go-ethereum/core/txpool/blobpool/blobpool.go

1535 lines
59 KiB
Go

// Copyright 2022 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package blobpool implements the EIP-4844 blob transaction pool.
package blobpool
import (
"container/heap"
"fmt"
"math"
"math/big"
"os"
"path/filepath"
"sort"
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/consensus/misc"
"github.com/ethereum/go-ethereum/consensus/misc/eip4844"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/txpool"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto/kzg4844"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/rlp"
"github.com/holiman/billy"
"github.com/holiman/uint256"
)
const (
// blobSize is the protocol constrained byte size of a single blob in a
// transaction. There can be multiple of these embedded into a single tx.
blobSize = params.BlobTxFieldElementsPerBlob * params.BlobTxBytesPerFieldElement
// maxBlobsPerTransaction is the maximum number of blobs a single transaction
// is allowed to contain. Whilst the spec states it's unlimited, the block
// data slots are protocol bound, which implicitly also limit this.
maxBlobsPerTransaction = params.BlobTxMaxBlobGasPerBlock / params.BlobTxBlobGasPerBlob
// txAvgSize is an approximate byte size of a transaction metadata to avoid
// tiny overflows causing all txs to move a shelf higher, wasting disk space.
txAvgSize = 4 * 1024
// txMaxSize is the maximum size a single transaction can have, outside
// the included blobs. Since blob transactions are pulled instead of pushed,
// and only a small metadata is kept in ram, the rest is on disk, there is
// no critical limit that should be enforced. Still, capping it to some sane
// limit can never hurt.
txMaxSize = 1024 * 1024
// maxTxsPerAccount is the maximum number of blob transactions admitted from
// a single account. The limit is enforced to minimize the DoS potential of
// a private tx cancelling publicly propagated blobs.
//
// Note, transactions resurrected by a reorg are also subject to this limit,
// so pushing it down too aggressively might make resurrections non-functional.
maxTxsPerAccount = 16
// pendingTransactionStore is the subfolder containing the currently queued
// blob transactions.
pendingTransactionStore = "queue"
// limboedTransactionStore is the subfolder containing the currently included
// but not yet finalized transaction blobs.
limboedTransactionStore = "limbo"
)
// blobTx is a wrapper around types.BlobTx which also contains the literal blob
// data along with all the transaction metadata.
type blobTx struct {
Tx *types.Transaction
Blobs []kzg4844.Blob
Commits []kzg4844.Commitment
Proofs []kzg4844.Proof
}
// blobTxMeta is the minimal subset of types.BlobTx necessary to validate and
// schedule the blob transactions into the following blocks. Only ever add the
// bare minimum needed fields to keep the size down (and thus number of entries
// larger with the same memory consumption).
type blobTxMeta struct {
hash common.Hash // Transaction hash to maintain the lookup table
id uint64 // Storage ID in the pool's persistent store
size uint32 // Byte size in the pool's persistent store
nonce uint64 // Needed to prioritize inclusion order within an account
costCap *uint256.Int // Needed to validate cumulative balance sufficiency
execTipCap *uint256.Int // Needed to prioritize inclusion order across accounts and validate replacement price bump
execFeeCap *uint256.Int // Needed to validate replacement price bump
blobFeeCap *uint256.Int // Needed to validate replacement price bump
basefeeJumps float64 // Absolute number of 1559 fee adjustments needed to reach the tx's fee cap
blobfeeJumps float64 // Absolute number of 4844 fee adjustments needed to reach the tx's blob fee cap
evictionExecTip *uint256.Int // Worst gas tip across all previous nonces
evictionExecFeeJumps float64 // Worst base fee (converted to fee jumps) across all previous nonces
evictionBlobFeeJumps float64 // Worse blob fee (converted to fee jumps) across all previous nonces
}
// newBlobTxMeta retrieves the indexed metadata fields from a blob transaction
// and assembles a helper struct to track in memory.
func newBlobTxMeta(id uint64, size uint32, tx *types.Transaction) *blobTxMeta {
meta := &blobTxMeta{
hash: tx.Hash(),
id: id,
size: size,
nonce: tx.Nonce(),
costCap: uint256.MustFromBig(tx.Cost()),
execTipCap: uint256.MustFromBig(tx.GasTipCap()),
execFeeCap: uint256.MustFromBig(tx.GasFeeCap()),
blobFeeCap: uint256.MustFromBig(tx.BlobGasFeeCap()),
}
meta.basefeeJumps = dynamicFeeJumps(meta.execFeeCap)
meta.blobfeeJumps = dynamicFeeJumps(meta.blobFeeCap)
return meta
}
// BlobPool is the transaction pool dedicated to EIP-4844 blob transactions.
//
// Blob transactions are special snowflakes that are designed for a very specific
// purpose (rollups) and are expected to adhere to that specific use case. These
// behavioural expectations allow us to design a transaction pool that is more robust
// (i.e. resending issues) and more resilient to DoS attacks (e.g. replace-flush
// attacks) than the generic tx pool. These improvements will also mean, however,
// that we enforce a significantly more aggressive strategy on entering and exiting
// the pool:
//
// - Blob transactions are large. With the initial design aiming for 128KB blobs,
// we must ensure that these only traverse the network the absolute minimum
// number of times. Broadcasting to sqrt(peers) is out of the question, rather
// these should only ever be announced and the remote side should request it if
// it wants to.
//
// - Block blob-space is limited. With blocks being capped to a few blob txs, we
// can make use of the very low expected churn rate within the pool. Notably,
// we should be able to use a persistent disk backend for the pool, solving
// the tx resend issue that plagues the generic tx pool, as long as there's no
// artificial churn (i.e. pool wars).
//
// - Purpose of blobs are layer-2s. Layer-2s are meant to use blob transactions to
// commit to their own current state, which is independent of Ethereum mainnet
// (state, txs). This means that there's no reason for blob tx cancellation or
// replacement, apart from a potential basefee / miner tip adjustment.
//
// - Replacements are expensive. Given their size, propagating a replacement
// blob transaction to an existing one should be aggressively discouraged.
// Whilst generic transactions can start at 1 Wei gas cost and require a 10%
// fee bump to replace, we suggest requiring a higher min cost (e.g. 1 gwei)
// and a more aggressive bump (100%).
//
// - Cancellation is prohibitive. Evicting an already propagated blob tx is a huge
// DoS vector. As such, a) replacement (higher-fee) blob txs mustn't invalidate
// already propagated (future) blob txs (cumulative fee); b) nonce-gapped blob
// txs are disallowed; c) the presence of blob transactions exclude non-blob
// transactions.
//
// - Malicious cancellations are possible. Although the pool might prevent txs
// that cancel blobs, blocks might contain such transaction (malicious miner
// or flashbotter). The pool should cap the total number of blob transactions
// per account as to prevent propagating too much data before cancelling it
// via a normal transaction. It should nonetheless be high enough to support
// resurrecting reorged transactions. Perhaps 4-16.
//
// - Local txs are meaningless. Mining pools historically used local transactions
// for payouts or for backdoor deals. With 1559 in place, the basefee usually
// dominates the final price, so 0 or non-0 tip doesn't change much. Blob txs
// retain the 1559 2D gas pricing (and introduce on top a dynamic data gas fee),
// so locality is moot. With a disk backed blob pool avoiding the resend issue,
// there's also no need to save own transactions for later.
//
// - No-blob blob-txs are bad. Theoretically there's no strong reason to disallow
// blob txs containing 0 blobs. In practice, admitting such txs into the pool
// breaks the low-churn invariant as blob constraints don't apply anymore. Even
// though we could accept blocks containing such txs, a reorg would require moving
// them back into the blob pool, which can break invariants.
