go-ethereum/core/vm/program/program.go

431 lines
13 KiB
Go

// Copyright 2024 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the goevmlab library. If not, see <http://www.gnu.org/licenses/>.
// package program is a utility to create EVM bytecode for testing, but _not_ for production. As such:
//
// - There are not package guarantees. We might iterate heavily on this package, and do backwards-incompatible changes without warning
// - There are no quality-guarantees. These utilities may produce evm-code that is non-functional. YMMV.
// - There are no stability-guarantees. The utility will `panic` if the inputs do not align / make sense.
package program
import (
"fmt"
"math/big"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/holiman/uint256"
)
// Program is a simple bytecode container. It can be used to construct
// simple EVM programs. Errors during construction of a Program typically
// cause panics: so avoid using these programs in production settings or on
// untrusted input.
// This package is mainly meant to aid in testing. This is not a production
// -level "compiler".
type Program struct {
code []byte
}
// New creates a new Program
func New() *Program {
return &Program{
code: make([]byte, 0),
}
}
// add adds the op to the code.
func (p *Program) add(op byte) *Program {
p.code = append(p.code, op)
return p
}
// pushBig creates a PUSHX instruction and pushes the given val.
// - If the val is nil, it pushes zero
// - If the val is bigger than 32 bytes, it panics
func (p *Program) doPush(val *uint256.Int) {
if val == nil {
val = new(uint256.Int)
}
valBytes := val.Bytes()
if len(valBytes) == 0 {
valBytes = append(valBytes, 0)
}
bLen := len(valBytes)
p.add(byte(vm.PUSH1) - 1 + byte(bLen))
p.Append(valBytes)
}
// Append appends the given data to the code.
func (p *Program) Append(data []byte) *Program {
p.code = append(p.code, data...)
return p
}
// Bytes returns the Program bytecode. OBS: This is not a copy.
func (p *Program) Bytes() []byte {
return p.code
}
// SetBytes sets the Program bytecode. The combination of Bytes and SetBytes means
// that external callers can implement missing functionality:
//
// ...
// prog.Push(1)
// code := prog.Bytes()
// manipulate(code)
// prog.SetBytes(code)
func (p *Program) SetBytes(code []byte) {
p.code = code
}
// Hex returns the Program bytecode as a hex string.
func (p *Program) Hex() string {
return fmt.Sprintf("%02x", p.Bytes())
}
// Op appends the given opcode(s).
func (p *Program) Op(ops ...vm.OpCode) *Program {
for _, op := range ops {
p.add(byte(op))
}
return p
}
// Push creates a PUSHX instruction with the data provided. If zero is being pushed,
// PUSH0 will be avoided in favour of [PUSH1 0], to ensure backwards compatibility.
func (p *Program) Push(val any) *Program {
switch v := val.(type) {
case int:
p.doPush(new(uint256.Int).SetUint64(uint64(v)))
case uint64:
p.doPush(new(uint256.Int).SetUint64(v))
case uint32:
p.doPush(new(uint256.Int).SetUint64(uint64(v)))
case uint16:
p.doPush(new(uint256.Int).SetUint64(uint64(v)))
case *big.Int:
p.doPush(uint256.MustFromBig(v))
case *uint256.Int:
p.doPush(v)
case uint256.Int:
p.doPush(&v)
case []byte:
p.doPush(new(uint256.Int).SetBytes(v))
case byte:
p.doPush(new(uint256.Int).SetUint64(uint64(v)))
case interface{ Bytes() []byte }:
// Here, we jump through some hoops in order to avoid depending on
// go-ethereum types.Address and common.Hash, and instead use the
// interface. This works on both values and pointers!
p.doPush(new(uint256.Int).SetBytes(v.Bytes()))
case nil:
p.doPush(nil)
default:
panic(fmt.Sprintf("unsupported type %T", v))
}
return p
}
// Push0 implements PUSH0 (0x5f).
func (p *Program) Push0() *Program {
return p.Op(vm.PUSH0)
}
// ExtcodeCopy performs an extcodecopy invocation.
func (p *Program) ExtcodeCopy(address, memOffset, codeOffset, length any) *Program {
p.Push(length)
p.Push(codeOffset)
p.Push(memOffset)
p.Push(address)
return p.Op(vm.EXTCODECOPY)
}
// Call is a convenience function to make a call. If 'gas' is nil, the opcode GAS will
// be used to provide all gas.
