go-ethereum/core/state/snapshot/conversion.go

376 lines
12 KiB
Go

// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"math"
"runtime"
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
)
// trieKV represents a trie key-value pair
type trieKV struct {
key common.Hash
value []byte
}
type (
// trieGeneratorFn is the interface of trie generation which can
// be implemented by different trie algorithm.
trieGeneratorFn func(db ethdb.KeyValueWriter, owner common.Hash, in chan (trieKV), out chan (common.Hash))
// leafCallbackFn is the callback invoked at the leaves of the trie,
// returns the subtrie root with the specified subtrie identifier.
leafCallbackFn func(db ethdb.KeyValueWriter, accountHash, codeHash common.Hash, stat *generateStats) (common.Hash, error)
)
// GenerateAccountTrieRoot takes an account iterator and reproduces the root hash.
func GenerateAccountTrieRoot(it AccountIterator) (common.Hash, error) {
return generateTrieRoot(nil, it, common.Hash{}, stackTrieGenerate, nil, newGenerateStats(), true)
}
// GenerateStorageTrieRoot takes a storage iterator and reproduces the root hash.
func GenerateStorageTrieRoot(account common.Hash, it StorageIterator) (common.Hash, error) {
return generateTrieRoot(nil, it, account, stackTrieGenerate, nil, newGenerateStats(), true)
}
// GenerateTrie takes the whole snapshot tree as the input, traverses all the
// accounts as well as the corresponding storages and regenerate the whole state
// (account trie + all storage tries).
func GenerateTrie(snaptree *Tree, root common.Hash, src ethdb.Database, dst ethdb.KeyValueWriter) error {
// Traverse all state by snapshot, re-generate the whole state trie
acctIt, err := snaptree.AccountIterator(root, common.Hash{})
if err != nil {
return err // The required snapshot might not exist.
}
defer acctIt.Release()
got, err := generateTrieRoot(dst, acctIt, common.Hash{}, stackTrieGenerate, func(dst ethdb.KeyValueWriter, accountHash, codeHash common.Hash, stat *generateStats) (common.Hash, error) {
// Migrate the code first, commit the contract code into the tmp db.
if codeHash != emptyCode {
code := rawdb.ReadCode(src, codeHash)
if len(code) == 0 {
return common.Hash{}, errors.New("failed to read contract code")
}
rawdb.WriteCode(dst, codeHash, code)
}
// Then migrate all storage trie nodes into the tmp db.
storageIt, err := snaptree.StorageIterator(root, accountHash, common.Hash{})
if err != nil {
return common.Hash{}, err
}
defer storageIt.Release()
hash, err := generateTrieRoot(dst, storageIt, accountHash, stackTrieGenerate, nil, stat, false)
if err != nil {
return common.Hash{}, err
}
return hash, nil
}, newGenerateStats(), true)
if err != nil {
return err
}
if got != root {
return fmt.Errorf("state root hash mismatch: got %x, want %x", got, root)
}
return nil
}
// generateStats is a collection of statistics gathered by the trie generator
// for logging purposes.
type generateStats struct {
head common.Hash
start time.Time
accounts uint64 // Number of accounts done (including those being crawled)
slots uint64 // Number of storage slots done (including those being crawled)
slotsStart map[common.Hash]time.Time // Start time for account slot crawling
slotsHead map[common.Hash]common.Hash // Slot head for accounts being crawled
lock sync.RWMutex
}
// newGenerateStats creates a new generator stats.
func newGenerateStats() *generateStats {
return &generateStats{
slotsStart: make(map[common.Hash]time.Time),
slotsHead: make(map[common.Hash]common.Hash),
start: time.Now(),
}
}
// progressAccounts updates the generator stats for the account range.
func (stat *generateStats) progressAccounts(account common.Hash, done uint64) {
stat.lock.Lock()
defer stat.lock.Unlock()
stat.accounts += done
stat.head = account
}
// finishAccounts updates the generator stats for the finished account range.
func (stat *generateStats) finishAccounts(done uint64) {
stat.lock.Lock()
defer stat.lock.Unlock()
stat.accounts += done
}
// progressContract updates the generator stats for a specific in-progress contract.
func (stat *generateStats) progressContract(account common.Hash, slot common.Hash, done uint64) {
stat.lock.Lock()
defer stat.lock.Unlock()
stat.slots += done
stat.slotsHead[account] = slot
if _, ok := stat.slotsStart[account]; !ok {
stat.slotsStart[account] = time.Now()
}
}
// finishContract updates the generator stats for a specific just-finished contract.
func (stat *generateStats) finishContract(account common.Hash, done uint64) {
stat.lock.Lock()
defer stat.lock.Unlock()
stat.slots += done
delete(stat.slotsHead, account)
delete(stat.slotsStart, account)
}
// report prints the cumulative progress statistic smartly.
func (stat *generateStats) report() {
stat.lock.RLock()
defer stat.lock.RUnlock()
ctx := []interface{}{
"accounts", stat.accounts,
"slots", stat.slots,
"elapsed", common.PrettyDuration(time.Since(stat.start)),
}
if stat.accounts > 0 {
// If there's progress on the account trie, estimate the time to finish crawling it
if done := binary.BigEndian.Uint64(stat.head[:8]) / stat.accounts; done > 0 {
var (
left = (math.MaxUint64 - binary.BigEndian.Uint64(stat.head[:8])) / stat.accounts
speed = done/uint64(time.Since(stat.start)/time.Millisecond+1) + 1 // +1s to avoid division by zero
eta = time.Duration(left/speed) * time.Millisecond
)
// If there are large contract crawls in progress, estimate their finish time
for acc, head := range stat.slotsHead {
start := stat.slotsStart[acc]
if done := binary.BigEndian.Uint64(head[:8]); done > 0 {
var (
left = math.MaxUint64 - binary.BigEndian.Uint64(head[:8])
speed = done/uint64(time.Since(start)/time.Millisecond+1) + 1 // +1s to avoid division by zero
)
// Override the ETA if larger than the largest until now
if slotETA := time.Duration(left/speed) * time.Millisecond; eta < slotETA {
eta = slotETA
}
}
}
ctx = append(ctx, []interface{}{
"eta", common.PrettyDuration(eta),
}...)
