779 lines
25 KiB
Go
779 lines
25 KiB
Go
// Copyright 2015 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package trie
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"testing"
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/ethereum/go-ethereum/core/rawdb"
|
|
"github.com/ethereum/go-ethereum/core/types"
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
"github.com/ethereum/go-ethereum/ethdb"
|
|
"github.com/ethereum/go-ethereum/ethdb/memorydb"
|
|
"github.com/ethereum/go-ethereum/trie/trienode"
|
|
)
|
|
|
|
// makeTestTrie create a sample test trie to test node-wise reconstruction.
|
|
func makeTestTrie(scheme string) (ethdb.Database, *Database, *StateTrie, map[string][]byte) {
|
|
// Create an empty trie
|
|
db := rawdb.NewMemoryDatabase()
|
|
triedb := newTestDatabase(db, scheme)
|
|
trie, _ := NewStateTrie(TrieID(types.EmptyRootHash), triedb)
|
|
|
|
// Fill it with some arbitrary data
|
|
content := make(map[string][]byte)
|
|
for i := byte(0); i < 255; i++ {
|
|
// Map the same data under multiple keys
|
|
key, val := common.LeftPadBytes([]byte{1, i}, 32), []byte{i}
|
|
content[string(key)] = val
|
|
trie.MustUpdate(key, val)
|
|
|
|
key, val = common.LeftPadBytes([]byte{2, i}, 32), []byte{i}
|
|
content[string(key)] = val
|
|
trie.MustUpdate(key, val)
|
|
|
|
// Add some other data to inflate the trie
|
|
for j := byte(3); j < 13; j++ {
|
|
key, val = common.LeftPadBytes([]byte{j, i}, 32), []byte{j, i}
|
|
content[string(key)] = val
|
|
trie.MustUpdate(key, val)
|
|
}
|
|
}
|
|
root, nodes, _ := trie.Commit(false)
|
|
if err := triedb.Update(root, types.EmptyRootHash, trienode.NewWithNodeSet(nodes), nil); err != nil {
|
|
panic(fmt.Errorf("failed to commit db %v", err))
|
|
}
|
|
if err := triedb.Commit(root, false); err != nil {
|
|
panic(err)
|
|
}
|
|
// Re-create the trie based on the new state
|
|
trie, _ = NewStateTrie(TrieID(root), triedb)
|
|
return db, triedb, trie, content
|
|
}
|
|
|
|
// checkTrieContents cross references a reconstructed trie with an expected data
|
|
// content map.
|
|
func checkTrieContents(t *testing.T, db ethdb.Database, scheme string, root []byte, content map[string][]byte) {
|
|
// Check root availability and trie contents
|
|
ndb := newTestDatabase(db, scheme)
|
|
trie, err := NewStateTrie(TrieID(common.BytesToHash(root)), ndb)
|
|
if err != nil {
|
|
t.Fatalf("failed to create trie at %x: %v", root, err)
|
|
}
|
|
if err := checkTrieConsistency(db, scheme, common.BytesToHash(root)); err != nil {
|
|
t.Fatalf("inconsistent trie at %x: %v", root, err)
|
|
}
|
|
for key, val := range content {
|
|
if have := trie.MustGet([]byte(key)); !bytes.Equal(have, val) {
|
|
t.Errorf("entry %x: content mismatch: have %x, want %x", key, have, val)
|
|
}
|
|
}
|
|
}
|
|
|
|
// checkTrieConsistency checks that all nodes in a trie are indeed present.
|
|
func checkTrieConsistency(db ethdb.Database, scheme string, root common.Hash) error {
|
|
ndb := newTestDatabase(db, scheme)
|
|
trie, err := NewStateTrie(TrieID(root), ndb)
|
|
if err != nil {
|
|
return nil // Consider a non existent state consistent
|
|
}
|
|
it := trie.MustNodeIterator(nil)
|
|
for it.Next(true) {
|
|
}
|
|
return it.Error()
|
|
}
|
|
|
|
// trieElement represents the element in the state trie(bytecode or trie node).
|
|
type trieElement struct {
|
|
path string
|
|
hash common.Hash
|
|
syncPath SyncPath
|
|
}
|
|
|
|
// Tests that an empty trie is not scheduled for syncing.
