// Copyright 2024 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package pathdb import ( "bytes" "fmt" "slices" "sort" "github.com/ethereum/go-ethereum/common" ) // weightedIterator is an iterator with an assigned weight. It is used to prioritise // which account or storage slot is the correct one if multiple iterators find the // same one (modified in multiple consecutive blocks). type weightedIterator struct { it Iterator priority int } func (it *weightedIterator) Cmp(other *weightedIterator) int { // Order the iterators primarily by the account hashes hashI := it.it.Hash() hashJ := other.it.Hash() switch bytes.Compare(hashI[:], hashJ[:]) { case -1: return -1 case 1: return 1 } // Same account/storage-slot in multiple layers, split by priority if it.priority < other.priority { return -1 } if it.priority > other.priority { return 1 } return 0 } // fastIterator is a more optimized multi-layer iterator which maintains a // direct mapping of all iterators leading down to the bottom layer. type fastIterator struct { curAccount []byte curSlot []byte iterators []*weightedIterator initiated bool account bool fail error } // newFastIterator creates a new hierarchical account or storage iterator with one // element per diff layer. The returned combo iterator can be used to walk over // the entire layer stack simultaneously. func newFastIterator(db *Database, root common.Hash, account common.Hash, seek common.Hash, accountIterator bool) (*fastIterator, error) { current := db.tree.get(root) if current == nil { return nil, fmt.Errorf("unknown layer: %x", root) } fi := &fastIterator{ account: accountIterator, } for depth := 0; current != nil; depth++ { if accountIterator { switch dl := current.(type) { case *diskLayer: fi.iterators = append(fi.iterators, &weightedIterator{ // The state set in the disk layer is mutable, and the entire state becomes stale // if a diff layer above is merged into it. Therefore, staleness must be checked, // and the storage slot should be retrieved with read lock protection. it: newDiffAccountIterator(seek, dl.buffer.states, func(hash common.Hash) ([]byte, error) { dl.lock.RLock() defer dl.lock.RUnlock() if dl.stale { return nil, errSnapshotStale } return dl.buffer.states.mustAccount(hash) }), priority: depth, }) fi.iterators = append(fi.iterators, &weightedIterator{ it: newDiskAccountIterator(dl.db.diskdb, seek), priority: depth + 1, }) case *diffLayer: // The state set in diff layer is immutable and will never be stale, // so the read lock protection is unnecessary. fi.iterators = append(fi.iterators, &weightedIterator{ it: newDiffAccountIterator(seek, dl.states.stateSet, dl.states.mustAccount), priority: depth, }) } } else { switch dl := current.(type) { case *diskLayer: fi.iterators = append(fi.iterators, &weightedIterator{ // The state set in the disk layer is mutable, and the entire state becomes stale // if a diff layer above is merged into it. Therefore, staleness must be checked, // and the storage slot should be retrieved with read lock protection. it: newDiffStorageIterator(account, seek, dl.buffer.states, func(addrHash common.Hash, slotHash common.Hash) ([]byte, error) { dl.lock.RLock() defer dl.lock.RUnlock() if dl.stale { return nil, errSnapshotStale } return dl.buffer.states.mustStorage(addrHash, slotHash) }), priority: depth, }) fi.iterators = append(fi.iterators, &weightedIterator{ it: newDiskStorageIterator(dl.db.diskdb, account, seek), priority: depth + 1, }) case *diffLayer: // The state set in diff layer is immutable and will never be stale, // so the read lock protection is unnecessary. fi.iterators = append(fi.iterators, &weightedIterator{ it: newDiffStorageIterator(account, seek, dl.states.stateSet, dl.states.mustStorage), priority: depth, }) } } current = current.parentLayer() } fi.init() return fi, nil } // init walks over all the iterators and resolves any clashes between them, after // which it prepares the stack for step-by-step iteration. func (fi *fastIterator) init() { // Track which account hashes are iterators positioned on var positioned = make(map[common.Hash]int) // Position all iterators and track how many remain live for i := 0; i < len(fi.iterators); i++ { // Retrieve the first element and if it clashes with a previous iterator, // advance either the current one or the old one. Repeat until nothing is // clashing anymore. it := fi.iterators[i] for { // If the iterator is exhausted, drop it off the end if !it.it.Next() { it.it.Release() last := len(fi.iterators) - 1 fi.iterators[i] = fi.iterators[last] fi.iterators[last] = nil fi.iterators = fi.iterators[:last] i-- break } // The iterator is still alive, check for collisions with previous ones hash := it.it.Hash() if other, exist := positioned[hash]; !exist { positioned[hash] = i break } else { // Iterators collide, one needs to be progressed, use priority to // determine which. // // This whole else-block can be avoided, if we instead // do an initial priority-sort of the iterators. If we do that, // then we'll only wind up here if a lower-priority (preferred) iterator // has the same value, and then we will always just continue. // However, it costs an extra sort, so it's probably not better if fi.iterators[other].priority < it.priority { // The 'it' should be progressed continue } else { // The 'other' should be progressed, swap them it = fi.iterators[other] fi.iterators[other], fi.iterators[i] = fi.iterators[i], fi.iterators[other] continue } } } } // Re-sort the entire list slices.SortFunc(fi.iterators, func(a, b *weightedIterator) int { return a.Cmp(b) }) fi.initiated = false } // Next steps the iterator forward one element, returning false if exhausted. func (fi *fastIterator) Next() bool { if len(fi.iterators) == 0 { return false } if !fi.initiated { // Don't forward first time -- we had to 'Next' once in order to // do the sorting already fi.initiated = true if fi.account { fi.curAccount = fi.iterators[0].it.