}
}
log.Info("Iterating state snapshot", ctx...)
}
// reportDone prints the last log when the whole generation is finished.
func (stat *generateStats) reportDone() {
stat.lock.RLock()
defer stat.lock.RUnlock()
var ctx []interface{}
ctx = append(ctx, []interface{}{"accounts", stat.accounts}...)
if stat.slots != 0 {
ctx = append(ctx, []interface{}{"slots", stat.slots}...)
}
ctx = append(ctx, []interface{}{"elapsed", common.PrettyDuration(time.Since(stat.start))}...)
log.Info("Iterated snapshot", ctx...)
}
// runReport periodically prints the progress information.
func runReport(stats *generateStats, stop chan bool) {
timer := time.NewTimer(0)
defer timer.Stop()
for {
select {
case <-timer.C:
stats.report()
timer.Reset(time.Second * 8)
case success := <-stop:
if success {
stats.reportDone()
}
return
}
}
}
// generateTrieRoot generates the trie hash based on the snapshot iterator.
// It can be used for generating account trie, storage trie or even the
// whole state which connects the accounts and the corresponding storages.
func generateTrieRoot(db ethdb.KeyValueWriter, it Iterator, account common.Hash, generatorFn trieGeneratorFn, leafCallback leafCallbackFn, stats *generateStats, report bool) (common.Hash, error) {
var (
in = make(chan trieKV) // chan to pass leaves
out = make(chan common.Hash, 1) // chan to collect result
stoplog = make(chan bool, 1) // 1-size buffer, works when logging is not enabled
wg sync.WaitGroup
)
// Spin up a go-routine for trie hash re-generation
wg.Add(1)
go func() {
defer wg.Done()
generatorFn(db, account, in, out)
}()
// Spin up a go-routine for progress logging
if report && stats != nil {
wg.Add(1)
go func() {
defer wg.Done()
runReport(stats, stoplog)
}()
}
// Create a semaphore to assign tasks and collect results through. We'll pre-
// fill it with nils, thus using the same channel for both limiting concurrent
// processing and gathering results.
threads := runtime.NumCPU()
results := make(chan error, threads)
for i := 0; i < threads; i++ {
results <- nil // fill the semaphore
}
// stop is a helper function to shutdown the background threads
// and return the re-generated trie hash.
stop := func(fail error) (common.Hash, error) {
close(in)
result := <-out
for i := 0; i < threads; i++ {
if err := <-results; err != nil && fail == nil {
fail = err
}
}
stoplog <- fail == nil
wg.Wait()
return result, fail
}
var (
logged = time.Now()
processed = uint64(0)
leaf trieKV
)
// Start to feed leaves
for it.Next() {
if account == (common.Hash{}) {
var (
err error
fullData []byte
)
if leafCallback == nil {
fullData, err = FullAccountRLP(it.(AccountIterator).Account())
if err != nil {
return stop(err)
}
} else {
// Wait until the semaphore allows us to continue, aborting if
// a sub-task failed
if err := <-results; err != nil {
results <- nil // stop will drain the results, add a noop back for this error we just consumed
return stop(err)
}
// Fetch the next account and process it concurrently
account, err := FullAccount(it.(AccountIterator).Account())
if err != nil {
return stop(err)
}
go func(hash common.Hash) {
subroot, err := leafCallback(db, hash, common.BytesToHash(account.CodeHash), stats)
if err != nil {
results <- err
return
}
if !bytes.Equal(account.Root, subroot.Bytes()) {
results <- fmt.Errorf("invalid subroot(path %x), want %x, have %x", hash, account.Root, subroot)
return
}
results <- nil
}(it.Hash())
fullData, err = rlp.EncodeToBytes(account)
if err != nil {
return stop(err)
}
}
leaf = trieKV{it.Hash(), fullData}
} else {
leaf = trieKV{it.Hash(), common.CopyBytes(it.(StorageIterator).Slot())}
}
in <- leaf
// Accumulate the generation statistic if it's required.
processed++
if time.Since(logged) > 3*time.Second && stats != nil {
if account == (common.Hash{}) {
stats.progressAccounts(it.Hash(), processed)
} else {
stats.progressContract(account, it.Hash(), processed)
}
logged, processed = time.Now(), 0
}
}
// Commit the last part statistic.
if processed > 0 && stats != nil {
if account == (common.Hash{}) {
stats.finishAccounts(processed)
} else {
stats.finishContract(account, processed)
}
}
return stop(nil)
}
func stackTrieGenerate(db ethdb.KeyValueWriter, owner common.Hash, in chan trieKV, out chan common.Hash) {
t := trie.NewStackTrieWithOwner(db, owner)
for leaf := range in {
t.TryUpdate(leaf.key[:], leaf.value)
}
var root common.Hash
if db == nil {
root = t.Hash()
} else {
root, _ = t.Commit()
}
out <- root
}