|
|
func TestEmptySync(t *testing.T) {
|
|
dbA := NewDatabase(rawdb.NewMemoryDatabase())
|
|
dbB := NewDatabase(rawdb.NewMemoryDatabase())
|
|
//dbC := newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.PathScheme)
|
|
//dbD := newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.PathScheme)
|
|
|
|
emptyA := NewEmpty(dbA)
|
|
emptyB, _ := New(TrieID(types.EmptyRootHash), dbB)
|
|
//emptyC := NewEmpty(dbC)
|
|
//emptyD, _ := New(TrieID(types.EmptyRootHash), dbD)
|
|
|
|
for i, trie := range []*Trie{emptyA, emptyB /*emptyC, emptyD*/} {
|
|
sync := NewSync(trie.Hash(), memorydb.New(), nil, []*Database{dbA, dbB /*dbC, dbD*/}[i].Scheme())
|
|
if paths, nodes, codes := sync.Missing(1); len(paths) != 0 || len(nodes) != 0 || len(codes) != 0 {
|
|
t.Errorf("test %d: content requested for empty trie: %v, %v, %v", i, paths, nodes, codes)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Tests that given a root hash, a trie can sync iteratively on a single thread,
|
|
// requesting retrieval tasks and returning all of them in one go.
|
|
func TestIterativeSync(t *testing.T) {
|
|
testIterativeSync(t, 1, false, rawdb.HashScheme)
|
|
testIterativeSync(t, 100, false, rawdb.HashScheme)
|
|
testIterativeSync(t, 1, true, rawdb.HashScheme)
|
|
testIterativeSync(t, 100, true, rawdb.HashScheme)
|
|
// testIterativeSync(t, 1, false, rawdb.PathScheme)
|
|
// testIterativeSync(t, 100, false, rawdb.PathScheme)
|
|
// testIterativeSync(t, 1, true, rawdb.PathScheme)
|
|
// testIterativeSync(t, 100, true, rawdb.PathScheme)
|
|
}
|
|
|
|
func testIterativeSync(t *testing.T, count int, bypath bool, scheme string) {
|
|
// Create a random trie to copy
|
|
_, srcDb, srcTrie, srcData := makeTestTrie(scheme)
|
|
|
|
// Create a destination trie and sync with the scheduler
|
|
diskdb := rawdb.NewMemoryDatabase()
|
|
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
|
|
|
|
// The code requests are ignored here since there is no code
|
|
// at the testing trie.
|
|
paths, nodes, _ := sched.Missing(count)
|
|
var elements []trieElement
|
|
for i := 0; i < len(paths); i++ {
|
|
elements = append(elements, trieElement{
|
|
path: paths[i],
|
|
hash: nodes[i],
|
|
syncPath: NewSyncPath([]byte(paths[i])),
|
|
})
|
|
}
|
|
reader, err := srcDb.Reader(srcTrie.Hash())
|
|
if err != nil {
|
|
t.Fatalf("State is not available %x", srcTrie.Hash())
|
|
}
|
|
for len(elements) > 0 {
|
|
results := make([]NodeSyncResult, len(elements))
|
|
if !bypath {
|
|
for i, element := range elements {
|
|
owner, inner := ResolvePath([]byte(element.path))
|
|
data, err := reader.Node(owner, inner, element.hash)
|
|
if err != nil {
|
|
t.Fatalf("failed to retrieve node data for hash %x: %v", element.hash, err)
|
|
}
|
|
results[i] = NodeSyncResult{element.path, data}
|
|
}
|
|
} else {
|
|
for i, element := range elements {
|
|
data, _, err := srcTrie.GetNode(element.syncPath[len(element.syncPath)-1])
|
|
if err != nil {
|
|
t.Fatalf("failed to retrieve node data for path %x: %v", element.path, err)
|
|
}
|
|
results[i] = NodeSyncResult{element.path, data}
|
|
}
|
|
}
|
|
for _, result := range results {
|
|
if err := sched.ProcessNode(result); err != nil {
|
|
t.Fatalf("failed to process result %v", err)
|
|
}
|
|
}
|
|
batch := diskdb.NewBatch()
|
|
if err := sched.Commit(batch); err != nil {
|
|
t.Fatalf("failed to commit data: %v", err)
|
|
}
|
|
batch.Write()
|
|
|
|
paths, nodes, _ = sched.Missing(count)
|
|
elements = elements[:0]
|
|
for i := 0; i < len(paths); i++ {
|
|
elements = append(elements, trieElement{
|
|
path: paths[i],
|
|
hash: nodes[i],
|
|
syncPath: NewSyncPath([]byte(paths[i])),
|
|
})
|
|
}
|
|
}
|
|
// Cross check that the two tries are in sync
|
|
checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData)
|
|
}
|
|
|
|
// Tests that the trie scheduler can correctly reconstruct the state even if only
|
|
// partial results are returned, and the others sent only later.