//
// - Dropping blobs needs delay. When normal transactions are included, they
// are immediately evicted from the pool since they are contained in the
// including block. Blobs however are not included in the execution chain,
// so a mini reorg cannot re-pool "lost" blob transactions. To support reorgs,
// blobs are retained on disk until they are finalised.
//
// - Blobs can arrive via flashbots. Blocks might contain blob transactions we
// have never seen on the network. Since we cannot recover them from blocks
// either, the engine_newPayload needs to give them to us, and we cache them
// until finality to support reorgs without tx losses.
//
// Whilst some constraints above might sound overly aggressive, the general idea is
// that the blob pool should work robustly for its intended use case and whilst
// anyone is free to use blob transactions for arbitrary non-rollup use cases,
// they should not be allowed to run amok the network.
//
// Implementation wise there are a few interesting design choices:
//
// - Adding a transaction to the pool blocks until persisted to disk. This is
// viable because TPS is low (2-4 blobs per block initially, maybe 8-16 at
// peak), so natural churn is a couple MB per block. Replacements doing O(n)
// updates are forbidden and transaction propagation is pull based (i.e. no
// pileup of pending data).
//
// - When transactions are chosen for inclusion, the primary criteria is the
// signer tip (and having a basefee/data fee high enough of course). However,
// same-tip transactions will be split by their basefee/datafee, preferring
// those that are closer to the current network limits. The idea being that
// very relaxed ones can be included even if the fees go up, when the closer
// ones could already be invalid.
//
// When the pool eventually reaches saturation, some old transactions - that may
// never execute - will need to be evicted in favor of newer ones. The eviction
// strategy is quite complex:
//
// - Exceeding capacity evicts the highest-nonce of the account with the lowest
// paying blob transaction anywhere in the pooled nonce-sequence, as that tx
// would be executed the furthest in the future and is thus blocking anything
// after it. The smallest is deliberately not evicted to avoid a nonce-gap.
//
// - Analogously, if the pool is full, the consideration price of a new tx for
// evicting an old one is the smallest price in the entire nonce-sequence of
// the account. This avoids malicious users DoSing the pool with seemingly
// high paying transactions hidden behind a low-paying blocked one.
//
// - Since blob transactions have 3 price parameters: execution tip, execution
// fee cap and data fee cap, there's no singular parameter to create a total
// price ordering on. What's more, since the base fee and blob fee can move
// independently of one another, there's no pre-defined way to combine them
// into a stable order either. This leads to a multi-dimensional problem to
// solve after every block.
//
// - The first observation is that comparing 1559 base fees or 4844 blob fees
// needs to happen in the context of their dynamism. Since these fees jump
// up or down in ~1.125 multipliers (at max) across blocks, comparing fees
// in two transactions should be based on log1.125(fee) to eliminate noise.
//
// - The second observation is that the basefee and blobfee move independently,
// so there's no way to split mixed txs on their own (A has higher base fee,
// B has higher blob fee). Rather than look at the absolute fees, the useful
// metric is the max time it can take to exceed the transaction's fee caps.
// Specifically, we're interested in the number of jumps needed to go from
// the current fee to the transaction's cap:
//
// jumps = log1.125(txfee) - log1.125(basefee)
//
// - The third observation is that the base fee tends to hover around rather
// than swing wildly. The number of jumps needed from the current fee starts
// to get less relevant the higher it is. To remove the noise here too, the
// pool will use log(jumps) as the delta for comparing transactions.
//
// delta = sign(jumps) * log(abs(jumps))
//
// - To establish a total order, we need to reduce the dimensionality of the
// two base fees (log jumps) to a single value. The interesting aspect from
// the pool's perspective is how fast will a tx get executable (fees going
// down, crossing the smaller negative jump counter) or non-executable (fees
// going up, crossing the smaller positive jump counter). As such, the pool
// cares only about the min of the two delta values for eviction priority.
//
// priority = min(delta-basefee, delta-blobfee)
//
// - The above very aggressive dimensionality and noise reduction should result
// in transaction being grouped into a small number of buckets, the further
// the fees the larger the buckets. This is good because it allows us to use
// the miner tip meaningfully as a splitter.
//
// - For the scenario where the pool does not contain non-executable blob txs
// anymore, it does not make sense to grant a later eviction priority to txs
// with high fee caps since it could enable pool wars. As such, any positive
// priority will be grouped together.
//
// priority = min(delta-basefee, delta-blobfee, 0)
//
// Optimisation tradeoffs:
//
// - Eviction relies on 3 fee minimums per account (exec tip, exec cap and blob
// cap). Maintaining these values across all transactions from the account is
// problematic as each transaction replacement or inclusion would require a
// rescan of all other transactions to recalculate the minimum. Instead, the
// pool maintains a rolling minimum across the nonce range. Updating all the
// minimums will need to be done only starting at the swapped in/out nonce
// and leading up to the first no-change.
type BlobPool struct {
config Config // Pool configuration
reserve txpool.AddressReserver // Address reserver to ensure exclusivity across subpools
store billy.Database // Persistent data store for the tx metadata and blobs
stored uint64 // Useful data size of all transactions on disk
limbo *limbo // Persistent data store for the non-finalized blobs
signer types.Signer // Transaction signer to use for sender recovery
chain BlockChain // Chain object to access the state through
head *types.Header // Current head of the chain
state *state.StateDB // Current state at the head of the chain
gasTip *uint256.Int // Currently accepted minimum gas tip
lookup map[common.Hash]uint64 // Lookup table mapping hashes to tx billy entries
index map[common.Address][]*blobTxMeta // Blob transactions grouped by accounts, sorted by nonce
spent map[common.Address]*uint256.Int // Expenditure tracking for individual accounts
evict *evictHeap // Heap of cheapest accounts for eviction when full
eventFeed event.Feed // Event feed to send out new tx events on pool inclusion
eventScope event.SubscriptionScope // Event scope to track and mass unsubscribe on termination
lock sync.RWMutex // Mutex protecting the pool during reorg handling
}
// New creates a new blob transaction pool to gather, sort and filter inbound
// blob transactions from the network.
func New(config Config, chain BlockChain) *BlobPool {
// Sanitize the input to ensure no vulnerable gas prices are set
config = (&config).sanitize()
// Create the transaction pool with its initial settings
return &BlobPool{
config: config,
signer: types.LatestSigner(chain.Config()),
chain: chain,
lookup: make(map[common.Hash]uint64),
index: make(map[common.Address][]*blobTxMeta),
spent: make(map[common.Address]*uint256.Int),
}
}
// Filter returns whether the given transaction can be consumed by the blob pool.
func (p *BlobPool) Filter(tx *types.Transaction) bool {
return tx.Type() == types.BlobTxType
}
// Init sets the gas price needed to keep a transaction in the pool and the chain
// head to allow balance / nonce checks. The transaction journal will be loaded
// from disk and filtered based on the provided starting settings.
