go-ethereum/metrics/runtimehistogram.go

302 lines
7.8 KiB
Go

package metrics
import (
"math"
"runtime/metrics"
"sort"
"sync/atomic"
)
func getOrRegisterRuntimeHistogram(name string, scale float64, r Registry) *runtimeHistogram {
if r == nil {
r = DefaultRegistry
}
constructor := func() Histogram { return newRuntimeHistogram(scale) }
return r.GetOrRegister(name, constructor).(*runtimeHistogram)
}
// runtimeHistogram wraps a runtime/metrics histogram.
type runtimeHistogram struct {
v atomic.Value // v is a pointer to a metrics.Float64Histogram
scaleFactor float64
}
func newRuntimeHistogram(scale float64) *runtimeHistogram {
h := &runtimeHistogram{scaleFactor: scale}
h.update(new(metrics.Float64Histogram))
return h
}
func RuntimeHistogramFromData(scale float64, hist *metrics.Float64Histogram) *runtimeHistogram {
h := &runtimeHistogram{scaleFactor: scale}
h.update(hist)
return h
}
func (h *runtimeHistogram) update(mh *metrics.Float64Histogram) {
if mh == nil {
// The update value can be nil if the current Go version doesn't support a
// requested metric. It's just easier to handle nil here than putting
// conditionals everywhere.
return
}
s := metrics.Float64Histogram{
Counts: make([]uint64, len(mh.Counts)),
Buckets: make([]float64, len(mh.Buckets)),
}
copy(s.Counts, mh.Counts)
for i, b := range mh.Buckets {
s.Buckets[i] = b * h.scaleFactor
}
h.v.Store(&s)
}
func (h *runtimeHistogram) Clear() {
panic("runtimeHistogram does not support Clear")
}
func (h *runtimeHistogram) Update(int64) {
panic("runtimeHistogram does not support Update")
}
// Snapshot returns a non-changing copy of the histogram.
func (h *runtimeHistogram) Snapshot() HistogramSnapshot {
hist := h.v.Load().(*metrics.Float64Histogram)
return newRuntimeHistogramSnapshot(hist)
}
type runtimeHistogramSnapshot struct {
internal *metrics.Float64Histogram
calculated bool
// The following fields are (lazily) calculated based on 'internal'
mean float64
count int64
min int64 // min is the lowest sample value.
max int64 // max is the highest sample value.
variance float64
}
func newRuntimeHistogramSnapshot(h *metrics.Float64Histogram) *runtimeHistogramSnapshot {
return &runtimeHistogramSnapshot{
internal: h,
}
}
// calc calculates the values for the snapshot. This method is not threadsafe.
func (h *runtimeHistogramSnapshot) calc() {
h.calculated = true
var (
count int64 // number of samples
sum float64 // approx sum of all sample values
min int64
max float64
)
if len(h.internal.Counts) == 0 {
return
}
for i, c := range h.internal.Counts {
if c == 0 {
continue
}
if count == 0 { // Set min only first loop iteration
min = int64(math.Floor(h.internal.Buckets[i]))
}
count += int64(c)
sum += h.midpoint(i) * float64(c)
// Set max on every iteration
edge := h.internal.Buckets[i+1]
if math.IsInf(edge, 1) {
edge = h.internal.Buckets[i]
}
if edge > max {
max = edge
}
}
h.min = min
h.max = int64(max)
h.mean = sum / float64(count)
h.count = count
}
// Count returns the sample count.
func (h *runtimeHistogramSnapshot) Count() int64 {
if !h.calculated {
h.calc()
}
return h.count
}
// Size returns the size of the sample at the time the snapshot was taken.
func (h *runtimeHistogramSnapshot) Size() int {
return len(h.internal.Counts)
}
// Mean returns an approximation of the mean.
func (h *runtimeHistogramSnapshot) Mean() float64 {
if !h.calculated {
h.calc()
}
return h.mean
}
func (h *runtimeHistogramSnapshot) midpoint(bucket int) float64 {
high := h.internal.Buckets[bucket+1]
low := h.internal.Buckets[bucket]
if math.IsInf(high, 1) {
// The edge of the highest bucket can be +Inf, and it's supposed to mean that this
// bucket contains all remaining samples > low. We can't get the middle of an
// infinite range, so just return the lower bound of this bucket instead.