|
|
func TestIterativeDelayedSync(t *testing.T) {
|
|
testIterativeDelayedSync(t, rawdb.HashScheme)
|
|
//testIterativeDelayedSync(t, rawdb.PathScheme)
|
|
}
|
|
|
|
func testIterativeDelayedSync(t *testing.T, scheme string) {
|
|
// Create a random trie to copy
|
|
_, srcDb, srcTrie, srcData := makeTestTrie(scheme)
|
|
|
|
// Create a destination trie and sync with the scheduler
|
|
diskdb := rawdb.NewMemoryDatabase()
|
|
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
|
|
|
|
// The code requests are ignored here since there is no code
|
|
// at the testing trie.
|
|
paths, nodes, _ := sched.Missing(10000)
|
|
var elements []trieElement
|
|
for i := 0; i < len(paths); i++ {
|
|
elements = append(elements, trieElement{
|
|
path: paths[i],
|
|
hash: nodes[i],
|
|
syncPath: NewSyncPath([]byte(paths[i])),
|
|
})
|
|
}
|
|
reader, err := srcDb.Reader(srcTrie.Hash())
|
|
if err != nil {
|
|
t.Fatalf("State is not available %x", srcTrie.Hash())
|
|
}
|
|
for len(elements) > 0 {
|
|
// Sync only half of the scheduled nodes
|
|
results := make([]NodeSyncResult, len(elements)/2+1)
|
|
for i, element := range elements[:len(results)] {
|
|
owner, inner := ResolvePath([]byte(element.path))
|
|
data, err := reader.Node(owner, inner, element.hash)
|
|
if err != nil {
|
|
t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err)
|
|
}
|
|
results[i] = NodeSyncResult{element.path, data}
|
|
}
|
|
for _, result := range results {
|
|
if err := sched.ProcessNode(result); err != nil {
|
|
t.Fatalf("failed to process result %v", err)
|
|
}
|
|
}
|
|
batch := diskdb.NewBatch()
|
|
if err := sched.Commit(batch); err != nil {
|
|
t.Fatalf("failed to commit data: %v", err)
|
|
}
|
|
batch.Write()
|
|
|
|
paths, nodes, _ = sched.Missing(10000)
|
|
elements = elements[len(results):]
|
|
for i := 0; i < len(paths); i++ {
|
|
elements = append(elements, trieElement{
|
|
path: paths[i],
|
|
hash: nodes[i],
|
|
syncPath: NewSyncPath([]byte(paths[i])),
|
|
})
|
|
}
|
|
}
|
|
// Cross check that the two tries are in sync
|
|
checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData)
|
|
}
|
|
|
|
// Tests that given a root hash, a trie can sync iteratively on a single thread,
|
|
// requesting retrieval tasks and returning all of them in one go, however in a
|
|
// random order.
|
|
func TestIterativeRandomSyncIndividual(t *testing.T) {
|
|
testIterativeRandomSync(t, 1, rawdb.HashScheme)
|
|
testIterativeRandomSync(t, 100, rawdb.HashScheme)
|
|
// testIterativeRandomSync(t, 1, rawdb.PathScheme)
|
|
// testIterativeRandomSync(t, 100, rawdb.PathScheme)
|
|
}
|
|
|
|
func testIterativeRandomSync(t *testing.T, count int, scheme string) {
|
|
// Create a random trie to copy
|
|
_, srcDb, srcTrie, srcData := makeTestTrie(scheme)
|
|
|
|
// Create a destination trie and sync with the scheduler
|
|
diskdb := rawdb.NewMemoryDatabase()
|
|
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
|
|
|
|
// The code requests are ignored here since there is no code
|
|
// at the testing trie.