func (p *BlobPool) Init(gasTip *big.Int, head *types.Header, reserve txpool.AddressReserver) error {
p.reserve = reserve
var (
queuedir string
limbodir string
)
if p.config.Datadir != "" {
queuedir = filepath.Join(p.config.Datadir, pendingTransactionStore)
if err := os.MkdirAll(queuedir, 0700); err != nil {
return err
}
limbodir = filepath.Join(p.config.Datadir, limboedTransactionStore)
if err := os.MkdirAll(limbodir, 0700); err != nil {
return err
}
}
state, err := p.chain.StateAt(head.Root)
if err != nil {
return err
}
p.head, p.state = head, state
// Index all transactions on disk and delete anything inprocessable
var fails []uint64
index := func(id uint64, size uint32, blob []byte) {
if p.parseTransaction(id, size, blob) != nil {
fails = append(fails, id)
}
}
store, err := billy.Open(billy.Options{Path: queuedir}, newSlotter(), index)
if err != nil {
return err
}
p.store = store
if len(fails) > 0 {
log.Warn("Dropping invalidated blob transactions", "ids", fails)
for _, id := range fails {
if err := p.store.Delete(id); err != nil {
p.Close()
return err
}
}
}
// Sort the indexed transactions by nonce and delete anything gapped, create
// the eviction heap of anyone still standing
for addr := range p.index {
p.recheck(addr, nil)
}
var (
basefee = uint256.MustFromBig(misc.CalcBaseFee(p.chain.Config(), p.head))
blobfee = uint256.MustFromBig(big.NewInt(params.BlobTxMinBlobGasprice))
)
if p.head.ExcessBlobGas != nil {
blobfee = uint256.MustFromBig(eip4844.CalcBlobFee(*p.head.ExcessBlobGas))
}
p.evict = newPriceHeap(basefee, blobfee, &p.index)
// Pool initialized, attach the blob limbo to it to track blobs included
// recently but not yet finalized
p.limbo, err = newLimbo(limbodir)
if err != nil {
p.Close()
return err
}
// Set the configured gas tip, triggering a filtering of anything just loaded
basefeeGauge.Update(int64(basefee.Uint64()))
blobfeeGauge.Update(int64(blobfee.Uint64()))
p.SetGasTip(gasTip)
// Since the user might have modified their pool's capacity, evict anything
// above the current allowance
for p.stored > p.config.Datacap {
p.drop()
}
// Update the metrics and return the constructed pool
datacapGauge.Update(int64(p.config.Datacap))
p.updateStorageMetrics()
return nil
}
// Close closes down the underlying persistent store.
func (p *BlobPool) Close() error {
var errs []error
if err := p.limbo.Close(); err != nil {
errs = append(errs, err)
}
if err := p.store.Close(); err != nil {
errs = append(errs, err)
}
p.eventScope.Close()
switch {
case errs == nil:
return nil
case len(errs) == 1:
return errs[0]
default:
return fmt.Errorf("%v", errs)
}
}
// parseTransaction is a callback method on pool creation that gets called for
// each transaction on disk to create the in-memory metadata index.
func (p *BlobPool) parseTransaction(id uint64, size uint32, blob []byte) error {
item := new(blobTx)
if err := rlp.DecodeBytes(blob, item); err != nil {
// This path is impossible unless the disk data representation changes
// across restarts. For that ever unprobable case, recover gracefully
// by ignoring this data entry.
log.Error("Failed to decode blob pool entry", "id", id, "err", err)
return err
}
meta := newBlobTxMeta(id, size, item.Tx)
sender, err := p.signer.Sender(item.Tx)
if err != nil {
// This path is impossible unless the signature validity changes across
// restarts. For that ever unprobable case, recover gracefully by ignoring
// this data entry.
log.Error("Failed to recover blob tx sender", "id", id, "hash", item.Tx.Hash(), "err", err)
return err
}
if _, ok := p.index[sender]; !ok {
if err := p.reserve(sender, true); err != nil {
return err
}
p.index[sender] = []*blobTxMeta{}
p.spent[sender] = new(uint256.Int)
}
p.index[sender] = append(p.index[sender], meta)
p.spent[sender] = new(uint256.Int).Add(p.spent[sender], meta.costCap)
p.lookup[meta.hash] = meta.id
p.stored += uint64(meta.size)
return nil
}
// recheck verifies the pool's content for a specific account and drops anything
// that does not fit anymore (dangling or filled nonce, overdraft).
func (p *BlobPool) recheck(addr common.Address, inclusions map[common.Hash]uint64) {
// Sort the transactions belonging to the account so reinjects can be simpler
txs := p.index[addr]
if inclusions != nil && txs == nil { // during reorgs, we might find new accounts
return
}
sort.Slice(txs, func(i, j int) bool {
return txs[i].nonce < txs[j].nonce
})
// If there is a gap between the chain state and the blob pool, drop
// all the transactions as they are non-executable. Similarly, if the
// entire tx range was included, drop all.
var (
next = p.state.GetNonce(addr)
gapped = txs[0].nonce > next
filled = txs[len(txs)-1].nonce < next
)
if gapped || filled {
var (
ids []uint64
nonces []uint64
)
for i := 0; i < len(txs); i++ {
ids = append(ids, txs[i].id)
nonces = append(nonces, txs[i].nonce)
p.stored -= uint64(txs[i].size)
delete(p.lookup, txs[i].hash)
// Included transactions blobs need to be moved to the limbo
if filled && inclusions != nil {
p.offload(addr, txs[i].nonce, txs[i].id, inclusions)
}
}
delete(p.index, addr)
delete(p.spent, addr)
if inclusions != nil { // only during reorgs will the heap will be initialized
heap.Remove(p.evict, p.evict.index[addr])
}
p.reserve(addr, false)
if gapped {
log.Warn("Dropping dangling blob transactions", "from", addr, "missing", next, "drop", nonces, "ids", ids)
} else {
log.Trace("Dropping filled blob transactions", "from", addr, "filled", nonces, "ids", ids)
}
for _, id := range ids {
if err := p.store.Delete(id); err != nil {
log.Error("Failed to delete blob transaction", "from", addr, "id", id, "err", err)
}
}
return
}
// If there is overlap between the chain state and the blob pool, drop
// anything below the current state
if txs[0].nonce < next {
var (
ids []uint64
nonces []uint64
)
for txs[0].nonce < next {
ids = append(ids, txs[0].id)
nonces = append(nonces, txs[0].nonce)
p.spent[addr] = new(uint256.Int).Sub(p.spent[addr], txs[0].costCap)
p.stored -= uint64(txs[0].size)
delete(p.lookup, txs[0].hash)
// Included transactions blobs need to be moved to the limbo
if inclusions != nil {
p.offload(addr, txs[0].nonce, txs[0].id, inclusions)
}
txs = txs[1:]
}
log.Trace("Dropping overlapped blob transactions", "from", addr, "overlapped", nonces, "ids", ids, "left", len(txs))
for _, id := range ids {
if err := p.store.Delete(id); err != nil {
log.Error("Failed to delete blob transaction", "from", addr, "id", id, "err", err)
}
}
p.index[addr] = txs
}
// Iterate over the transactions to initialize their eviction thresholds
// and to detect any nonce gaps
txs[0].evictionExecTip = txs[0].execTipCap
txs[0].evictionExecFeeJumps = txs[0].basefeeJumps
txs[0].evictionBlobFeeJumps = txs[0].blobfeeJumps
for i := 1; i < len(txs); i++ {
// If there's no nonce gap, initialize the evicion thresholds as the
