|
|
t.Fatalf("Expected error, got nil")
|
|
}
|
|
|
|
first = increaseKey(common.CopyBytes(entries[pos].k))
|
|
last = increaseKey(common.CopyBytes(entries[pos].k))
|
|
last = increaseKey(last)
|
|
|
|
proof = memorydb.New()
|
|
if err := trie.Prove(first, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(last, proof); err != nil {
|
|
t.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
_, err = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof)
|
|
if err == nil {
|
|
t.Fatalf("Expected error, got nil")
|
|
}
|
|
}
|
|
|
|
func TestHasRightElement(t *testing.T) {
|
|
trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase(), nil))
|
|
var entries []*kv
|
|
for i := 0; i < 4096; i++ {
|
|
value := &kv{randBytes(32), randBytes(20), false}
|
|
trie.MustUpdate(value.k, value.v)
|
|
entries = append(entries, value)
|
|
}
|
|
slices.SortFunc(entries, (*kv).less)
|
|
|
|
var cases = []struct {
|
|
start int
|
|
end int
|
|
hasMore bool
|
|
}{
|
|
{-1, 1, true}, // single element with non-existent left proof
|
|
{0, 1, true}, // single element with existent left proof
|
|
{0, 10, true},
|
|
{50, 100, true},
|
|
{50, len(entries), false}, // No more element expected
|
|
{len(entries) - 1, len(entries), false}, // Single last element with two existent proofs(point to same key)
|
|
{len(entries) - 1, -1, false}, // Single last element with non-existent right proof
|
|
{0, len(entries), false}, // The whole set with existent left proof
|
|
{-1, len(entries), false}, // The whole set with non-existent left proof
|
|
{-1, -1, false}, // The whole set with non-existent left/right proof
|
|
}
|
|
for _, c := range cases {
|
|
var (
|
|
firstKey []byte
|
|
lastKey []byte
|
|
start = c.start
|
|
end = c.end
|
|
proof = memorydb.New()
|
|
)
|
|
if c.start == -1 {
|
|
firstKey, start = common.Hash{}.Bytes(), 0
|
|
if err := trie.Prove(firstKey, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
} else {
|
|
firstKey = entries[c.start].k
|
|
if err := trie.Prove(entries[c.start].k, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
}
|
|
if c.end == -1 {
|
|
lastKey, end = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes(), len(entries)
|
|
if err := trie.Prove(lastKey, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
} else {
|
|
lastKey = entries[c.end-1].k
|
|
if err := trie.Prove(entries[c.end-1].k, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
}
|
|
k := make([][]byte, 0)
|
|
v := make([][]byte, 0)
|
|
for i := start; i < end; i++ {
|
|
k = append(k, entries[i].k)
|
|
v = append(v, entries[i].v)
|
|
}
|
|
hasMore, err := VerifyRangeProof(trie.Hash(), firstKey, lastKey, k, v, proof)
|
|
if err != nil {
|
|
t.Fatalf("Expected no error, got %v", err)
|
|
}
|
|
if hasMore != c.hasMore {
|
|
t.Fatalf("Wrong hasMore indicator, want %t, got %t", c.hasMore, hasMore)
|
|
}
|
|
}
|
|
}
|
|
|
|
// TestEmptyRangeProof tests the range proof with "no" element.
|
|
// The first edge proof must be a non-existent proof.
|
|
func TestEmptyRangeProof(t *testing.T) {
|
|
trie, vals := randomTrie(4096)
|
|
var entries []*kv
|
|
for _, kv := range vals {
|
|
entries = append(entries, kv)
|
|
}
|
|
slices.SortFunc(entries, (*kv).less)
|
|
|
|
var cases = []struct {
|
|
pos int
|
|
err bool
|
|
}{
|
|
{len(entries) - 1, false},
|
|
{500, true},
|
|
}
|
|
for _, c := range cases {
|
|
proof := memorydb.New()
|
|
first := increaseKey(common.CopyBytes(entries[c.pos].k))
|
|
if err := trie.Prove(first, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
_, err := VerifyRangeProof(trie.Hash(), first, nil, nil, nil, proof)
|
|
if c.err && err == nil {
|
|
t.Fatalf("Expected error, got nil")
|
|
}
|
|
if !c.err && err != nil {
|
|
t.Fatalf("Expected no error, got %v", err)
|
|
}
|
|
}
|
|
}
|
|
|
|
// TestBloatedProof tests a malicious proof, where the proof is more or less the
|
|
// whole trie. Previously we didn't accept such packets, but the new APIs do, so
|
|
// lets leave this test as a bit weird, but present.