return low
}
if math.IsInf(low, -1) {
// Similarly, we can get -Inf in the left edge of the lowest bucket,
// and it means the bucket contains all remaining values < high.
return high
}
return (low + high) / 2
}
// StdDev approximates the standard deviation of the histogram.
func (h *runtimeHistogramSnapshot) StdDev() float64 {
return math.Sqrt(h.Variance())
}
// Variance approximates the variance of the histogram.
func (h *runtimeHistogramSnapshot) Variance() float64 {
if len(h.internal.Counts) == 0 {
return 0
}
if !h.calculated {
h.calc()
}
if h.count <= 1 {
// There is no variance when there are zero or one items.
return 0
}
// Variance is not calculated in 'calc', because it requires a second iteration.
// Therefore we calculate it lazily in this method, triggered either by
// a direct call to Variance or via StdDev.
if h.variance != 0.0 {
return h.variance
}
var sum float64
for i, c := range h.internal.Counts {
midpoint := h.midpoint(i)
d := midpoint - h.mean
sum += float64(c) * (d * d)
}
h.variance = sum / float64(h.count-1)
return h.variance
}
// Percentile computes the p'th percentile value.
func (h *runtimeHistogramSnapshot) Percentile(p float64) float64 {
threshold := float64(h.Count()) * p
values := [1]float64{threshold}
h.computePercentiles(values[:])
return values[0]
}
// Percentiles computes all requested percentile values.
func (h *runtimeHistogramSnapshot) Percentiles(ps []float64) []float64 {
// Compute threshold values. We need these to be sorted
// for the percentile computation, but restore the original
// order later, so keep the indexes as well.
count := float64(h.Count())
thresholds := make([]float64, len(ps))
indexes := make([]int, len(ps))
for i, percentile := range ps {
thresholds[i] = count * math.Max(0, math.Min(1.0, percentile))
indexes[i] = i
}
sort.Sort(floatsAscendingKeepingIndex{thresholds, indexes})
// Now compute. The result is stored back into the thresholds slice.
h.computePercentiles(thresholds)
// Put the result back into the requested order.
sort.Sort(floatsByIndex{thresholds, indexes})
return thresholds
}
func (h *runtimeHistogramSnapshot) computePercentiles(thresh []float64) {
var totalCount float64
for i, count := range h.internal.Counts {
totalCount += float64(count)
for len(thresh) > 0 && thresh[0] < totalCount {
thresh[0] = h.internal.Buckets[i]
thresh = thresh[1:]
}
if len(thresh) == 0 {
return
}
}
}
// Note: runtime/metrics.Float64Histogram is a collection of float64s, but the methods
// below need to return int64 to satisfy the interface. The histogram provided by runtime
// also doesn't keep track of individual samples, so results are approximated.
// Max returns the highest sample value.
func (h *runtimeHistogramSnapshot) Max() int64 {
if !h.calculated {
h.calc()
}
return h.max
}
// Min returns the lowest sample value.
func (h *runtimeHistogramSnapshot) Min() int64 {
if !h.calculated {
h.calc()
}
return h.min
}
// Sum returns the sum of all sample values.
func (h *runtimeHistogramSnapshot) Sum() int64 {
var sum float64
for i := range h.internal.Counts {
sum += h.internal.Buckets[i] * float64(h.internal.Counts[i])
}
return int64(math.Ceil(sum))
}
type floatsAscendingKeepingIndex struct {
values []float64
indexes []int
}
func (s floatsAscendingKeepingIndex) Len() int {
return len(s.values)
}
func (s floatsAscendingKeepingIndex) Less(i, j int) bool {
return s.values[i] < s.values[j]
}
func (s floatsAscendingKeepingIndex) Swap(i, j int) {
s.values[i], s.values[j] = s.values[j], s.values[i]
s.indexes[i], s.indexes[j] = s.indexes[j], s.indexes[i]
}
type floatsByIndex struct {
values []float64
indexes []int
}
func (s floatsByIndex) Len() int {
return len(s.values)
}
func (s floatsByIndex) Less(i, j int) bool {
return s.indexes[i] < s.indexes[j]
}
func (s floatsByIndex) Swap(i, j int) {
s.values[i], s.values[j] = s.values[j], s.values[i]
s.indexes[i], s.indexes[j] = s.indexes[j], s.indexes[i]
}