go-ethereum/metrics/sample_test.go

327 lines
8.2 KiB
Go

package metrics
import (
"math"
"math/rand"
"testing"
"time"
)
const epsilonPercentile = .00000000001
// Benchmark{Compute,Copy}{1000,1000000} demonstrate that, even for relatively
// expensive computations like Variance, the cost of copying the Sample, as
// approximated by a make and copy, is much greater than the cost of the
// computation for small samples and only slightly less for large samples.
func BenchmarkCompute1000(b *testing.B) {
s := make([]int64, 1000)
var sum int64
for i := 0; i < len(s); i++ {
s[i] = int64(i)
sum += int64(i)
}
mean := float64(sum) / float64(len(s))
b.ResetTimer()
for i := 0; i < b.N; i++ {
SampleVariance(mean, s)
}
}
func BenchmarkCompute1000000(b *testing.B) {
s := make([]int64, 1000000)
var sum int64
for i := 0; i < len(s); i++ {
s[i] = int64(i)
sum += int64(i)
}
mean := float64(sum) / float64(len(s))
b.ResetTimer()
for i := 0; i < b.N; i++ {
SampleVariance(mean, s)
}
}
func BenchmarkExpDecaySample257(b *testing.B) {
benchmarkSample(b, NewExpDecaySample(257, 0.015))
}
func BenchmarkExpDecaySample514(b *testing.B) {
benchmarkSample(b, NewExpDecaySample(514, 0.015))
}
func BenchmarkExpDecaySample1028(b *testing.B) {
benchmarkSample(b, NewExpDecaySample(1028, 0.015))
}
func BenchmarkUniformSample257(b *testing.B) {
benchmarkSample(b, NewUniformSample(257))
}
func BenchmarkUniformSample514(b *testing.B) {
benchmarkSample(b, NewUniformSample(514))
}
func BenchmarkUniformSample1028(b *testing.B) {
benchmarkSample(b, NewUniformSample(1028))
}
func TestExpDecaySample(t *testing.T) {
for _, tc := range []struct {
reservoirSize int
alpha float64
updates int
}{
{100, 0.99, 10},
{1000, 0.01, 100},
{100, 0.99, 1000},
} {
sample := NewExpDecaySample(tc.reservoirSize, tc.alpha)
for i := 0; i < tc.updates; i++ {
sample.Update(int64(i))
}
snap := sample.Snapshot()
if have, want := int(snap.Count()), tc.updates; have != want {
t.Errorf("unexpected count: have %d want %d", have, want)
}
if have, want := snap.Size(), min(tc.updates, tc.reservoirSize); have != want {
t.Errorf("unexpected size: have %d want %d", have, want)
}
values := snap.(*sampleSnapshot).values
if have, want := len(values), min(tc.updates, tc.reservoirSize); have != want {
t.Errorf("unexpected values length: have %d want %d", have, want)
}
for _, v := range values {
if v > int64(tc.updates) || v < 0 {
t.Errorf("out of range [0, %d]: %v", tc.updates, v)
}
}
}
}
// This test makes sure that the sample's priority is not amplified by using
// nanosecond duration since start rather than second duration since start.
// The priority becomes +Inf quickly after starting if this is done,
// effectively freezing the set of samples until a rescale step happens.
func TestExpDecaySampleNanosecondRegression(t *testing.T) {
sw := NewExpDecaySample(1000, 0.99)
for i := 0; i < 1000; i++ {
sw.Update(10)
}
time.Sleep(1 * time.Millisecond)
for i := 0; i < 1000; i++ {
sw.Update(20)
}
s := sw.Snapshot()
v := s.(*sampleSnapshot).values
avg := float64(0)
for i := 0; i < len(v); i++ {
avg += float64(v[i])
}
avg /= float64(len(v))
if avg > 16 || avg < 14 {
t.Errorf("out of range [14, 16]: %v\n", avg)
}
}
func TestExpDecaySampleRescale(t *testing.T) {
s := NewExpDecaySample(2, 0.001).(*ExpDecaySample)
s.update(time.Now(), 1)
s.update(time.Now().Add(time.Hour+time.Microsecond), 1)
for _, v := range s.values.Values() {
if v.k == 0.0 {
t.Fatal("v.k == 0.0")
}
}
}
func TestExpDecaySampleSnapshot(t *testing.T) {
now := time.Now()
s := NewExpDecaySample(100, 0.99).(*ExpDecaySample).SetRand(rand.New(rand.NewSource(1)))
for i := 1; i <= 10000; i++ {
s.(*ExpDecaySample).update(now.Add(time.Duration(i)), int64(i))
}
snapshot := s.Snapshot()
s.Update(1)
testExpDecaySampleStatistics(t, snapshot)
}
func TestExpDecaySampleStatistics(t *testing.T) {
now := time.Now()
s := NewExpDecaySample(100, 0.99).(*ExpDecaySample).SetRand(rand.New(rand.NewSource(1)))
for i := 1; i <= 10000; i++ {
s.(*ExpDecaySample).update(now.Add(time.Duration(i)), int64(i))
}
testExpDecaySampleStatistics(t, s.Snapshot())