|
|
paths, nodes, _ := sched.Missing(count)
|
|
queue := make(map[string]trieElement)
|
|
for i, path := range paths {
|
|
queue[path] = trieElement{
|
|
path: paths[i],
|
|
hash: nodes[i],
|
|
syncPath: NewSyncPath([]byte(paths[i])),
|
|
}
|
|
}
|
|
reader, err := srcDb.Reader(srcTrie.Hash())
|
|
if err != nil {
|
|
t.Fatalf("State is not available %x", srcTrie.Hash())
|
|
}
|
|
for len(queue) > 0 {
|
|
// Fetch all the queued nodes in a random order
|
|
results := make([]NodeSyncResult, 0, len(queue))
|
|
for path, element := range queue {
|
|
owner, inner := ResolvePath([]byte(element.path))
|
|
data, err := reader.Node(owner, inner, element.hash)
|
|
if err != nil {
|
|
t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err)
|
|
}
|
|
results = append(results, NodeSyncResult{path, data})
|
|
}
|
|
// Feed the retrieved results back and queue new tasks
|
|
for _, result := range results {
|
|
if err := sched.ProcessNode(result); err != nil {
|
|
t.Fatalf("failed to process result %v", err)
|
|
}
|
|
}
|
|
batch := diskdb.NewBatch()
|
|
if err := sched.Commit(batch); err != nil {
|
|
t.Fatalf("failed to commit data: %v", err)
|
|
}
|
|
batch.Write()
|
|
|
|
paths, nodes, _ = sched.Missing(count)
|
|
queue = make(map[string]trieElement)
|
|
for i, path := range paths {
|
|
queue[path] = trieElement{
|
|
path: path,
|
|
hash: nodes[i],
|
|
syncPath: NewSyncPath([]byte(path)),
|
|
}
|
|
}
|
|
}
|
|
// Cross check that the two tries are in sync
|
|
checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData)
|
|
}
|
|
|
|
// Tests that the trie scheduler can correctly reconstruct the state even if only
|
|
// partial results are returned (Even those randomly), others sent only later.
|
|
func TestIterativeRandomDelayedSync(t *testing.T) {
|
|
testIterativeRandomDelayedSync(t, rawdb.HashScheme)
|
|
// testIterativeRandomDelayedSync(t, rawdb.PathScheme)
|
|
}
|
|
|
|
func testIterativeRandomDelayedSync(t *testing.T, scheme string) {
|
|
// Create a random trie to copy
|
|
_, srcDb, srcTrie, srcData := makeTestTrie(scheme)
|
|
|
|
// Create a destination trie and sync with the scheduler
|
|
diskdb := rawdb.NewMemoryDatabase()
|
|
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
|
|
|
|
// The code requests are ignored here since there is no code
|
|
// at the testing trie.