|
|
func TestBloatedProof(t *testing.T) {
|
|
// Use a small trie
|
|
trie, kvs := nonRandomTrie(100)
|
|
var entries []*kv
|
|
for _, kv := range kvs {
|
|
entries = append(entries, kv)
|
|
}
|
|
slices.SortFunc(entries, (*kv).less)
|
|
var keys [][]byte
|
|
var vals [][]byte
|
|
|
|
proof := memorydb.New()
|
|
// In the 'malicious' case, we add proofs for every single item
|
|
// (but only one key/value pair used as leaf)
|
|
for i, entry := range entries {
|
|
trie.Prove(entry.k, proof)
|
|
if i == 50 {
|
|
keys = append(keys, entry.k)
|
|
vals = append(vals, entry.v)
|
|
}
|
|
}
|
|
// For reference, we use the same function, but _only_ prove the first
|
|
// and last element
|
|
want := memorydb.New()
|
|
trie.Prove(keys[0], want)
|
|
trie.Prove(keys[len(keys)-1], want)
|
|
|
|
if _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof); err != nil {
|
|
t.Fatalf("expected bloated proof to succeed, got %v", err)
|
|
}
|
|
}
|
|
|
|
// TestEmptyValueRangeProof tests normal range proof with both edge proofs
|
|
// as the existent proof, but with an extra empty value included, which is a
|
|
// noop technically, but practically should be rejected.
|
|
func TestEmptyValueRangeProof(t *testing.T) {
|
|
trie, values := randomTrie(512)
|
|
var entries []*kv
|
|
for _, kv := range values {
|
|
entries = append(entries, kv)
|
|
}
|
|
slices.SortFunc(entries, (*kv).less)
|
|
|
|
// Create a new entry with a slightly modified key
|
|
mid := len(entries) / 2
|
|
key := common.CopyBytes(entries[mid-1].k)
|
|
for n := len(key) - 1; n >= 0; n-- {
|
|
if key[n] < 0xff {
|
|
key[n]++
|
|
break
|
|
}
|
|
}
|
|
noop := &kv{key, []byte{}, false}
|
|
entries = append(append(append([]*kv{}, entries[:mid]...), noop), entries[mid:]...)
|
|
|
|
start, end := 1, len(entries)-1
|
|
|
|
proof := memorydb.New()
|
|
if err := trie.Prove(entries[start].k, proof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(entries[end-1].k, proof); err != nil {
|
|
t.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
var keys [][]byte
|
|
var vals [][]byte
|
|
for i := start; i < end; i++ {
|
|
keys = append(keys, entries[i].k)
|
|
vals = append(vals, entries[i].v)
|
|
}
|
|
_, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
|
|
if err == nil {
|
|
t.Fatalf("Expected failure on noop entry")
|
|
}
|
|
}
|
|
|
|
// TestAllElementsEmptyValueRangeProof tests the range proof with all elements,
|
|
// but with an extra empty value included, which is a noop technically, but
|
|
// practically should be rejected.
|
|
func TestAllElementsEmptyValueRangeProof(t *testing.T) {
|
|
trie, values := randomTrie(512)
|
|
var entries []*kv
|
|
for _, kv := range values {
|
|
entries = append(entries, kv)
|
|
}
|
|
slices.SortFunc(entries, (*kv).less)
|
|
|
|
// Create a new entry with a slightly modified key
|
|
mid := len(entries) / 2
|
|
key := common.CopyBytes(entries[mid-1].k)
|
|
for n := len(key) - 1; n >= 0; n-- {
|
|
if key[n] < 0xff {
|
|
key[n]++
|
|
break
|
|
}
|
|
}
|
|
noop := &kv{key, []byte{}, false}
|
|
entries = append(append(append([]*kv{}, entries[:mid]...), noop), entries[mid:]...)