(AccountIterator).Account() } else { fi.curSlot = fi.iterators[0].it.(StorageIterator).Slot() } if innerErr := fi.iterators[0].it.Error(); innerErr != nil { fi.fail = innerErr return false } if fi.curAccount != nil || fi.curSlot != nil { return true } // Implicit else: we've hit a nil-account or nil-slot, and need to // fall through to the loop below to land on something non-nil } // If an account or a slot is deleted in one of the layers, the key will // still be there, but the actual value will be nil. However, the iterator // should not export nil-values (but instead simply omit the key), so we // need to loop here until we either // - get a non-nil value, // - hit an error, // - or exhaust the iterator for { if !fi.next(0) { return false // exhausted } if fi.account { fi.curAccount = fi.iterators[0].it.(AccountIterator).Account() } else { fi.curSlot = fi.iterators[0].it.(StorageIterator).Slot() } if innerErr := fi.iterators[0].it.Error(); innerErr != nil { fi.fail = innerErr return false // error } if fi.curAccount != nil || fi.curSlot != nil { break // non-nil value found } } return true } // next handles the next operation internally and should be invoked when we know // that two elements in the list may have the same value. // // For example, if the iterated hashes become [2,3,5,5,8,9,10], then we should // invoke next(3), which will call Next on elem 3 (the second '5') and will // cascade along the list, applying the same operation if needed. func (fi *fastIterator) next(idx int) bool { // If this particular iterator got exhausted, remove it and return true (the // next one is surely not exhausted yet, otherwise it would have been removed // already). if it := fi.iterators[idx].it; !it.Next() { it.Release() fi.iterators = append(fi.iterators[:idx], fi.iterators[idx+1:]...) return len(fi.iterators) > 0 } // If there's no one left to cascade into, return if idx == len(fi.iterators)-1 { return true } // We next-ed the iterator at 'idx', now we may have to re-sort that element var ( cur, next = fi.iterators[idx], fi.iterators[idx+1] curHash, nextHash = cur.it.Hash(), next.it.Hash() ) if diff := bytes.Compare(curHash[:], nextHash[:]); diff < 0 { // It is still in correct place return true } else if diff == 0 && cur.priority < next.priority { // So still in correct place, but we need to iterate on the next fi.next(idx + 1) return true } // At this point, the iterator is in the wrong location, but the remaining // list is sorted. Find out where to move the item. clash := -1 index := sort.Search(len(fi.iterators), func(n int) bool { // The iterator always advances forward, so anything before the old slot // is known to be behind us, so just skip them altogether. This actually // is an important clause since the sort order got invalidated. if n < idx { return false } if n == len(fi.iterators)-1 { // Can always place an elem last return true } nextHash := fi.iterators[n+1].it.Hash() if diff := bytes.Compare(curHash[:], nextHash[:]); diff < 0 { return true } else if diff > 0 { return false } // The elem we're placing it next to has the same value, // so whichever winds up on n+1 will need further iteration clash = n + 1 return cur.priority < fi.iterators[n+1].priority }) fi.move(idx, index) if clash != -1 { fi.next(clash) } return true } // move advances an iterator to another position in the list. func (fi *fastIterator) move(index, newpos int) { elem := fi.iterators[index] copy(fi.iterators[index:], fi.iterators[index+1:newpos+1]) fi.iterators[newpos] = elem } // Error returns any failure that occurred during iteration, which might have // caused a premature iteration exit (e.g. snapshot stack becoming stale). func (fi *fastIterator) Error() error { return fi.fail } // Hash returns the current key func (fi *fastIterator) Hash() common.Hash { return fi.iterators[0].it.Hash() } // Account returns the current account blob. // Note the returned account is not a copy, please don't modify it. func (fi *fastIterator) Account() []byte { return fi.curAccount } // Slot returns the current storage slot. // Note the returned slot is not a copy, please don't modify it. func (fi *fastIterator) Slot() []byte { return fi.curSlot } // Release iterates over all the remaining live layer iterators and releases each // of them individually. func (fi *fastIterator) Release() { for _, it := range fi.iterators { it.it.Release() } fi.iterators = nil } // Debug is a convenience helper during testing func (fi *fastIterator) Debug() { for _, it := range fi.iterators { fmt.Printf("[p=%v v=%v] ", it.priority, it.it.Hash()[0]) } fmt.Println() } // newFastAccountIterator creates a new hierarchical account iterator with one // element per diff layer. The returned combo iterator can be used to walk over // the entire snapshot diff stack simultaneously. func newFastAccountIterator(db *Database, root common.Hash, seek common.Hash) (AccountIterator, error) { return newFastIterator(db, root, common.Hash{}, seek, true) } // newFastStorageIterator creates a new hierarchical storage iterator with one // element per diff layer. The returned combo iterator can be used to walk over // the entire snapshot diff stack simultaneously. func newFastStorageIterator(db *Database, root common.Hash, account common.Hash, seek common.Hash) (StorageIterator, error) { return newFastIterator(db, root, account, seek, false) }