func (p *Program) Call(gas *uint256.Int, address, value, inOffset, inSize, outOffset, outSize any) *Program {
if outOffset == outSize && inSize == outSize && inOffset == outSize && value == outSize {
p.Push(outSize).Op(vm.DUP1, vm.DUP1, vm.DUP1, vm.DUP1)
} else {
p.Push(outSize).Push(outOffset).Push(inSize).Push(inOffset).Push(value)
}
p.Push(address)
if gas == nil {
p.Op(vm.GAS)
} else {
p.doPush(gas)
}
return p.Op(vm.CALL)
}
// DelegateCall is a convenience function to make a delegatecall. If 'gas' is nil, the opcode GAS will
// be used to provide all gas.
func (p *Program) DelegateCall(gas *uint256.Int, address, inOffset, inSize, outOffset, outSize any) *Program {
if outOffset == outSize && inSize == outSize && inOffset == outSize {
p.Push(outSize).Op(vm.DUP1, vm.DUP1, vm.DUP1)
} else {
p.Push(outSize).Push(outOffset).Push(inSize).Push(inOffset)
}
p.Push(address)
if gas == nil {
p.Op(vm.GAS)
} else {
p.doPush(gas)
}
return p.Op(vm.DELEGATECALL)
}
// StaticCall is a convenience function to make a staticcall. If 'gas' is nil, the opcode GAS will
// be used to provide all gas.
func (p *Program) StaticCall(gas *uint256.Int, address, inOffset, inSize, outOffset, outSize any) *Program {
if outOffset == outSize && inSize == outSize && inOffset == outSize {
p.Push(outSize).Op(vm.DUP1, vm.DUP1, vm.DUP1)
} else {
p.Push(outSize).Push(outOffset).Push(inSize).Push(inOffset)
}
p.Push(address)
if gas == nil {
p.Op(vm.GAS)
} else {
p.doPush(gas)
}
return p.Op(vm.STATICCALL)
}
// StaticCall is a convenience function to make a callcode. If 'gas' is nil, the opcode GAS will
// be used to provide all gas.
func (p *Program) CallCode(gas *uint256.Int, address, value, inOffset, inSize, outOffset, outSize any) *Program {
if outOffset == outSize && inSize == outSize && inOffset == outSize {
p.Push(outSize).Op(vm.DUP1, vm.DUP1, vm.DUP1)
} else {
p.Push(outSize).Push(outOffset).Push(inSize).Push(inOffset)
}
p.Push(value)
p.Push(address)
if gas == nil {
p.Op(vm.GAS)
} else {
p.doPush(gas)
}
return p.Op(vm.CALLCODE)
}
// Label returns the PC (of the next instruction).
func (p *Program) Label() uint64 {
return uint64(len(p.code))
}
// Jumpdest adds a JUMPDEST op, and returns the PC of that instruction.
func (p *Program) Jumpdest() (*Program, uint64) {
here := p.Label()
p.Op(vm.JUMPDEST)
return p, here
}
// Jump pushes the destination and adds a JUMP.
func (p *Program) Jump(loc any) *Program {
p.Push(loc)
p.Op(vm.JUMP)
return p
}
// JumpIf implements JUMPI.
func (p *Program) JumpIf(loc any, condition any) *Program {
p.Push(condition)
p.Push(loc)
p.Op(vm.JUMPI)
return p
}
// Size returns the current size of the bytecode.
func (p *Program) Size() int {
return len(p.code)
}
// InputAddressToStack stores the input (calldata) to memory as address (20 bytes).
func (p *Program) InputAddressToStack(inputOffset uint32) *Program {
p.Push(inputOffset)
p.Op(vm.CALLDATALOAD) // Loads [n -> n + 32] of input data to stack top
mask, _ := big.NewInt(0).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", 16)
p.Push(mask) // turn into address
return p.Op(vm.AND)
}
// MStore stores the provided data (into the memory area starting at memStart).
func (p *Program) Mstore(data []byte, memStart uint32) *Program {
var idx = 0
// We need to store it in chunks of 32 bytes
for ; idx+32 <= len(data); idx += 32 {
chunk := data[idx : idx+32]
// push the value
p.Push(chunk)
// push the memory index
p.Push(uint32(idx) + memStart)
p.Op(vm.MSTORE)
}
// Remainders become stored using MSTORE8
for ; idx < len(data); idx++ {
b := data[idx]
// push the byte
p.Push(b)
p.Push(uint32(idx) + memStart)
p.Op(vm.MSTORE8)
}
return p
}
// MstoreSmall stores the provided data, which must be smaller than 32 bytes,
// into the memory area starting at memStart.
// The data will be LHS zero-added to align on 32 bytes.