// minimum between the cumulative thresholds and the current tx fees
if txs[i].nonce == txs[i-1].nonce+1 {
txs[i].evictionExecTip = txs[i-1].evictionExecTip
if txs[i].evictionExecTip.Cmp(txs[i].execTipCap) > 0 {
txs[i].evictionExecTip = txs[i].execTipCap
}
txs[i].evictionExecFeeJumps = txs[i-1].evictionExecFeeJumps
if txs[i].evictionExecFeeJumps > txs[i].basefeeJumps {
txs[i].evictionExecFeeJumps = txs[i].basefeeJumps
}
txs[i].evictionBlobFeeJumps = txs[i-1].evictionBlobFeeJumps
if txs[i].evictionBlobFeeJumps > txs[i].blobfeeJumps {
txs[i].evictionBlobFeeJumps = txs[i].blobfeeJumps
}
continue
}
// Sanity check that there's no double nonce. This case would be a coding
// error, but better know about it
if txs[i].nonce == txs[i-1].nonce {
log.Error("Duplicate nonce blob transaction", "from", addr, "nonce", txs[i].nonce)
}
// Otherwise if there's a nonce gap evict all later transactions
var (
ids []uint64
nonces []uint64
)
for j := i; j < len(txs); j++ {
ids = append(ids, txs[j].id)
nonces = append(nonces, txs[j].nonce)
p.spent[addr] = new(uint256.Int).Sub(p.spent[addr], txs[j].costCap)
p.stored -= uint64(txs[j].size)
delete(p.lookup, txs[j].hash)
}
txs = txs[:i]
log.Error("Dropping gapped blob transactions", "from", addr, "missing", txs[i-1].nonce+1, "drop", nonces, "ids", ids)
for _, id := range ids {
if err := p.store.Delete(id); err != nil {
log.Error("Failed to delete blob transaction", "from", addr, "id", id, "err", err)
}
}
p.index[addr] = txs
break
}
// Ensure that there's no over-draft, this is expected to happen when some
// transactions get included without publishing on the network
var (
balance = uint256.MustFromBig(p.state.GetBalance(addr))
spent = p.spent[addr]
)
if spent.Cmp(balance) > 0 {
// Evict the highest nonce transactions until the pending set falls under
// the account's available balance
var (
ids []uint64
nonces []uint64
)
for p.spent[addr].Cmp(balance) > 0 {
last := txs[len(txs)-1]
txs[len(txs)-1] = nil
txs = txs[:len(txs)-1]
ids = append(ids, last.id)
nonces = append(nonces, last.nonce)
p.spent[addr] = new(uint256.Int).Sub(p.spent[addr], last.costCap)
p.stored -= uint64(last.size)
delete(p.lookup, last.hash)
}
if len(txs) == 0 {
delete(p.index, addr)
delete(p.spent, addr)
if inclusions != nil { // only during reorgs will the heap will be initialized
heap.Remove(p.evict, p.evict.index[addr])
}
p.reserve(addr, false)
} else {
p.index[addr] = txs
}
log.Warn("Dropping overdrafted blob transactions", "from", addr, "balance", balance, "spent", spent, "drop", nonces, "ids", ids)
for _, id := range ids {
if err := p.store.Delete(id); err != nil {
log.Error("Failed to delete blob transaction", "from", addr, "id", id, "err", err)
}
}
}
// Sanity check that no account can have more queued transactions than the
// DoS protection threshold.
if len(txs) > maxTxsPerAccount {
// Evict the highest nonce transactions until the pending set falls under
// the account's transaction cap
var (
ids []uint64
nonces []uint64
)
for len(txs) > maxTxsPerAccount {
last := txs[len(txs)-1]
txs[len(txs)-1] = nil
txs = txs[:len(txs)-1]
ids = append(ids, last.id)
nonces = append(nonces, last.nonce)
p.spent[addr] = new(uint256.Int).Sub(p.spent[addr], last.costCap)
p.stored -= uint64(last.size)
delete(p.lookup, last.hash)
}
p.index[addr] = txs
log.Warn("Dropping overcapped blob transactions", "from", addr, "kept", len(txs), "drop", nonces, "ids", ids)
for _, id := range ids {
if err := p.store.Delete(id); err != nil {
log.Error("Failed to delete blob transaction", "from", addr, "id", id, "err", err)
}
}
}
// Included cheap transactions might have left the remaining ones better from
// an eviction point, fix any potential issues in the heap.
if _, ok := p.index[addr]; ok && inclusions != nil {
heap.Fix(p.evict, p.evict.index[addr])
}
}
// offload removes a tracked blob transaction from the pool and moves it into the
// limbo for tracking until finality.
//
// The method may log errors for various unexpcted scenarios but will not return
// any of it since there's no clear error case. Some errors may be due to coding
// issues, others caused by signers mining MEV stuff or swapping transactions. In
// all cases, the pool needs to continue operating.
func (p *BlobPool) offload(addr common.Address, nonce uint64, id uint64, inclusions map[common.Hash]uint64) {
data, err := p.store.Get(id)
if err != nil {
log.Error("Blobs missing for included transaction", "from", addr, "nonce", nonce, "id", id, "err", err)
return
}
item := new(blobTx)
if err = rlp.DecodeBytes(data, item); err != nil {
log.Error("Blobs corrupted for included transaction", "from", addr, "nonce", nonce, "id", id, "err", err)
return
}
block, ok := inclusions[item.Tx.Hash()]
if !ok {
log.Warn("Blob transaction swapped out by signer", "from", addr, "nonce", nonce, "id", id)
return
}
if err := p.limbo.push(item.Tx.Hash(), block, item.Blobs, item.Commits, item.Proofs); err != nil {
log.Warn("Failed to offload blob tx into limbo", "err", err)
return
}
}
// Reset implements txpool.SubPool, allowing the blob pool's internal state to be
// kept in sync with the main transacion pool's internal state.
func (p *BlobPool) Reset(oldHead, newHead *types.Header) {
waitStart := time.Now()
p.lock.Lock()
resetwaitHist.Update(time.Since(waitStart).Nanoseconds())
defer p.lock.Unlock()
defer func(start time.Time) {
resettimeHist.Update(time.Since(start).Nanoseconds())
}(time.Now())
statedb, err := p.chain.StateAt(newHead.Root)
if err != nil {
log.Error("Failed to reset blobpool state", "err", err)
return
}
p.head = newHead
p.state = statedb
// Run the reorg between the old and new head and figure out which accounts
// need to be rechecked and which transactions need to be readded
if reinject, inclusions := p.reorg(oldHead, newHead); reinject != nil {
for addr, txs := range reinject {
// Blindly push all the lost transactions back into the pool
for _, tx := range txs {
p.reinject(addr, tx)
}
// Recheck the account's pooled transactions to drop included and
// invalidated one
p.recheck(addr, inclusions)
}
}
// Flush out any blobs from limbo that are older than the latest finality
p.limbo.finalize(p.chain.CurrentFinalBlock())
// Reset the price heap for the new set of basefee/blobfee pairs
var (
basefee = uint256.MustFromBig(misc.CalcBaseFee(p.chain.Config(), newHead))
blobfee = uint256.MustFromBig(big.NewInt(params.BlobTxMinBlobGasprice))
)
if newHead.ExcessBlobGas != nil {
blobfee = uint256.MustFromBig(eip4844.CalcBlobFee(*newHead.ExcessBlobGas))
}
p.evict.reinit(basefee, blobfee, false)
basefeeGauge.Update(int64(basefee.Uint64()))
blobfeeGauge.Update(int64(blobfee.Uint64()))
p.updateStorageMetrics()
}
// reorg assembles all the transactors and missing transactions between an old
// and new head to figure out which account's tx set needs to be rechecked and
// which transactions need to be requeued.