|
|
paths, nodes, _ := sched.Missing(10000)
|
|
queue := make(map[string]trieElement)
|
|
for i, path := range paths {
|
|
queue[path] = trieElement{
|
|
path: path,
|
|
hash: nodes[i],
|
|
syncPath: NewSyncPath([]byte(path)),
|
|
}
|
|
}
|
|
reader, err := srcDb.Reader(srcTrie.Hash())
|
|
if err != nil {
|
|
t.Fatalf("State is not available %x", srcTrie.Hash())
|
|
}
|
|
for len(queue) > 0 {
|
|
// Sync only half of the scheduled nodes, even those in random order
|
|
results := make([]NodeSyncResult, 0, len(queue)/2+1)
|
|
for path, element := range queue {
|
|
owner, inner := ResolvePath([]byte(element.path))
|
|
data, err := reader.Node(owner, inner, element.hash)
|
|
if err != nil {
|
|
t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err)
|
|
}
|
|
results = append(results, NodeSyncResult{path, data})
|
|
|
|
if len(results) >= cap(results) {
|
|
break
|
|
}
|
|
}
|
|
// Feed the retrieved results back and queue new tasks
|
|
for _, result := range results {
|
|
if err := sched.ProcessNode(result); err != nil {
|
|
t.Fatalf("failed to process result %v", err)
|
|
}
|
|
}
|
|
batch := diskdb.NewBatch()
|
|
if err := sched.Commit(batch); err != nil {
|
|
t.Fatalf("failed to commit data: %v", err)
|
|
}
|
|
batch.Write()
|
|
for _, result := range results {
|
|
delete(queue, result.Path)
|
|
}
|
|
paths, nodes, _ = sched.Missing(10000)
|
|
for i, path := range paths {
|
|
queue[path] = trieElement{
|
|
path: path,
|
|
hash: nodes[i],
|
|
syncPath: NewSyncPath([]byte(path)),
|
|
}
|
|
}
|
|
}
|
|
// Cross check that the two tries are in sync
|
|
checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData)
|
|
}
|
|
|
|
// Tests that a trie sync will not request nodes multiple times, even if they
|
|
// have such references.
|
|
func TestDuplicateAvoidanceSync(t *testing.T) {
|
|
testDuplicateAvoidanceSync(t, rawdb.HashScheme)
|
|
// testDuplicateAvoidanceSync(t, rawdb.PathScheme)
|
|
}
|
|
|
|
func testDuplicateAvoidanceSync(t *testing.T, scheme string) {
|
|
// Create a random trie to copy
|
|
_, srcDb, srcTrie, srcData := makeTestTrie(scheme)
|
|
|
|
// Create a destination trie and sync with the scheduler
|
|
diskdb := rawdb.NewMemoryDatabase()
|
|
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
|
|
|
|
// The code requests are ignored here since there is no code
|
|
// at the testing trie.
|
|
paths, nodes, _ := sched.Missing(0)
|
|
var elements []trieElement
|
|
for i := 0; i < len(paths); i++ {
|
|
elements = append(elements, trieElement{
|
|
path: paths[i],
|
|
hash: nodes[i],
|
|
syncPath: NewSyncPath([]byte(paths[i])),
|
|
})
|
|
}
|
|
reader, err := srcDb.Reader(srcTrie.Hash())
|
|
if err != nil {
|
|
t.Fatalf("State is not available %x", srcTrie.Hash())
|
|
}
|
|
requested := make(map[common.Hash]struct{})
|
|
for len(elements) > 0 {
|
|
results := make([]NodeSyncResult, len(elements))
|
|
for i, element := range elements {
|
|
owner, inner := ResolvePath([]byte(element.path))
|
|
data, err := reader.Node(owner, inner, element.hash)
|
|
if err != nil {
|
|
t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err)
|
|
}
|
|
if _, ok := requested[element.hash]; ok {
|
|
t.Errorf("hash %x already requested once", element.hash)
|
|
}
|
|
requested[element.hash] = struct{}{}
|
|
|
|
results[i] = NodeSyncResult{element.path, data}
|
|
}
|
|
for _, result := range results {
|
|
if err := sched.ProcessNode(result); err != nil {
|
|
t.Fatalf("failed to process result %v", err)
|
|
}
|
|
}
|
|
batch := diskdb.NewBatch()
|
|
if err := sched.Commit(batch); err != nil {
|
|
t.Fatalf("failed to commit data: %v", err)
|
|
}
|
|
batch.Write()
|
|
|
|
paths, nodes, _ = sched.Missing(0)
|
|
elements = elements[:0]
|
|
for i := 0; i < len(paths); i++ {
|
|
elements = append(elements, trieElement{
|
|
path: paths[i],
|
|
hash: nodes[i],
|
|
syncPath: NewSyncPath([]byte(paths[i])),
|
|
})
|
|
}
|
|
}
|
|
// Cross check that the two tries are in sync
|
|
checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData)
|
|
}
|
|
|
|
// Tests that at any point in time during a sync, only complete sub-tries are in
|
|
// the database.