|
|
|
|
var keys [][]byte
|
|
var vals [][]byte
|
|
for i := 0; i < len(entries); i++ {
|
|
keys = append(keys, entries[i].k)
|
|
vals = append(vals, entries[i].v)
|
|
}
|
|
_, err := VerifyRangeProof(trie.Hash(), nil, nil, keys, vals, nil)
|
|
if err == nil {
|
|
t.Fatalf("Expected failure on noop entry")
|
|
}
|
|
}
|
|
|
|
// mutateByte changes one byte in b.
|
|
func mutateByte(b []byte) {
|
|
for r := mrand.Intn(len(b)); ; {
|
|
new := byte(mrand.Intn(255))
|
|
if new != b[r] {
|
|
b[r] = new
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
func increaseKey(key []byte) []byte {
|
|
for i := len(key) - 1; i >= 0; i-- {
|
|
key[i]++
|
|
if key[i] != 0x0 {
|
|
break
|
|
}
|
|
}
|
|
return key
|
|
}
|
|
|
|
func decreaseKey(key []byte) []byte {
|
|
for i := len(key) - 1; i >= 0; i-- {
|
|
key[i]--
|
|
if key[i] != 0xff {
|
|
break
|
|
}
|
|
}
|
|
return key
|
|
}
|
|
|
|
func BenchmarkProve(b *testing.B) {
|
|
trie, vals := randomTrie(100)
|
|
var keys []string
|
|
for k := range vals {
|
|
keys = append(keys, k)
|
|
}
|
|
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
kv := vals[keys[i%len(keys)]]
|
|
proofs := memorydb.New()
|
|
if trie.Prove(kv.k, proofs); proofs.Len() == 0 {
|
|
b.Fatalf("zero length proof for %x", kv.k)
|
|
}
|
|
}
|
|
}
|
|
|
|
func BenchmarkVerifyProof(b *testing.B) {
|
|
trie, vals := randomTrie(100)
|
|
root := trie.Hash()
|
|
var keys []string
|
|
var proofs []*memorydb.Database
|
|
for k := range vals {
|
|
keys = append(keys, k)
|
|
proof := memorydb.New()
|
|
trie.Prove([]byte(k), proof)
|
|
proofs = append(proofs, proof)
|
|
}
|
|
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
im := i % len(keys)
|
|
if _, err := VerifyProof(root, []byte(keys[im]), proofs[im]); err != nil {
|
|
b.Fatalf("key %x: %v", keys[im], err)
|
|
}
|
|
}
|
|
}
|
|
|
|
func BenchmarkVerifyRangeProof10(b *testing.B) { benchmarkVerifyRangeProof(b, 10) }
|
|
func BenchmarkVerifyRangeProof100(b *testing.B) { benchmarkVerifyRangeProof(b, 100) }
|
|
func BenchmarkVerifyRangeProof1000(b *testing.B) { benchmarkVerifyRangeProof(b, 1000) }
|
|
func BenchmarkVerifyRangeProof5000(b *testing.B) { benchmarkVerifyRangeProof(b, 5000) }
|
|
|
|
func benchmarkVerifyRangeProof(b *testing.B, size int) {
|
|
trie, vals := randomTrie(8192)
|
|
var entries []*kv
|
|
for _, kv := range vals {
|
|
entries = append(entries, kv)
|
|
}
|
|
slices.SortFunc(entries, (*kv).less)
|
|
|
|
start := 2
|
|
end := start + size
|
|
proof := memorydb.New()
|
|
if err := trie.Prove(entries[start].k, proof); err != nil {
|
|
b.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(entries[end-1].k, proof); err != nil {
|
|
b.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
var keys [][]byte
|
|
var values [][]byte
|
|
for i := start; i < end; i++ {
|
|
keys = append(keys, entries[i].k)
|
|
values = append(values, entries[i].v)
|
|
}
|
|
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
_, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, values, proof)
|
|
if err != nil {
|
|
b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
|
|
}
|
|
}
|
|
}
|
|
|
|
func BenchmarkVerifyRangeNoProof10(b *testing.B) { benchmarkVerifyRangeNoProof(b, 100) }
|
|