//
// The transactionblock inclusion infos are also returned to allow tracking any
// just-included blocks by block number in the limbo.
func (p *BlobPool) reorg(oldHead, newHead *types.Header) (map[common.Address][]*types.Transaction, map[common.Hash]uint64) {
// If the pool was not yet initialized, don't do anything
if oldHead == nil {
return nil, nil
}
// If the reorg is too deep, avoid doing it (will happen during snap sync)
oldNum := oldHead.Number.Uint64()
newNum := newHead.Number.Uint64()
if depth := uint64(math.Abs(float64(oldNum) - float64(newNum))); depth > 64 {
return nil, nil
}
// Reorg seems shallow enough to pull in all transactions into memory
var (
transactors = make(map[common.Address]struct{})
discarded = make(map[common.Address][]*types.Transaction)
included = make(map[common.Address][]*types.Transaction)
inclusions = make(map[common.Hash]uint64)
rem = p.chain.GetBlock(oldHead.Hash(), oldHead.Number.Uint64())
add = p.chain.GetBlock(newHead.Hash(), newHead.Number.Uint64())
)
if add == nil {
// if the new head is nil, it means that something happened between
// the firing of newhead-event and _now_: most likely a
// reorg caused by sync-reversion or explicit sethead back to an
// earlier block.
log.Warn("Blobpool reset with missing new head", "number", newHead.Number, "hash", newHead.Hash())
return nil, nil
}
if rem == nil {
// This can happen if a setHead is performed, where we simply discard
// the old head from the chain. If that is the case, we don't have the
// lost transactions anymore, and there's nothing to add.
if newNum >= oldNum {
// If we reorged to a same or higher number, then it's not a case
// of setHead
log.Warn("Blobpool reset with missing old head",
"old", oldHead.Hash(), "oldnum", oldNum, "new", newHead.Hash(), "newnum", newNum)
return nil, nil
}
// If the reorg ended up on a lower number, it's indicative of setHead
// being the cause
log.Debug("Skipping blobpool reset caused by setHead",
"old", oldHead.Hash(), "oldnum", oldNum, "new", newHead.Hash(), "newnum", newNum)
return nil, nil
}
// Both old and new blocks exist, traverse through the progression chain
// and accumulate the transactors and transactions
for rem.NumberU64() > add.NumberU64() {
for _, tx := range rem.Transactions() {
from, _ := p.signer.Sender(tx)
discarded[from] = append(discarded[from], tx)
transactors[from] = struct{}{}
}
if rem = p.chain.GetBlock(rem.ParentHash(), rem.NumberU64()-1); rem == nil {
log.Error("Unrooted old chain seen by blobpool", "block", oldHead.Number, "hash", oldHead.Hash())
return nil, nil
}
}
for add.NumberU64() > rem.NumberU64() {
for _, tx := range add.Transactions() {
from, _ := p.signer.Sender(tx)
included[from] = append(included[from], tx)
inclusions[tx.Hash()] = add.NumberU64()
transactors[from] = struct{}{}
}
if add = p.chain.GetBlock(add.ParentHash(), add.NumberU64()-1); add == nil {
log.Error("Unrooted new chain seen by blobpool", "block", newHead.Number, "hash", newHead.Hash())
return nil, nil
}
}
for rem.Hash() != add.Hash() {
for _, tx := range rem.Transactions() {
from, _ := p.signer.Sender(tx)
discarded[from] = append(discarded[from], tx)
transactors[from] = struct{}{}
}
if rem = p.chain.GetBlock(rem.ParentHash(), rem.NumberU64()-1); rem == nil {
log.Error("Unrooted old chain seen by blobpool", "block", oldHead.Number, "hash", oldHead.Hash())
return nil, nil
}
for _, tx := range add.Transactions() {
from, _ := p.signer.Sender(tx)
included[from] = append(included[from], tx)
inclusions[tx.Hash()] = add.NumberU64()
transactors[from] = struct{}{}
}
if add = p.chain.GetBlock(add.ParentHash(), add.NumberU64()-1); add == nil {
log.Error("Unrooted new chain seen by blobpool", "block", newHead.Number, "hash", newHead.Hash())
return nil, nil
}
}
// Generate the set of transactions per address to pull back into the pool,
// also updating the rest along the way
reinject := make(map[common.Address][]*types.Transaction)
for addr := range transactors {
// Generate the set that was lost to reinject into the pool
lost := make([]*types.Transaction, 0, len(discarded[addr]))
for _, tx := range types.TxDifference(discarded[addr], included[addr]) {
if p.Filter(tx) {
lost = append(lost, tx)
}
}
reinject[addr] = lost
// Update the set that was already reincluded to track the blocks in limbo
for _, tx := range types.TxDifference(included[addr], discarded[addr]) {
if p.Filter(tx) {
p.limbo.update(tx.Hash(), inclusions[tx.Hash()])
}
}
}
return reinject, inclusions
}
// reinject blindly pushes a transaction previously included in the chain - and
// just reorged out - into the pool. The transaction is assumed valid (having
// been in the chain), thus the only validation needed is nonce sorting and over-
// draft checks after injection.
//
// Note, the method will not initialize the eviction cache values as those will
// be done once for all transactions belonging to an account after all individual
// transactions are injected back into the pool.
func (p *BlobPool) reinject(addr common.Address, tx *types.Transaction) {
// Retrieve the associated blob from the limbo. Without the blobs, we cannot
// add the transaction back into the pool as it is not mineable.
blobs, commits, proofs, err := p.limbo.pull(tx.Hash())
if err != nil {
log.Error("Blobs unavailable, dropping reorged tx", "err", err)
return
}
// Serialize the transaction back into the primary datastore
blob, err := rlp.EncodeToBytes(&blobTx{Tx: tx, Blobs: blobs, Commits: commits, Proofs: proofs})
if err != nil {
log.Error("Failed to encode transaction for storage", "hash", tx.Hash(), "err", err)
return
}
id, err := p.store.Put(blob)
if err != nil {
log.Error("Failed to write transaction into storage", "hash", tx.Hash(), "err", err)
return
}
// Update the indixes and metrics
meta := newBlobTxMeta(id, p.store.Size(id), tx)
if _, ok := p.index[addr]; !ok {
if err := p.reserve(addr, true); err != nil {
log.Warn("Failed to reserve account for blob pool", "tx", tx.Hash(), "from", addr, "err", err)
return
}
p.index[addr] = []*blobTxMeta{meta}
p.spent[addr] = meta.costCap
p.evict.Push(addr)
} else {
p.index[addr] = append(p.index[addr], meta)
p.spent[addr] = new(uint256.Int).Add(p.spent[addr], meta.costCap)
}
p.lookup[meta.hash] = meta.id
p.stored += uint64(meta.size)
}
// SetGasTip implements txpool.SubPool, allowing the blob pool's gas requirements
// to be kept in sync with the main transacion pool's gas requirements.