|
|
func TestIncompleteSyncHash(t *testing.T) {
|
|
testIncompleteSync(t, rawdb.HashScheme)
|
|
// testIncompleteSync(t, rawdb.PathScheme)
|
|
}
|
|
|
|
func testIncompleteSync(t *testing.T, scheme string) {
|
|
t.Parallel()
|
|
|
|
// Create a random trie to copy
|
|
_, srcDb, srcTrie, _ := makeTestTrie(scheme)
|
|
|
|
// Create a destination trie and sync with the scheduler
|
|
diskdb := rawdb.NewMemoryDatabase()
|
|
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
|
|
|
|
// The code requests are ignored here since there is no code
|
|
// at the testing trie.
|
|
var (
|
|
addedKeys []string
|
|
addedHashes []common.Hash
|
|
elements []trieElement
|
|
root = srcTrie.Hash()
|
|
)
|
|
paths, nodes, _ := sched.Missing(1)
|
|
for i := 0; i < len(paths); i++ {
|
|
elements = append(elements, trieElement{
|
|
path: paths[i],
|
|
hash: nodes[i],
|
|
syncPath: NewSyncPath([]byte(paths[i])),
|
|
})
|
|
}
|
|
reader, err := srcDb.Reader(srcTrie.Hash())
|
|
if err != nil {
|
|
t.Fatalf("State is not available %x", srcTrie.Hash())
|
|
}
|
|
for len(elements) > 0 {
|
|
// Fetch a batch of trie nodes
|
|
results := make([]NodeSyncResult, len(elements))
|
|
for i, element := range elements {
|
|
owner, inner := ResolvePath([]byte(element.path))
|
|
data, err := reader.Node(owner, inner, element.hash)
|
|
if err != nil {
|
|
t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err)
|
|
}
|
|
results[i] = NodeSyncResult{element.path, data}
|
|
}
|
|
// Process each of the trie nodes
|
|
for _, result := range results {
|
|
if err := sched.ProcessNode(result); err != nil {
|
|
t.Fatalf("failed to process result %v", err)
|
|
}
|
|
}
|
|
batch := diskdb.NewBatch()
|
|
if err := sched.Commit(batch); err != nil {
|
|
t.Fatalf("failed to commit data: %v", err)
|
|
}
|
|
batch.Write()
|
|
|
|
for _, result := range results {
|
|
hash := crypto.Keccak256Hash(result.Data)
|
|
if hash != root {
|
|
addedKeys = append(addedKeys, result.Path)
|
|
addedHashes = append(addedHashes, crypto.Keccak256Hash(result.Data))
|
|
}
|
|
}
|
|
// Fetch the next batch to retrieve
|
|
paths, nodes, _ = sched.Missing(1)
|
|
elements = elements[:0]
|
|
for i := 0; i < len(paths); i++ {
|
|
elements = append(elements, trieElement{
|
|
path: paths[i],
|
|
hash: nodes[i],
|
|
syncPath: NewSyncPath([]byte(paths[i])),
|
|
})
|
|
}
|
|
}
|
|
// Sanity check that removing any node from the database is detected
|
|
for i, path := range addedKeys {
|
|
owner, inner := ResolvePath([]byte(path))
|
|
nodeHash := addedHashes[i]
|
|
value := rawdb.ReadTrieNode(diskdb, owner, inner, nodeHash, scheme)
|
|
rawdb.DeleteTrieNode(diskdb, owner, inner, nodeHash, scheme)
|
|
if err := checkTrieConsistency(diskdb, srcDb.Scheme(), root); err == nil {
|
|
t.Fatalf("trie inconsistency not caught, missing: %x", path)
|
|
}
|
|
rawdb.WriteTrieNode(diskdb, owner, inner, nodeHash, value, scheme)
|
|
}
|
|
}
|
|
|
|
// Tests that trie nodes get scheduled lexicographically when having the same
|
|
// depth.