}
func TestUniformSample(t *testing.T) {
sw := NewUniformSample(100)
for i := 0; i < 1000; i++ {
sw.Update(int64(i))
}
s := sw.Snapshot()
if size := s.Count(); size != 1000 {
t.Errorf("s.Count(): 1000 != %v\n", size)
}
if size := s.Size(); size != 100 {
t.Errorf("s.Size(): 100 != %v\n", size)
}
values := s.(*sampleSnapshot).values
if l := len(values); l != 100 {
t.Errorf("len(s.Values()): 100 != %v\n", l)
}
for _, v := range values {
if v > 1000 || v < 0 {
t.Errorf("out of range [0, 1000]: %v\n", v)
}
}
}
func TestUniformSampleIncludesTail(t *testing.T) {
sw := NewUniformSample(100)
max := 100
for i := 0; i < max; i++ {
sw.Update(int64(i))
}
s := sw.Snapshot()
v := s.(*sampleSnapshot).values
sum := 0
exp := (max - 1) * max / 2
for i := 0; i < len(v); i++ {
sum += int(v[i])
}
if exp != sum {
t.Errorf("sum: %v != %v\n", exp, sum)
}
}
func TestUniformSampleSnapshot(t *testing.T) {
s := NewUniformSample(100).(*UniformSample).SetRand(rand.New(rand.NewSource(1)))
for i := 1; i <= 10000; i++ {
s.Update(int64(i))
}
snapshot := s.Snapshot()
s.Update(1)
testUniformSampleStatistics(t, snapshot)
}
func TestUniformSampleStatistics(t *testing.T) {
s := NewUniformSample(100).(*UniformSample).SetRand(rand.New(rand.NewSource(1)))
for i := 1; i <= 10000; i++ {
s.Update(int64(i))
}
testUniformSampleStatistics(t, s.Snapshot())
}
func benchmarkSample(b *testing.B, s Sample) {
for i := 0; i < b.N; i++ {
s.Update(1)
}
}
func testExpDecaySampleStatistics(t *testing.T, s SampleSnapshot) {
if sum := s.Sum(); sum != 496598 {
t.Errorf("s.Sum(): 496598 != %v\n", sum)
}
if count := s.Count(); count != 10000 {
t.Errorf("s.Count(): 10000 != %v\n", count)
}
if min := s.Min(); min != 107 {
t.Errorf("s.Min(): 107 != %v\n", min)
}
if max := s.Max(); max != 10000 {
t.Errorf("s.Max(): 10000 != %v\n", max)
}
if mean := s.Mean(); mean != 4965.98 {
t.Errorf("s.Mean(): 4965.98 != %v\n", mean)
}
if stdDev := s.StdDev(); stdDev != 2959.825156930727 {
t.Errorf("s.StdDev(): 2959.825156930727 != %v\n", stdDev)
}
ps := s.Percentiles([]float64{0.5, 0.75, 0.99})
if ps[0] != 4615 {
t.Errorf("median: 4615 != %v\n", ps[0])
}
if ps[1] != 7672 {
t.Errorf("75th percentile: 7672 != %v\n", ps[1])
}
if ps[2] != 9998.99 {
t.Errorf("99th percentile: 9998.99 != %v\n", ps[2])
}
}
func testUniformSampleStatistics(t *testing.T, s SampleSnapshot) {
if count := s.Count(); count != 10000 {
t.Errorf("s.Count(): 10000 != %v\n", count)
}
if min := s.Min(); min != 37 {
t.Errorf("s.Min(): 37 != %v\n", min)
}
if max := s.Max(); max != 9989 {
t.Errorf("s.Max(): 9989 != %v\n", max)
}
if mean := s.Mean(); mean != 4748.14 {
t.Errorf("s.Mean(): 4748.14 != %v\n", mean)
}
if stdDev := s.StdDev(); stdDev != 2826.684117548333 {
t.Errorf("s.StdDev(): 2826.684117548333 != %v\n", stdDev)
}
ps := s.Percentiles([]float64{0.5, 0.75, 0.99})
if ps[0] != 4599 {
t.Errorf("median: 4599 != %v\n", ps[0])
}
if ps[1] != 7380.5 {
t.Errorf("75th percentile: 7380.5 != %v\n", ps[1])
}
if math.Abs(9986.429999999998-ps[2]) > epsilonPercentile {
t.Errorf("99th percentile: 9986.429999999998 != %v\n", ps[2])
}
}
// TestUniformSampleConcurrentUpdateCount would expose data race problems with
// concurrent Update and Count calls on Sample when test is called with -race
// argument
func TestUniformSampleConcurrentUpdateCount(t *testing.T) {
if testing.Short() {
t.Skip("skipping in short mode")
}
s := NewUniformSample(100)
for i := 0; i < 100; i++ {
s.Update(int64(i))
}
quit := make(chan struct{})
go func() {
t := time.NewTicker(10 * time.Millisecond)
defer t.Stop()
for {
select {
case <-t.C:
s.Update(rand.Int63())
case <-quit:
t.Stop()
return
}
}
}()
for i := 0; i < 1000; i++ {
s.Snapshot().Count()
time.Sleep(5 * time.Millisecond)
}
quit <- struct{}{}
}
func BenchmarkCalculatePercentiles(b *testing.B) {
pss := []float64{0.5, 0.75, 0.95, 0.99, 0.999, 0.9999}
var vals []int64
for i := 0; i < 1000; i++ {
vals = append(vals, int64(rand.Int31()))
}
v := make([]int64, len(vals))
b.ResetTimer()
for i := 0; i < b.N; i++ {
copy(v, vals)
_ = CalculatePercentiles(v, pss)
}
}