func (p *BlobPool) SetGasTip(tip *big.Int) {
p.lock.Lock()
defer p.lock.Unlock()
// Store the new minimum gas tip
old := p.gasTip
p.gasTip = uint256.MustFromBig(tip)
// If the min miner fee increased, remove transactions below the new threshold
if old == nil || p.gasTip.Cmp(old) > 0 {
for addr, txs := range p.index {
for i, tx := range txs {
if tx.execTipCap.Cmp(p.gasTip) < 0 {
// Drop the offending transaction
var (
ids = []uint64{tx.id}
nonces = []uint64{tx.nonce}
)
p.spent[addr] = new(uint256.Int).Sub(p.spent[addr], txs[i].costCap)
p.stored -= uint64(tx.size)
delete(p.lookup, tx.hash)
txs[i] = nil
// Drop everything afterwards, no gaps allowed
for j, tx := range txs[i+1:] {
ids = append(ids, tx.id)
nonces = append(nonces, tx.nonce)
p.spent[addr] = new(uint256.Int).Sub(p.spent[addr], tx.costCap)
p.stored -= uint64(tx.size)
delete(p.lookup, tx.hash)
txs[i+1+j] = nil
}
// Clear out the dropped transactions from the index
if i > 0 {
p.index[addr] = txs[:i]
heap.Fix(p.evict, p.evict.index[addr])
} else {
delete(p.index, addr)
delete(p.spent, addr)
heap.Remove(p.evict, p.evict.index[addr])
p.reserve(addr, false)
}
// Clear out the transactions from the data store
log.Warn("Dropping underpriced blob transaction", "from", addr, "rejected", tx.nonce, "tip", tx.execTipCap, "want", tip, "drop", nonces, "ids", ids)
for _, id := range ids {
if err := p.store.Delete(id); err != nil {
log.Error("Failed to delete dropped transaction", "id", id, "err", err)
}
}
break
}
}
}
}
log.Debug("Blobpool tip threshold updated", "tip", tip)
pooltipGauge.Update(tip.Int64())
p.updateStorageMetrics()
}
// validateTx checks whether a transaction is valid according to the consensus
// rules and adheres to some heuristic limits of the local node (price and size).
func (p *BlobPool) validateTx(tx *types.Transaction, blobs []kzg4844.Blob, commits []kzg4844.Commitment, proofs []kzg4844.Proof) error {
// Ensure the transaction adheres to basic pool filters (type, size, tip) and
// consensus rules
baseOpts := &txpool.ValidationOptions{
Config: p.chain.Config(),
Accept: 1 << types.BlobTxType,
MaxSize: txMaxSize,
MinTip: p.gasTip.ToBig(),
}
if err := txpool.ValidateTransaction(tx, blobs, commits, proofs, p.head, p.signer, baseOpts); err != nil {
return err
}
// Ensure the transaction adheres to the stateful pool filters (nonce, balance)
stateOpts := &txpool.ValidationOptionsWithState{
State: p.state,
FirstNonceGap: func(addr common.Address) uint64 {
// Nonce gaps are not permitted in the blob pool, the first gap will
// be the next nonce shifted by however many transactions we already
// have pooled.
return p.state.GetNonce(addr) + uint64(len(p.index[addr]))
},
UsedAndLeftSlots: func(addr common.Address) (int, int) {
have := len(p.index[addr])
if have >= maxTxsPerAccount {
return have, 0
}
return have, maxTxsPerAccount - have
},
ExistingExpenditure: func(addr common.Address) *big.Int {
if spent := p.spent[addr]; spent != nil {
return spent.ToBig()
}
return new(big.Int)
},
ExistingCost: func(addr common.Address, nonce uint64) *big.Int {
next := p.state.GetNonce(addr)
if uint64(len(p.index[addr])) > nonce-next {
return p.index[addr][int(tx.Nonce()-next)].costCap.ToBig()
}
return nil
},
}
if err := txpool.ValidateTransactionWithState(tx, p.signer, stateOpts); err != nil {
return err
}
// If the transaction replaces an existing one, ensure that price bumps are
// adhered to.
var (
from, _ = p.signer.Sender(tx) // already validated above
next = p.state.GetNonce(from)
)
if uint64(len(p.index[from])) > tx.Nonce()-next {
// Account can support the replacement, but the price bump must also be met
prev := p.index[from][int(tx.Nonce()-next)]
switch {
case tx.GasFeeCapIntCmp(prev.execFeeCap.ToBig()) <= 0:
return fmt.Errorf("%w: new tx gas fee cap %v <= %v queued", txpool.ErrReplaceUnderpriced, tx.GasFeeCap(), prev.execFeeCap)
case tx.GasTipCapIntCmp(prev.execTipCap.ToBig()) <= 0:
return fmt.Errorf("%w: new tx gas tip cap %v <= %v queued", txpool.ErrReplaceUnderpriced, tx.GasTipCap(), prev.execTipCap)
case tx.BlobGasFeeCapIntCmp(prev.blobFeeCap.ToBig()) <= 0:
return fmt.Errorf("%w: new tx blob gas fee cap %v <= %v queued", txpool.ErrReplaceUnderpriced, tx.BlobGasFeeCap(), prev.blobFeeCap)
}
var (
multiplier = uint256.NewInt(100 + p.config.PriceBump)
onehundred = uint256.NewInt(100)
minGasFeeCap = new(uint256.Int).Div(new(uint256.Int).Mul(multiplier, prev.execFeeCap), onehundred)
minGasTipCap = new(uint256.Int).Div(new(uint256.Int).Mul(multiplier, prev.execTipCap), onehundred)
minBlobGasFeeCap = new(uint256.Int).Div(new(uint256.Int).Mul(multiplier, prev.blobFeeCap), onehundred)
)
switch {
case tx.GasFeeCapIntCmp(minGasFeeCap.ToBig()) < 0:
return fmt.Errorf("%w: new tx gas fee cap %v <= %v queued + %d%% replacement penalty", txpool.ErrReplaceUnderpriced, tx.GasFeeCap(), prev.execFeeCap, p.config.PriceBump)
case tx.GasTipCapIntCmp(minGasTipCap.ToBig()) < 0:
return fmt.Errorf("%w: new tx gas tip cap %v <= %v queued + %d%% replacement penalty", txpool.ErrReplaceUnderpriced, tx.GasTipCap(), prev.execTipCap, p.config.PriceBump)
case tx.BlobGasFeeCapIntCmp(minBlobGasFeeCap.ToBig()) < 0:
return fmt.Errorf("%w: new tx blob gas fee cap %v <= %v queued + %d%% replacement penalty", txpool.ErrReplaceUnderpriced, tx.BlobGasFeeCap(), prev.blobFeeCap, p.config.PriceBump)
}
}
return nil
}
// Has returns an indicator whether subpool has a transaction cached with the
// given hash.
func (p *BlobPool) Has(hash common.Hash) bool {
p.lock.RLock()
defer p.lock.RUnlock()
_, ok := p.lookup[hash]
return ok
}
// Get returns a transaction if it is contained in the pool, or nil otherwise.
func (p *BlobPool) Get(hash common.Hash) *txpool.Transaction {
// Track the amount of time waiting to retrieve a fully resolved blob tx from
// the pool and the amount of time actually spent on pulling the data from disk.
getStart := time.Now()
p.lock.RLock()
getwaitHist.Update(time.Since(getStart).Nanoseconds())
defer p.lock.RUnlock()
defer func(start time.Time) {
gettimeHist.Update(time.Since(start).Nanoseconds())
}(time.Now())
// Pull the blob from disk and return an assembled response
id, ok := p.lookup[hash]
if !ok {
return nil
}
data, err := p.store.Get(id)
if err != nil {
log.Error("Tracked blob transaction missing from store", "hash", hash, "id", id, "err", err)
return nil
}
item := new(blobTx)
if err = rlp.DecodeBytes(data, item); err != nil {
log.Error("Blobs corrupted for traced transaction", "hash", hash, "id", id, "err", err)
return nil
}
return &txpool.Transaction{
Tx: item.Tx,
BlobTxBlobs: item.Blobs,
BlobTxCommits: item.Commits,
BlobTxProofs: item.Proofs,
}
}
// Add inserts a set of blob transactions into the pool if they pass validation (both
// consensus validity and pool restictions).
func (p *BlobPool) Add(txs []*txpool.Transaction, local bool, sync bool) []error {
errs := make([]error, len(txs))
for i, tx := range txs {
errs[i] = p.add(tx.Tx, tx.BlobTxBlobs, tx.BlobTxCommits, tx.BlobTxProofs)
}
return errs
}
// Add inserts a new blob transaction into the pool if it passes validation (both
// consensus validity and pool restictions).