func BenchmarkVerifyRangeNoProof500(b *testing.B) { benchmarkVerifyRangeNoProof(b, 500) }
|
|
func BenchmarkVerifyRangeNoProof1000(b *testing.B) { benchmarkVerifyRangeNoProof(b, 1000) }
|
|
|
|
func benchmarkVerifyRangeNoProof(b *testing.B, size int) {
|
|
trie, vals := randomTrie(size)
|
|
var entries []*kv
|
|
for _, kv := range vals {
|
|
entries = append(entries, kv)
|
|
}
|
|
slices.SortFunc(entries, (*kv).less)
|
|
|
|
var keys [][]byte
|
|
var values [][]byte
|
|
for _, entry := range entries {
|
|
keys = append(keys, entry.k)
|
|
values = append(values, entry.v)
|
|
}
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
_, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, values, nil)
|
|
if err != nil {
|
|
b.Fatalf("Expected no error, got %v", err)
|
|
}
|
|
}
|
|
}
|
|
|
|
func randomTrie(n int) (*Trie, map[string]*kv) {
|
|
trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase(), nil))
|
|
vals := make(map[string]*kv)
|
|
for i := byte(0); i < 100; i++ {
|
|
value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
|
|
value2 := &kv{common.LeftPadBytes([]byte{i + 10}, 32), []byte{i}, false}
|
|
trie.MustUpdate(value.k, value.v)
|
|
trie.MustUpdate(value2.k, value2.v)
|
|
vals[string(value.k)] = value
|
|
vals[string(value2.k)] = value2
|
|
}
|
|
for i := 0; i < n; i++ {
|
|
value := &kv{randBytes(32), randBytes(20), false}
|
|
trie.MustUpdate(value.k, value.v)
|
|
vals[string(value.k)] = value
|
|
}
|
|
return trie, vals
|
|
}
|
|
|
|
func nonRandomTrie(n int) (*Trie, map[string]*kv) {
|
|
trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase(), nil))
|
|
vals := make(map[string]*kv)
|
|
max := uint64(0xffffffffffffffff)
|
|
for i := uint64(0); i < uint64(n); i++ {
|
|
value := make([]byte, 32)
|
|
key := make([]byte, 32)
|
|
binary.LittleEndian.PutUint64(key, i)
|
|
binary.LittleEndian.PutUint64(value, i-max)
|
|
//value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
|
|
elem := &kv{key, value, false}
|
|
trie.MustUpdate(elem.k, elem.v)
|
|
vals[string(elem.k)] = elem
|
|
}
|
|
return trie, vals
|
|
}
|
|
|
|
func TestRangeProofKeysWithSharedPrefix(t *testing.T) {
|
|
keys := [][]byte{
|
|
common.Hex2Bytes("aa10000000000000000000000000000000000000000000000000000000000000"),
|
|
common.Hex2Bytes("aa20000000000000000000000000000000000000000000000000000000000000"),
|
|
}
|
|
vals := [][]byte{
|
|
common.Hex2Bytes("02"),
|
|
common.Hex2Bytes("03"),
|
|
}
|
|
trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase(), nil))
|
|
for i, key := range keys {
|
|
trie.MustUpdate(key, vals[i])
|
|
}
|
|
root := trie.Hash()
|
|
proof := memorydb.New()
|
|
start := common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000000000")
|
|
end := common.Hex2Bytes("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
|
|
if err := trie.Prove(start, proof); err != nil {
|
|
t.Fatalf("failed to prove start: %v", err)
|
|
}
|
|
if err := trie.Prove(end, proof); err != nil {
|
|
t.Fatalf("failed to prove end: %v", err)
|
|
}
|
|
|
|
more, err := VerifyRangeProof(root, start, end, keys, vals, proof)
|
|
if err != nil {
|
|
t.Fatalf("failed to verify range proof: %v", err)
|
|
}
|
|
if more != false {
|
|
t.Error("expected more to be false")
|
|
}
|
|
}
|