|
|
func TestSyncOrdering(t *testing.T) {
|
|
testSyncOrdering(t, rawdb.HashScheme)
|
|
// testSyncOrdering(t, rawdb.PathScheme)
|
|
}
|
|
|
|
func testSyncOrdering(t *testing.T, scheme string) {
|
|
// Create a random trie to copy
|
|
_, srcDb, srcTrie, srcData := makeTestTrie(scheme)
|
|
|
|
// Create a destination trie and sync with the scheduler, tracking the requests
|
|
diskdb := rawdb.NewMemoryDatabase()
|
|
sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme())
|
|
|
|
// The code requests are ignored here since there is no code
|
|
// at the testing trie.
|
|
var (
|
|
reqs []SyncPath
|
|
elements []trieElement
|
|
)
|
|
paths, nodes, _ := sched.Missing(1)
|
|
for i := 0; i < len(paths); i++ {
|
|
elements = append(elements, trieElement{
|
|
path: paths[i],
|
|
hash: nodes[i],
|
|
syncPath: NewSyncPath([]byte(paths[i])),
|
|
})
|
|
reqs = append(reqs, NewSyncPath([]byte(paths[i])))
|
|
}
|
|
reader, err := srcDb.Reader(srcTrie.Hash())
|
|
if err != nil {
|
|
t.Fatalf("State is not available %x", srcTrie.Hash())
|
|
}
|
|
for len(elements) > 0 {
|
|
results := make([]NodeSyncResult, len(elements))
|
|
for i, element := range elements {
|
|
owner, inner := ResolvePath([]byte(element.path))
|
|
data, err := reader.Node(owner, inner, element.hash)
|
|
if err != nil {
|
|
t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err)
|
|
}
|
|
results[i] = NodeSyncResult{element.path, data}
|
|
}
|
|
for _, result := range results {
|
|
if err := sched.ProcessNode(result); err != nil {
|
|
t.Fatalf("failed to process result %v", err)
|
|
}
|
|
}
|
|
batch := diskdb.NewBatch()
|
|
if err := sched.Commit(batch); err != nil {
|
|
t.Fatalf("failed to commit data: %v", err)
|
|
}
|
|
batch.Write()
|
|
|
|
paths, nodes, _ = sched.Missing(1)
|
|
elements = elements[:0]
|
|
for i := 0; i < len(paths); i++ {
|
|
elements = append(elements, trieElement{
|
|
path: paths[i],
|
|
hash: nodes[i],
|
|
syncPath: NewSyncPath([]byte(paths[i])),
|
|
})
|
|
reqs = append(reqs, NewSyncPath([]byte(paths[i])))
|
|
}
|
|
}
|
|
// Cross check that the two tries are in sync
|
|
checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData)
|
|
|
|
// Check that the trie nodes have been requested path-ordered
|
|
for i := 0; i < len(reqs)-1; i++ {
|
|
if len(reqs[i]) > 1 || len(reqs[i+1]) > 1 {
|
|
// In the case of the trie tests, there's no storage so the tuples
|
|
// must always be single items. 2-tuples should be tested in state.
|
|
t.Errorf("Invalid request tuples: len(%v) or len(%v) > 1", reqs[i], reqs[i+1])
|
|
}
|
|
if bytes.Compare(compactToHex(reqs[i][0]), compactToHex(reqs[i+1][0])) > 0 {
|
|
t.Errorf("Invalid request order: %v before %v", compactToHex(reqs[i][0]), compactToHex(reqs[i+1][0]))
|
|
}
|
|
}
|
|
}
|
|
|
|
func syncWith(t *testing.T, root common.Hash, db ethdb.Database, srcDb *Database) {
|
|
// Create a destination trie and sync with the scheduler
|
|
sched := NewSync(root, db, nil, srcDb.Scheme())
|
|
|
|
// The code requests are ignored here since there is no code
|
|
// at the testing trie.