func (p *BlobPool) add(tx *types.Transaction, blobs []kzg4844.Blob, commits []kzg4844.Commitment, proofs []kzg4844.Proof) (err error) {
// The blob pool blocks on adding a transaction. This is because blob txs are
// only even pulled form the network, so this method will act as the overload
// protection for fetches.
waitStart := time.Now()
p.lock.Lock()
addwaitHist.Update(time.Since(waitStart).Nanoseconds())
defer p.lock.Unlock()
defer func(start time.Time) {
addtimeHist.Update(time.Since(start).Nanoseconds())
}(time.Now())
// Ensure the transaction is valid from all perspectives
if err := p.validateTx(tx, blobs, commits, proofs); err != nil {
log.Trace("Transaction validation failed", "hash", tx.Hash(), "err", err)
return err
}
// If the address is not yet known, request exclusivity to track the account
// only by this subpool until all transactions are evicted
from, _ := types.Sender(p.signer, tx) // already validated above
if _, ok := p.index[from]; !ok {
if err := p.reserve(from, true); err != nil {
return err
}
defer func() {
// If the transaction is rejected by some post-validation check, remove
// the lock on the reservation set.
//
// Note, `err` here is the named error return, which will be initialized
// by a return statement before running deferred methods. Take care with
// removing or subscoping err as it will break this clause.
if err != nil {
p.reserve(from, false)
}
}()
}
// Transaction permitted into the pool from a nonce and cost perspective,
// insert it into the database and update the indices
blob, err := rlp.EncodeToBytes(&blobTx{Tx: tx, Blobs: blobs, Commits: commits, Proofs: proofs})
if err != nil {
log.Error("Failed to encode transaction for storage", "hash", tx.Hash(), "err", err)
return err
}
id, err := p.store.Put(blob)
if err != nil {
return err
}
meta := newBlobTxMeta(id, p.store.Size(id), tx)
var (
next = p.state.GetNonce(from)
offset = int(tx.Nonce() - next)
newacc = false
)
var oldEvictionExecFeeJumps, oldEvictionBlobFeeJumps float64
if txs, ok := p.index[from]; ok {
oldEvictionExecFeeJumps = txs[len(txs)-1].evictionExecFeeJumps
oldEvictionBlobFeeJumps = txs[len(txs)-1].evictionBlobFeeJumps
}
if len(p.index[from]) > offset {
// Transaction replaces a previously queued one
prev := p.index[from][offset]
if err := p.store.Delete(prev.id); err != nil {
// Shitty situation, but try to recover gracefully instead of going boom
log.Error("Failed to delete replaced transaction", "id", prev.id, "err", err)
}
// Update the transaction index
p.index[from][offset] = meta
p.spent[from] = new(uint256.Int).Sub(p.spent[from], prev.costCap)
p.spent[from] = new(uint256.Int).Add(p.spent[from], meta.costCap)
delete(p.lookup, prev.hash)
p.lookup[meta.hash] = meta.id
p.stored += uint64(meta.size) - uint64(prev.size)
} else {
// Transaction extends previously scheduled ones
p.index[from] = append(p.index[from], meta)
if _, ok := p.spent[from]; !ok {
p.spent[from] = new(uint256.Int)
newacc = true
}
p.spent[from] = new(uint256.Int).Add(p.spent[from], meta.costCap)
p.lookup[meta.hash] = meta.id
p.stored += uint64(meta.size)
}
// Recompute the rolling eviction fields. In case of a replacement, this will
// recompute all subsequent fields. In case of an append, this will only do
// the fresh calculation.
txs := p.index[from]
for i := offset; i < len(txs); i++ {
// The first transaction will always use itself
if i == 0 {
txs[0].evictionExecTip = txs[0].execTipCap
txs[0].evictionExecFeeJumps = txs[0].basefeeJumps
txs[0].evictionBlobFeeJumps = txs[0].blobfeeJumps
continue
}
// Subsequent transactions will use a rolling calculation
txs[i].evictionExecTip = txs[i-1].evictionExecTip
if txs[i].evictionExecTip.Cmp(txs[i].execTipCap) > 0 {
txs[i].evictionExecTip = txs[i].execTipCap
}
txs[i].evictionExecFeeJumps = txs[i-1].evictionExecFeeJumps
if txs[i].evictionExecFeeJumps > txs[i].basefeeJumps {
txs[i].evictionExecFeeJumps = txs[i].basefeeJumps
}
txs[i].evictionBlobFeeJumps = txs[i-1].evictionBlobFeeJumps
if txs[i].evictionBlobFeeJumps > txs[i].blobfeeJumps {
txs[i].evictionBlobFeeJumps = txs[i].blobfeeJumps
}
}
// Update the eviction heap with the new information:
// - If the transaction is from a new account, add it to the heap
// - If the account had a singleton tx replaced, update the heap (new price caps)
// - If the account has a transaction replaced or appended, update the heap if significantly changed
switch {
case newacc:
heap.Push(p.evict, from)
case len(txs) == 1: // 1 tx and not a new acc, must be replacement
heap.Fix(p.evict, p.evict.index[from])
default: // replacement or new append
evictionExecFeeDiff := oldEvictionExecFeeJumps - txs[len(txs)-1].evictionExecFeeJumps
evictionBlobFeeDiff := oldEvictionBlobFeeJumps - txs[len(txs)-1].evictionBlobFeeJumps
if math.Abs(evictionExecFeeDiff) > 0.001 || math.Abs(evictionBlobFeeDiff) > 0.001 { // need math.Abs, can go up and down
heap.Fix(p.evict, p.evict.index[from])
}
}
// If the pool went over the allowed data limit, evict transactions until
// we're again below the threshold
for p.stored > p.config.Datacap {
p.drop()
}
p.updateStorageMetrics()
return nil
}
// drop removes the worst transaction from the pool. It is primarily used when a
// freshly added transaction overflows the pool and needs to evict something. The
// method is also called on startup if the user resizes their storage, might be an
// expensive run but it should be fine-ish.
func (p *BlobPool) drop() {
// Peek at the account with the worse transaction set to evict from (Go's heap
// stores the minimum at index zero of the heap slice) and retrieve it's last
// transaction.
var (
from = p.evict.addrs[0] // cannot call drop on empty pool
txs = p.index[from]
drop = txs[len(txs)-1]
last = len(txs) == 1
)
// Remove the transaction from the pool's index
if last {
delete(p.index, from)
delete(p.spent, from)
p.reserve(from, false)
} else {
txs[len(txs)-1] = nil
txs = txs[:len(txs)-1]
p.index[from] = txs
p.spent[from] = new(uint256.Int).Sub(p.spent[from], drop.costCap)
}
p.stored -= uint64(drop.size)
delete(p.lookup, drop.hash)
// Remove the transaction from the pool's evicion heap:
// - If the entire account was dropped, pop off the address
// - Otherwise, if the new tail has better eviction caps, fix the heap
if last {
heap.Pop(p.evict)
} else {
tail := txs[len(txs)-1] // new tail, surely exists
evictionExecFeeDiff := tail.evictionExecFeeJumps - drop.evictionExecFeeJumps
evictionBlobFeeDiff := tail.evictionBlobFeeJumps - drop.evictionBlobFeeJumps
if evictionExecFeeDiff > 0.001 || evictionBlobFeeDiff > 0.001 { // no need for math.Abs, monotonic decreasing
heap.Fix(p.evict, 0)
}
}
// Remove the transaction from the data store
log.Warn("Evicting overflown blob transaction", "from", from, "evicted", drop.nonce, "id", drop.id)
if err := p.store.Delete(drop.id); err != nil {
log.Error("Failed to drop evicted transaction", "id", drop.id, "err", err)
}
}
// Pending retrieves all currently processable transactions, grouped by origin
// account and sorted by nonce.
func (p *BlobPool) Pending(enforceTips bool) map[common.Address][]*txpool.LazyTransaction {
// Track the amount of time waiting to retrieve the list of pending blob txs
// from the pool and the amount of time actually spent on assembling the data.