// For example, providing data 0x1122, it will do a PUSH2:
// PUSH2 0x1122, resulting in
// stack: 0x0000000000000000000000000000000000000000000000000000000000001122
// followed by MSTORE(0,0)
// And thus, the resulting memory will be
// [ 0000000000000000000000000000000000000000000000000000000000001122 ]
func (p *Program) MstoreSmall(data []byte, memStart uint32) *Program {
if len(data) > 32 {
// For larger sizes, use Mstore instead.
panic("only <=32 byte data size supported")
}
if len(data) == 0 {
// Storing 0-length data smells of an error somewhere.
panic("data is zero length")
}
// push the value
p.Push(data)
// push the memory index
p.Push(memStart)
p.Op(vm.MSTORE)
return p
}
// MemToStorage copies the given memory area into SSTORE slots,
// It expects data to be aligned to 32 byte, and does not zero out
// remainders if some data is not
// I.e, if given a 1-byte area, it will still copy the full 32 bytes to storage.
func (p *Program) MemToStorage(memStart, memSize, startSlot int) *Program {
// We need to store it in chunks of 32 bytes
for idx := memStart; idx < (memStart + memSize); idx += 32 {
dataStart := idx
// Mload the chunk
p.Push(dataStart)
p.Op(vm.MLOAD)
// Value is now on stack,
p.Push(startSlot)
p.Op(vm.SSTORE)
startSlot++
}
return p
}
// ReturnViaCodeCopy utilises CODECOPY to place the given data in the bytecode of
// p, loads into memory (offset 0) and returns the code.
// This is a typical "constructor".
// Note: since all indexing is calculated immediately, the preceding bytecode
// must not be expanded or shortened.
func (p *Program) ReturnViaCodeCopy(data []byte) *Program {
p.Push(len(data))
// For convenience, we'll use PUSH2 for the offset. Then we know we can always
// fit, since code is limited to 0xc000
p.Op(vm.PUSH2)
offsetPos := p.Size() // Need to update this position later on
p.Append([]byte{0, 0}) // Offset of the code to be copied
p.Push(0) // Offset in memory (destination)
p.Op(vm.CODECOPY) // Copy from code[offset:offset+len] to memory[0:]
p.Return(0, len(data)) // Return memory[0:len]
offset := p.Size()
p.Append(data) // And add the data
// Now, go back and fix the offset
p.code[offsetPos] = byte(offset >> 8)
p.code[offsetPos+1] = byte(offset)
return p
}
// Sstore stores the given byte array to the given slot.
// OBS! Does not verify that the value indeed fits into 32 bytes.
// If it does not, it will panic later on via doPush.
func (p *Program) Sstore(slot any, value any) *Program {
p.Push(value)
p.Push(slot)
return p.Op(vm.SSTORE)
}
// Tstore stores the given byte array to the given t-slot.
// OBS! Does not verify that the value indeed fits into 32 bytes.
// If it does not, it will panic later on via doPush.
func (p *Program) Tstore(slot any, value any) *Program {
p.Push(value)
p.Push(slot)
return p.Op(vm.TSTORE)
}
// Return implements RETURN
func (p *Program) Return(offset, len int) *Program {
p.Push(len)
p.Push(offset)
return p.Op(vm.RETURN)
}
// ReturnData loads the given data into memory, and does a return with it
func (p *Program) ReturnData(data []byte) *Program {
p.Mstore(data, 0)
return p.Return(0, len(data))
}
// Create2 uses create2 to construct a contract with the given bytecode.
// This operation leaves either '0' or address on the stack.
func (p *Program) Create2(code []byte, salt any) *Program {
var (
value = 0
offset = 0
size = len(code)
)
// Load the code into mem
p.Mstore(code, 0)
// Create it
return p.Push(salt).
Push(size).
Push(offset).
Push(value).
Op(vm.CREATE2)
// On the stack now, is either
// - zero: in case of failure, OR
// - address: in case of success
}
// Create2ThenCall calls create2 with the given initcode and salt, and then calls
// into the created contract (or calls into zero, if the creation failed).
func (p *Program) Create2ThenCall(code []byte, salt any) *Program {
p.Create2(code, salt)
// If there happen to be a zero on the stack, it doesn't matter, we're
// not sending any value anyway
p.Push(0).Push(0) // mem out
p.Push(0).Push(0) // mem in
p.Push(0) // value
p.Op(vm.DUP6) // address
p.Op(vm.GAS)
p.Op(vm.CALL)
p.Op(vm.POP) // pop the retval
return p.Op(vm.POP) // pop the address
}
// Selfdestruct pushes beneficiary and invokes selfdestruct.
func (p *Program) Selfdestruct(beneficiary any) *Program {
p.Push(beneficiary)
return p.Op(vm.SELFDESTRUCT)
}