|
|
paths, nodes, _ := sched.Missing(1)
|
|
var elements []trieElement
|
|
for i := 0; i < len(paths); i++ {
|
|
elements = append(elements, trieElement{
|
|
path: paths[i],
|
|
hash: nodes[i],
|
|
syncPath: NewSyncPath([]byte(paths[i])),
|
|
})
|
|
}
|
|
reader, err := srcDb.Reader(root)
|
|
if err != nil {
|
|
t.Fatalf("State is not available %x", root)
|
|
}
|
|
for len(elements) > 0 {
|
|
results := make([]NodeSyncResult, len(elements))
|
|
for i, element := range elements {
|
|
owner, inner := ResolvePath([]byte(element.path))
|
|
data, err := reader.Node(owner, inner, element.hash)
|
|
if err != nil {
|
|
t.Fatalf("failed to retrieve node data for hash %x: %v", element.hash, err)
|
|
}
|
|
results[i] = NodeSyncResult{element.path, data}
|
|
}
|
|
for index, result := range results {
|
|
if err := sched.ProcessNode(result); err != nil {
|
|
t.Fatalf("failed to process result[%d][%v] data %v %v", index, []byte(result.Path), result.Data, err)
|
|
}
|
|
}
|
|
batch := db.NewBatch()
|
|
if err := sched.Commit(batch); err != nil {
|
|
t.Fatalf("failed to commit data: %v", err)
|
|
}
|
|
batch.Write()
|
|
|
|
paths, nodes, _ = sched.Missing(1)
|
|
elements = elements[:0]
|
|
for i := 0; i < len(paths); i++ {
|
|
elements = append(elements, trieElement{
|
|
path: paths[i],
|
|
hash: nodes[i],
|
|
syncPath: NewSyncPath([]byte(paths[i])),
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
// Tests that the syncing target is keeping moving which may overwrite the stale
|
|
// states synced in the last cycle.
|
|
func TestSyncMovingTarget(t *testing.T) {
|
|
testSyncMovingTarget(t, rawdb.HashScheme)
|
|
// testSyncMovingTarget(t, rawdb.PathScheme)
|
|
}
|
|
|
|
func testSyncMovingTarget(t *testing.T, scheme string) {
|
|
// Create a random trie to copy
|
|
_, srcDb, srcTrie, srcData := makeTestTrie(scheme)
|
|
|
|
// Create a destination trie and sync with the scheduler
|
|
diskdb := rawdb.NewMemoryDatabase()
|
|
syncWith(t, srcTrie.Hash(), diskdb, srcDb)
|
|
checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData)
|
|
|
|
// Push more modifications into the src trie, to see if dest trie can still
|
|
// sync with it(overwrite stale states)
|
|
var (
|
|
preRoot = srcTrie.Hash()
|
|
diff = make(map[string][]byte)
|
|
)
|
|
for i := byte(0); i < 10; i++ {
|
|
key, val := randBytes(32), randBytes(32)
|
|
srcTrie.MustUpdate(key, val)
|
|
diff[string(key)] = val
|
|
}
|
|
root, nodes, _ := srcTrie.Commit(false)
|
|
if err := srcDb.Update(root, preRoot, trienode.NewWithNodeSet(nodes), nil); err != nil {
|
|
panic(err)
|
|
}
|
|
if err := srcDb.Commit(root, false); err != nil {
|
|
panic(err)
|
|
}
|
|
preRoot = root
|
|
srcTrie, _ = NewStateTrie(TrieID(root), srcDb)
|
|
|
|
syncWith(t, srcTrie.Hash(), diskdb, srcDb)
|
|
checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), diff)
|
|
|
|
// Revert added modifications from the src trie, to see if dest trie can still
|
|
// sync with it(overwrite reverted states)
|
|
var reverted = make(map[string][]byte)
|
|
for k := range diff {
|
|
srcTrie.MustDelete([]byte(k))
|
|
reverted[k] = nil
|
|
}
|
|
for k := range srcData {
|
|
val := randBytes(32)
|
|
srcTrie.MustUpdate([]byte(k), val)
|
|
reverted[k] = val
|
|
}
|
|
root, nodes, _ = srcTrie.Commit(false)
|
|
if err := srcDb.Update(root, preRoot, trienode.NewWithNodeSet(nodes), nil); err != nil {
|
|
panic(err)
|
|
}
|
|
if err := srcDb.Commit(root, false); err != nil {
|
|
panic(err)
|
|
}
|
|
srcTrie, _ = NewStateTrie(TrieID(root), srcDb)
|
|
|
|
syncWith(t, srcTrie.Hash(), diskdb, srcDb)
|
|
checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), reverted)
|
|
}
|