// The latter will be pretty much moot, but we've kept it to have symmetric
// across all user operations.
pendStart := time.Now()
p.lock.RLock()
pendwaitHist.Update(time.Since(pendStart).Nanoseconds())
defer p.lock.RUnlock()
defer func(start time.Time) {
pendtimeHist.Update(time.Since(start).Nanoseconds())
}(time.Now())
pending := make(map[common.Address][]*txpool.LazyTransaction)
for addr, txs := range p.index {
var lazies []*txpool.LazyTransaction
for _, tx := range txs {
lazies = append(lazies, &txpool.LazyTransaction{
Pool: p,
Hash: tx.hash,
Time: time.Now(), // TODO(karalabe): Maybe save these and use that?
GasFeeCap: tx.execFeeCap.ToBig(),
GasTipCap: tx.execTipCap.ToBig(),
})
}
if len(lazies) > 0 {
pending[addr] = lazies
}
}
return pending
}
// updateStorageMetrics retrieves a bunch of stats from the data store and pushes
// them out as metrics.
func (p *BlobPool) updateStorageMetrics() {
stats := p.store.Infos()
var (
dataused uint64
datareal uint64
slotused uint64
oversizedDataused uint64
oversizedDatagaps uint64
oversizedSlotused uint64
oversizedSlotgaps uint64
)
for _, shelf := range stats.Shelves {
slotDataused := shelf.FilledSlots * uint64(shelf.SlotSize)
slotDatagaps := shelf.GappedSlots * uint64(shelf.SlotSize)
dataused += slotDataused
datareal += slotDataused + slotDatagaps
slotused += shelf.FilledSlots
metrics.GetOrRegisterGauge(fmt.Sprintf(shelfDatausedGaugeName, shelf.SlotSize/blobSize), nil).Update(int64(slotDataused))
metrics.GetOrRegisterGauge(fmt.Sprintf(shelfDatagapsGaugeName, shelf.SlotSize/blobSize), nil).Update(int64(slotDatagaps))
metrics.GetOrRegisterGauge(fmt.Sprintf(shelfSlotusedGaugeName, shelf.SlotSize/blobSize), nil).Update(int64(shelf.FilledSlots))
metrics.GetOrRegisterGauge(fmt.Sprintf(shelfSlotgapsGaugeName, shelf.SlotSize/blobSize), nil).Update(int64(shelf.GappedSlots))
if shelf.SlotSize/blobSize > maxBlobsPerTransaction {
oversizedDataused += slotDataused
oversizedDatagaps += slotDatagaps
oversizedSlotused += shelf.FilledSlots
oversizedSlotgaps += shelf.GappedSlots
}
}
datausedGauge.Update(int64(dataused))
datarealGauge.Update(int64(datareal))
slotusedGauge.Update(int64(slotused))
oversizedDatausedGauge.Update(int64(oversizedDataused))
oversizedDatagapsGauge.Update(int64(oversizedDatagaps))
oversizedSlotusedGauge.Update(int64(oversizedSlotused))
oversizedSlotgapsGauge.Update(int64(oversizedSlotgaps))
p.updateLimboMetrics()
}
// updateLimboMetrics retrieves a bunch of stats from the limbo store and pushes
// // them out as metrics.
func (p *BlobPool) updateLimboMetrics() {
stats := p.limbo.store.Infos()
var (
dataused uint64
datareal uint64
slotused uint64
)
for _, shelf := range stats.Shelves {
slotDataused := shelf.FilledSlots * uint64(shelf.SlotSize)
slotDatagaps := shelf.GappedSlots * uint64(shelf.SlotSize)
dataused += slotDataused
datareal += slotDataused + slotDatagaps
slotused += shelf.FilledSlots
metrics.GetOrRegisterGauge(fmt.Sprintf(limboShelfDatausedGaugeName, shelf.SlotSize/blobSize), nil).Update(int64(slotDataused))
metrics.GetOrRegisterGauge(fmt.Sprintf(limboShelfDatagapsGaugeName, shelf.SlotSize/blobSize), nil).Update(int64(slotDatagaps))
metrics.GetOrRegisterGauge(fmt.Sprintf(limboShelfSlotusedGaugeName, shelf.SlotSize/blobSize), nil).Update(int64(shelf.FilledSlots))
metrics.GetOrRegisterGauge(fmt.Sprintf(limboShelfSlotgapsGaugeName, shelf.SlotSize/blobSize), nil).Update(int64(shelf.GappedSlots))
}
limboDatausedGauge.Update(int64(dataused))
limboDatarealGauge.Update(int64(datareal))
limboSlotusedGauge.Update(int64(slotused))
}
// SubscribeTransactions registers a subscription of NewTxsEvent and
// starts sending event to the given channel.
func (p *BlobPool) SubscribeTransactions(ch chan<- core.NewTxsEvent) event.Subscription {
return p.eventScope.Track(p.eventFeed.Subscribe(ch))
}
// Nonce returns the next nonce of an account, with all transactions executable
// by the pool already applied on top.
func (p *BlobPool) Nonce(addr common.Address) uint64 {
p.lock.Lock()
defer p.lock.Unlock()
if txs, ok := p.index[addr]; ok {
return txs[len(txs)-1].nonce + 1
}
return p.state.GetNonce(addr)
}
// Stats retrieves the current pool stats, namely the number of pending and the
// number of queued (non-executable) transactions.
func (p *BlobPool) Stats() (int, int) {
p.lock.Lock()
defer p.lock.Unlock()
var pending int
for _, txs := range p.index {
pending += len(txs)
}
return pending, 0 // No non-executable txs in the blob pool
}
// Content retrieves the data content of the transaction pool, returning all the
// pending as well as queued transactions, grouped by account and sorted by nonce.
//
// For the blob pool, this method will return nothing for now.
// TODO(karalabe): Abstract out the returned metadata.
func (p *BlobPool) Content() (map[common.Address][]*types.Transaction, map[common.Address][]*types.Transaction) {
return make(map[common.Address][]*types.Transaction), make(map[common.Address][]*types.Transaction)
}
// ContentFrom retrieves the data content of the transaction pool, returning the
// pending as well as queued transactions of this address, grouped by nonce.
//
// For the blob pool, this method will return nothing for now.
// TODO(karalabe): Abstract out the returned metadata.
func (p *BlobPool) ContentFrom(addr common.Address) ([]*types.Transaction, []*types.Transaction) {
return []*types.Transaction{}, []*types.Transaction{}
}
// Locals retrieves the accounts currently considered local by the pool.
//
// There is no notion of local accounts in the blob pool.
func (p *BlobPool) Locals() []common.Address {
return []common.Address{}
}
// Status returns the known status (unknown/pending/queued) of a transaction
// identified by their hashes.
func (p *BlobPool) Status(hash common.Hash) txpool.TxStatus {
if p.Has(hash) {
return txpool.TxStatusPending
}
return txpool.TxStatusUnknown
}